首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report whole-rock geochemistry and Sr–Nd–Pb isotopic compositions of mafic dykes intruded in the Precambrian granito-gneissic basement complex, exposed at Nyos, Batibo, Dschang and Foumban on the Cameroon Line. The dykes are alkaline (Batibo), transitional (Foumban), and subalkaline (Nyos, Batibo and Dschang) with SiO2 of 45–54 wt% and MgO of 2–9 wt%, similar to dykes reported in other areas of the Cameroon Line (CL) and the Central Atlantic Magmatic Province (CAMP). The abundances of rare earth elements (REE) and the Primitive Mantle normalised patterns for the Nyos, Batibo and Dschang dykes are similar to those of MORB, indicating that the dykes formed at shallower depths by a higher degree of partial melting relative to the Foumban dykes and the alkaline lavas of the CL. The transitional basaltic dykes with steeper REE patterns have their sources at deeper levels in the lithospheric mantle, possibly the garnet-spinel transition zone and were generated by a lower degree partial melting of the lithospheric and plume components. The Nyos and Batibo subalkaline dykes show similar isotopic compositions with a spectrum extending from depleted (DMM-like) to enriched (EM1-like) mantle, indicating the similarity in their source components. The Dschang dykes show distinct isotopic characteristics with relatively unradiogenic Nd-Pb isotope compositions compared to the Batibo and Nyos dykes. The Foumban transitional dykes with characteristic wide ranges in Sr-Nd-Pb isotopic compositions reveal varying contributions from enriched mantle components (EM1 and EM2) in addition to its plume signature similar to those of CL lavas. The Nyos and Batibo dykes alongside other dykes on the CL have low TiO2 abundances (<2 wt%), negative PM-normalised Nb-anomalies, and moderately to strongly enriched REE patterns, and isotopic composition that overlaps with those of CAMP, suggesting a similar lithospheric origin.  相似文献   

2.
Mafic rocks from the Bamenda volcanic province along the Cameroon Volcanic Line have been dated from 17 to 0 Ma. Associated with some trachytes and rhyolites, this volcanism covers a period of more than 25 Ma. The studied rocks are basalts to mugearites. Most of them have been contaminated by continental crust during their transit to the surface. The oldest rocks are the most contaminated. One group of samples shows high Eu, Sr and Ba contents. This characteristic is not due to crustal contamination process, but has a mantle source origin. We argue that these characteristics have been acquired by mixing of melts formed by partial melting of mantle pyroxenites with melts formed in mantle peridotites. Such pyroxenites have been observed as mantle xenoliths in the Adamaoua province, and their chemical and isotopic compositions are consistent with such a model.  相似文献   

3.
New major and trace element analyses and Sr-isotope determinations of rocks from Mt. Somma–Vesuvius volcano produced from 25 ky BP to 1944 AD are part of an extensive database documenting the geochemical evolution of this classic region. Volcanic rocks include silica undersaturated, potassic and ultrapotassic lavas and tephras characterized by variable mineralogy and different crystal abundance, as well as by wide ranges of trace element contents and a wide span of initial Sr-isotopic compositions. Both the degree of undersaturation in silica and the crystal content increase through time, being higher in rocks produced after the eruption at 472 AD (Pollena eruption). Compositional variations have been generally thought to reflect contributions from diverse types of mantle and crust. Magma mixing is commonly invoked as a fundamental process affecting the magmas, in addition to crystal fractionation. Our assessment of geochemical and Sr-isotopic data indicates that compositional variability also reflects the influence of crustal contamination during magma evolution during upward migration to shallow crustal levels and/or by entrapment of crystal mush generated during previous magma storage in the crust. Using a variant of the assimilation fractional crystallization model (Energy Conservation–Assimilation Fractional Crystallization; [Spera and Bohrson, 2001. Energy-constrained open-system magmatic processes I: General model and energy-constrained assimilation and fractional crystallization (EC–AFC) formulation. J. Petrol. 999–1018]; [Bohrson, W.A. and Spera, F.J., 2001. Energy-constrained open-system magmatic process II: application of energy-constrained assimilation–fractional crystallization (EC–AFC) model to magmatic systems. J. Petrol. 1019–1041]) we estimated the contributions from the crust and suggest that contamination by carbonate rocks that underlie the volcano (2 km down to 9–10 km) is a fundamental process controlling magma compositions at Mt. Somma–Vesuvius in the last 8 ky BP. Contamination in the mid- to upper crust occurred repeatedly, after the magma chamber waxed with influx of new mantle- and crustal-derived magmas and fluids, and waned as a result of magma withdrawal and production of large and energetic plinian and subplinian eruptions.  相似文献   

4.
The Quaternary Acatlán Volcanic Field (AVF) is located at the western edge of the Trans-Mexican Volcanic Belt (TMVB). This region is related to the subduction of the Pacific Cocos and Rivera plates beneath the North American plate since the late Miocene. AVF rocks are products of Pleistocene volcanic activity and include lava flows, domes, erupted basaltic andesite, trachyandesite, trachydacite, and rhyolite of calc–alkaline affinity. Most rocks show depletion in high field-strength elements and enrichment in large ion lithophile elements and light rare earth elements as is typical for magmas in subduction-related volcanic arcs. 87Sr/86Sr values range from 0.70361 to 0.70412, while Nd values vary from +2.3 to +5.2. Sr–Nd isotopic data plot along the mantle array. On the other hand, lead isotope compositions (206Pb/204Pb=18.62–18.75, 207Pb/204Pb=15.57–15.64, and 208Pb/204Pb=38.37–38.67) give evidence for combined influences of the upper mantle, fluxes derived from subducted sediments, and the upper continental crust involved in magma genesis at AVF. Additionally δ18O whole rock analyses range from +6.35‰ in black pumice to +10.9‰ in white pumice of the Acatlán Ignimbrite. A fairly good correlation is displayed between Sr as well as O isotopes and SiO2 emphasizing the effects of crustal contamination. Compositional and isotopic data suggest that the different AVF series derived from distinct parental magmas, which were generated by partial melting of a heterogeneous mantle source.  相似文献   

5.
The Neogene volcanic province of SE Spain (NVPS) is characterized by calc-alkaline (CA), high-K calc-alkaline (KCA), shoshonitic (SH), ultrapotassic (UP), and alkaline basaltic (AB) volcanic series. All these series, except the AB, have high LILE/LREE, LILE/HFSE and B/Be ratios and high but variable Sr, Pb and O isotope compositions. The KCA and SH lavas contain metapelitic xenoliths whose mineralogical and chemical composition are typical of anatectic restites. The geochemical characteristics of CA, KCA, SH and UP series suggest that they originated from the lithospheric mantle, previously contaminated by fluids derived from pelagic sediments. Additionally, the presence of restite xenoliths in the KCA and SH lavas indicates some sort of interaction between the mantle-derived magmas and the continental crust. Trace element and isotope modeling for the KCA and SH lavas and the restites, point towards the existence of two mixing stages. During the first stage, the lithospheric mantle was contaminated by 1–5% of fluids derived from pelagic sediments, which produced a fertile source heterogeneously enriched in incompatible elements (particularly LILE and LREE), as well as in 87Sr/86Sr, without significant modifications of the δ18O values. In the second stage, the primary melts derived from this metasomatized mantle, which inherited the enrichment in LILE, LREE and 87Sr/86Sr, interacted with crustal liquids from the Betic Paleozoic basement during their ascent towards the surface. This mixing process caused an increase in δ18O values and, to a lesser extent, in 87Sr/86Sr ratios. However, the incompatible trace elements abundances only change slightly, even for high mixing rates, due to their similar concentrations in both components. We suggest the following geodynamic scenario to account for the global evolution of this area: (1) a Late Cretaceous to Oligocene subduction scheme during which mantle metasomatism took place, shortly followed by Upper Oligocene to Lower Miocene continental collision, and (2) a Middle to Upper Miocene extensional event triggering partial melting of the previously metasomatized mantle and the extrusion of the CA and associated magmas.  相似文献   

6.
本文通过对塔西南达木斯剖面中玄武岩进行K-Ar同位素定年,获得年龄为289.6Ma,并结合Ar-Ar坪年龄结果(290.1Ma)和古生物以及沉积特征,认为290Ma的年龄代表了塔西南玄武岩形成于早二叠世,对应于盆地内下二叠统库普库兹满组下段层位的年龄.地球化学特征显示塔西南熔岩为分异的碱性玄武岩并含45%SiO2和4%MgO含量.塔西南玄武岩与盆地内柯坪玄武岩具有相近的主量元素含量和稀土配分与微量元素蜘蛛网图型、无Eu异常、富集轻稀土元素、较高的其它不相容元素(如高场强元素).但塔西南玄武岩比柯坪玄武岩具有较高的A12O2和CaO含量及稀土总量(288×10-6~358×10-6),偏低的Na2O,P2O5和FeO含量.K、Rb和Cs丰度的无系统性变化主要受这些元素丰度本身变化的影响.对其它不活动组分,塔西南玄武岩具有高Ti(Ti/Y=522~624)和Nb含量(30×10-6~40×10-6)及低zr/Nb比值,暗示其来自富集的地幔源区.其Nb含量相对La含量无显著变化以及相对低的Nb/U(近30)和Ce/Pb比值(近15),指示塔西南玄武熔岩来自大陆岩石圈或受一定程度的地壳混染.塔里木盆地大规模的火山喷发以及富集不相容元素的地球化学特征支持这样一种假设,即塔西南玄武岩来自地幔柱火山作用,或由于地幔柱的供热和上升导致富集的岩石圈地幔部分熔融而形成.且岩浆作用过程以部分熔融为主,结晶分异作用较弱.基于塔西南玄武岩和柯坪玄武岩相近的时代、源区成分和/或岩浆作用过程以及处于陆内稳定构造环境,笔者认为塔里木二叠纪玄武岩的分布范围可以从塔里木盆地内的塔中、柯坪一带一直延伸到塔西南地区.  相似文献   

7.
Nearly contemporaneous eruption of alkaline and calc-alkaline lavas occurred about 900 years BP from El Volcancillo paired vent, located behind the volcanic front in the Mexican Volcanic Belt (MVB). Emission of hawaiite (Toxtlacuaya) was immediately followed by calc-alkaline basalt (Río Naolinco). Hawaiites contain olivine microphenocrysts (Fo67–72), plagioclase (An56–60) phenocrysts, have 4–5 wt% MgO and 49.6–50.9 wt% SiO2. In contrast, calc-alkaline lavas contain plagioclase (An64–72) and olivine phenocrysts (Fo81–84) with spinel inclusions, and have 8–9 wt% MgO and 48.4–49.4 wt% SiO2. The most primitive lavas in the region (Río Naolinco and Cerro Colorado) are not as primitive as parental melts in other arcs, and could represent either (a) variable degrees of melting of a subduction modified, garnet-bearing depleted mantle source, followed by AFC process, or (b) melting of two distinct mantle sources followed by AFC processes. These two hypotheses are evaluated using REE, HFSE, and Sr, Os and Pb isotopic data. The Toxtlacuaya flow and the Y & I lavas can be generated by combined fractional crystallization and assimilation of gabbroic granulite, starting with a parental liquid similar to the Cerro Colorado basalt. Although calc-alkaline and alkaline magmas commonly occur together in other areas of the MVB, evidence for subduction component in El Volcancillo magmas is minimal and limited to <1%, which is a unique feature in this region further from the trench. El Volcancillo lavas were produced from two different magma batches: we surmise that the injection of calc-alkaline magma into an alkaline magma chamber triggered the eruption of hawaiites. Our results suggest that the subalkaline and hawaiitic lavas were formed by different degrees of partial melting of a similar, largely depleted mantle source, followed by later AFC processes. This model is unusual for arcs, where such diversity is usually explained by melting of heterogeneous (enriched and depleted) and subduction-modified mantle.  相似文献   

8.
In order to provide mantle and crustal constraints during the evolution of the Colombian Andes, Sr and Nd isotopic studies were performed in xenoliths from the Mercaderes region, Northern Volcanic Zone, Colombia. Xenoliths are found in the Granatifera Tuff, a deposit of Cenozoic age, in which mantle- and crustal-derived xenoliths are present in bombs and fragments of andesites and lamprophyres compositions. Garnet-bearing xenoliths are the most abundant mantle-derived rocks, but websterites (garnet-free xenoliths) and spinel-bearing peridotites are also present in minor amounts. Amphibolites, pyroxenites, granulites, and gneisses represent the lower crustal xenolith assemblage. Isotopic signatures for the mantle xenoliths, together with field, petrographic, mineral, and whole-rock chemistry and pressure–temperature estimates, suggest three main sources for these mantle xenoliths: garnet-free websterite xenoliths derived from a source region with low P and T (16 kbar, 1065 °C) and MORB isotopic signature, 87Sr/86Sr ratio of 0.7030, and 143Nd/144Nd ratio of 0.5129. Garnet-bearing peridotite and websterite xenoliths derived from two different sources in the mantle: i) a source with intermediate P and T (29–35 kbar, 1250–1295 °C) conditions, similar to that of sub-oceanic geotherm, with an OIB isotopic signature (87Sr/86Sr ratio of 0.7043 and 143Nd/144Nd ratio of 0.5129); and ii) another source with P and T conditions similar to those of a sub-continental geotherm (>38 kbar, 1140–1175 °C) and OIB isotopic characteristics (87Sr/86Sr ratio=0.7041 and 143Nd/144Nd ratio=0.5135).  相似文献   

9.
本文报道东天山有铜镍硫化物矿化的白石泉镁铁-超镁铁杂岩体(分布在中天山地块北部)的微量元素和Nd-Sr-Os同位素成分,以探讨其地幔源区性质和壳幔相互作用过程.白石泉杂岩体的地球化学特征是富集大离子亲石元素和轻稀土元素,但亏损高场强元素.全岩Sr和Nd同位素初始比值变化较大,分别是(87Sr/86Sr)i =0.7032~0.7066和εNd(t)=5.6~-0.9,两者呈反相关关系.全岩Os含量在80×10-12~29×10-12之间,富含放射性成因Os(187 Os/188 Os=0.295~ 1.18).据此,得出结论:(1)白石泉杂岩体的母岩浆在上升侵位过程中,受到地壳物质的强烈混染,导致各岩石类型的Nd-Sr同位素成分变化很大和Os同位素成分富集放射性成因Os的特征,这与前人认为的白石泉岩体侵位过程中没有地壳混染作用的模式明显不同;(2)白石泉杂岩体的母岩浆来自被古生代俯冲带熔/流体交代过的年轻岩石圈地幔,这要求我们重新认识中天山前寒武地块的性质和规模.  相似文献   

10.
华北龙岗第四纪玄武岩:岩石成因和源区性质   总被引:1,自引:1,他引:1  
华北克拉通东北缘龙岗第四纪玄武岩的地球化学研究为大陆碱性玄武岩的成因以及源区的性质提供了重要的依据.龙岗第四纪玄武岩为碱性玄武岩,具有类似OIB的REE和微量元素分配特征.岩石的Sr-Nd同位素轻度亏损(87Sr/86Sr =0.7044~0.7048,εNd=0.6~2.1),具有Dupal异常的高放射性成因Pb同位素组成(^206 Pb/^204 Pb=17.734~18.194,^207 Pb/^204 Pb=15.553~15.594,^208 Pb/%204 Pb=38.322~38.707).这种地球化学特征指示了原始岩浆起源于<70km深度的地幔,并经历了一定程度的橄榄岩、单斜辉石和钛.铁氧化物的结晶分异.岩浆源区中以来类似MORB软流圈物质的熔体为主,另外有少量来自EM Ⅰ性质的富集岩石圈地幔以及俯冲流体/熔体的物质贡献,显示了深部岩石圈-软流圈一定程度的相互作用以及太平洋板块俯冲的影响.岩浆源区多种端元组分的存在表明该地区岩石圈的减薄/置换受到多种因素的影响.  相似文献   

11.
In Douala (Littoral Cameroon), the Cretaceous to Quaternary formation composed of marine to continental sediments are covered by ferrallitic soils. These sediments and soils have high contents of SiO2 (≥70.0 wt%), intermediate contents of Al2O3 (11.6–28.4 wt%), Fe2O3 (0.00–20.5 wt%) and TiO2 (0.04–4.08 wt%), while K2O (≤0.18 wt%), Na2O (≤0.04 wt%), MgO (≤0.14 wt%) and CaO (≤0.02 wt%) are very low to extremely low. Apart from silica, major oxides and trace elements (REE included) are more concentrated in the fine fraction (<62.5 μm) whose proportions of phyllosilicates and heavy minerals are significant. The close co-associations between Zr, Hf, Th and ∑REE in this fraction suggest that REE distribution is controlled by monazite and zircon. CIA values indicate intense weathering. Weathering products are characterized by the association Al2O3 and Ga in kaolinite; the strong correlation between Fe2O3 and V in hematite and goethite; the affinity of TiO2 with HFSE (Hf, Nb, Th, Y and Zr) in heavy minerals. The ICV values suggest mature sediments. The PCI indicates a well-drained environment whereas U/Th and V/Cr ratios imply oxic conditions. La/Sc, La/Co, Th/Cr, Th/Sc and Eu/Eu* elemental ratios suggest a source with felsic components. Discrimination diagrams are consistent with the felsic source. The REE patterns of some High-K granite and granodiorite of the Congo Craton resemble those of the samples, indicating that they derive from similar source rocks.  相似文献   

12.
藏北羌塘火车头山新生代火山岩可区分为钙碱性及碱性两个不同的系列.钙碱性火山岩主要岩石组合为玄武岩-安山岩-英安岩,其SiO2介于49%~70%之间,Al2O3>10%,Na2O/K2O>1;其中玄武岩具平坦型稀土配分型式,LREE/HREE为1.3~1.8,(La/Yb)N为2.87~4.45,无明显铕异常,δEu为0.96~1.09;该套岩石的Mg#与SiO2相关关系以及La/Sm-La等亲岩浆元素与超亲岩浆元素协变关系表明,它们应为幔源岩浆经分离结晶演化的产物,其岩石组合类型以及低的Sm/Yb值(Sm/Yb=1.53~5.35)表明它们的原始岩浆应来源于岩石圈地幔尖晶石二辉橄榄岩的局部熔融.本区碱性火山岩为一套典型的钾质岩石系列,主要岩石组合类型为碱玄岩-碱玄质响岩-响岩,其SiO2介于44%~59%之间,Al2O3>14%,Na2O/K2O介于0.47~1.51之间;岩石轻稀土强烈富集,LREE/HREE为13.20~15.76,(La/Yb)N=50.44~91.99;其岩石组合类型以及Mg^#与SiO2相关关系以及La/Sm-La协变关系同样表明它们为共源岩浆分离结晶演化的产物;然而,其较高的Sm/Yb值(Sm/Yb=2.63~13.98)表明它们并非地幔橄榄岩直接局部熔融的产物,岩石弱的负Eu异常(δEu=0.77~0.85)以及Th、U的强烈富集和Nb、Ta的相对亏损,又反映了原始岩浆中有显著的地壳物质的贡献;该套钾质碱性系列岩石在La/Co-Th/Co同分母协变图上呈直线型分布,而在La/Co-Sc/Th异分母协变图上呈显著的双曲线分布,从而表明其源区为二源混合型,是青藏高原特殊的壳幔混合层局部熔融的产物,这些特征是新生代青藏高原壳幔层圈物质交换的重要岩石学证据.  相似文献   

13.
《International Geology Review》2012,54(16):1967-1982
ABSTRACT

The Taupo Volcanic Zone (TVZ), New Zealand, is a well-documented volcanic arc characterized by explosive rhyolitic magmas within a series of caldera complexes that include the Okataina Volcanic Centre (OVC). New quartz melt inclusion and volcanic glass data from the 45 ka caldera-forming Rotoiti eruption within the OVC are compared to published studies. The new data are characterized by low K2O (~1.5–3.5 wt.%), Rb (~30–70 ppm), Sr (~40–90 ppm), U (~0.5–2.5 ppm), and Ba (~300–1000 ppm) ranges that differ significantly from other OVC systems (~3.0–4.5 wt.% K2O, ~80–150 ppm Rb, and ~2.5–5.0 ppm U). Most interestingly, the Rotoiti melt inclusion data measured in this study show a decrease in Rb, Sr, and U, although the fractionation trends originate from the same source point as published OVC data. This progressive decreasing trend is interpreted as an interaction with a less enriched rhyolitic melt (represented by the low Rb, Sr, and U of glasses) during fractionation processes from a common TVZ source. The established model for TVZ rhyolites is that they are extracted from a middle or upper crustal source (‘mush’ zone) prior to eruption. Adding to this model, new melt inclusion data suggest that all TVZ rhyolites are fractionated from this common TVZ source and, prior to eruption, the Rotoiti system was rejuvenated by this source (evidenced by the low REE glasses). Exactly what triggers the common TVZ source to fractionate remains unclear, but a proposed mechanism to account for this involves the successive melting of the upper crust by upwelling mantle induced by incremental subduction.  相似文献   

14.
We present a combined Sr, Nd, Pb and Os isotope study of lavasand associated genetically related megacrysts from the Biu andJos Plateaux, northern Cameroon Volcanic Line (CVL). Comparisonof lavas and megacrysts allows us to distinguish between twocontamination paths of the primary magmas. The first is characterizedby both increasing 206Pb/204Pb (19·82–20·33)and 87Sr/86Sr (0·70290–0·70310), and decreasingNd (7·0–6·0), and involves addition of anenriched sub-continental lithospheric mantle-derived melt. Thesecond contamination path is characterized by decreasing 206Pb/204Pb(19·82–19·03), but also increasing 87Sr/86Sr(0·70290–0·70359), increasing 187Os/188Os(0·130–0·245) and decreasing Nd (7·0–4·6),and involves addition of up to 8% bulk continental crust. Isotopicsystematics of some lavas from the oceanic sector of the CVLalso imply the involvement of a continental crustal component.Assuming that the line as a whole shares a common source, wepropose that the continental signature seen in the oceanic sectorof the CVL is caused by shallow contamination, either by continent-derivedsediments or by rafted crustal blocks that became trapped inthe oceanic lithosphere during continental breakup in the Mesozoic. KEY WORDS: crustal contamination; CVL; megacrysts; ocean floor; osmium isotopes  相似文献   

15.
《Comptes Rendus Geoscience》2018,350(3):119-129
This paper is focused on the morphological, mineralogical, and geochemical features of alluvial sediments from the Neoproterozoic Pan-African belt to explore rutile. The fine-grained sediments, which contain a large proportion of rutile, are made up of quartz, rutile, zircon, brookite, tourmaline, andalusite, and kyanite. The high SiO2 and TiO2 contents highlight the predominance of silica minerals in the alluvia from the humid tropical zone. La/Sc, La/Co, Th/Sc and Zr/Cr ratios reflect the contribution of felsic and mafic sources. The highest Ti contents, which occur at the outlet of the Lobo watershed, indicate the resistance of rutile. The REE distribution could be linked to the heavy mineral sorting. The low (La/Yb)N ratios and high Zr contents are attributed to the high proportion of zircon. Chondrite-normalized REE patterns indicate high felsic sources, which are the regional rocks. Ultimately, the Yaoundé Group constitutes a favorable potential target for further rutile exploration.  相似文献   

16.
Mafic alkaline lavas from the Venetian Volcanic Province (NE Italy) contain orange–brown zircon megacrysts up to 15 mm long, subhedral to subrounded and showing equant morphology, with width-to-length ratios of 1:2–1:2.5. U–Pb ages of zircon (51.1 ± 1.5 to 30.5 ± 0.51 Ma) fit the stratigraphic age of the host lava (Middle Eocene and Oligocene) and their oxygen isotope composition (δ18O = 5.31–5.51‰) is similar to that of zircon formed in the upper mantle. Cathodoluminescence images and crystal chemical features, e.g. depletion of incompatible elements such as REE, Y, U and Th at constant Hf content, indicate that centre-to-edge zircon zoning is not consistent with evolution of the melt by fractional crystallization. All the above features, together with the fact that zircon and host basalts are coeval, indicate that the studied Zr megacrysts crystallised from a primitive alkaline mafic magma, which later evolved to the less alkaline host magma.  相似文献   

17.
Sensitive high resolution ion microprobe (SHRIMP) zircon U–Pb ages, geochemical and Sr-Nd-Pb isotopic data are reported for the gabbroic complex from Yinan (Shandong Province) with the aims of characterizing the nature of the Mesozoic mantle beneath the North China Craton. The Yinan gabbros contain alkali feldspar and biotite, and are characterized by moderate Mg#, high SiO2, low FeO and TiO2 contents and a strong enrichment of light rare earth elements [(La/Yb)n=11–50], but no Eu anomaly. They have low Nb/La (0.07–0.29), radiogenic 87Sr/86Sr (0.710) and unradiogenic Nd(t) (–15 to –13). These crustal fingerprints cannot be attributed to crustal contamination, given the lack of correlation between isotopic ratios and differentiation indices and the unreasonably high proportion of crustal contaminant (>20%) required in modeling. Instead, compositional similarities to contemporaneous basalts from nearby regions imply that the Yinan gabbros were not significantly affected by crystal cumulation. Isotopic data available for the Mesozoic mafic magmas reveal two distinct mantle domains beneath Shandong. While the EM1-like domain (with low 87Sr/86Sr) is confined to western Shandong, the mantle beneath eastern Shandong is dominated by EM2-type (with high 87Sr/86Sr) affinities. This aerial distinction suggests that the EM2-like signature of the Yinan gabbros may have been inherited from westerly-subducted Yangtze crust during the Triassic North China-South China collision. Emplacement of the Yinan gabbros (127 Ma) is likely affiliated with the widespread and protracted extension during the late Mesozoic in this region.  相似文献   

18.
Banded iron-formations (BIFs) form an important part of the Archaean to Proterozoic greenstone belts in the Southern Cameroon. In this study, major, trace and REE chemistry of the banded iron-formation are utilized to explore the source of metals and to constraint the origin and depositional environment of these BIFs. The studied BIF belongs to the oxide facies iron formations composed mainly of iron oxide (mainly magnetite) mesobands alternating with quartz mesobands. The mineralogy of the BIF sample consists of magnetite and quartz with lesser amount of secondary martite, goethite and trace of gibbsite and smectite. The major element chemistry of these iron-formations is remarkably simple with the main constituents being SiO2 and Fe2O3 which constitute 95.6–99.5% of the bulk rock. Low Al2O3, TiO2, and HFSE concentrations show that they are relatively detritus-free chemical sediments. The Pearson’s correlation matrix of major element reveals that there is a strong positive correlation (r = 0.99) of Al with Ti and no to weak negative correlation of Ti with Mn, Ca and weak positive correlation of Si with Ca, suggesting the null to very minor contribution of detrital material to chemical sediment. The trace elements with minor enrichments are transition metals such as Zn, Cr, Sr, V and Pb. This is an indicator of direct volcanogenic hydrothermal input in chemical precipitates. The studied BIF have a low ΣREE content, ranging between 0.41 and 3.22 ppm with an average of 0.87 ppm, similar to that of pure chemical sediments. The shale-normalized patterns show depletion in light REE, slightly enrichment in heavy REE and exhibit weak positive europium anomalies. These geochemical characteristics indicate that the source of Fe and Si was the result of deep ocean hydrothermal activity admixed with sea water. The absence of a large positive Eu anomaly in the studied BIF indicates an important role of low-temperature hydrothermal solutions. The chondrite-normalized REE patterns are characterized by LREE-enriched (Mean LaCN/YbCN = 8.01) and HREE depletion (Mean TbCN/YbCN = 1.61) patterns and show positive Ce anomalies. With the exception of one sample (LBR133), all of the BIF samples analyzed during this study have positive Ce anomalies on both chondrite- and PASS-normalized plots. This may indicate that the BIFs within the Elom area were formed within a redox stratified ocean. The positive Ce anomalies in the studied samples likely suggest that the basin in which Fe formations were deposited was reducing with respect to Ce, probably in the suboxic or anoxic seawaters.  相似文献   

19.
Trace elements, isotopic modeling and U-Th-Pb SHRIMP zircon age constraints are used to reconstruct the eruption history and magmatic processes of the Piedra Parada Caldera. In the early Eocene, the crystal-poor Barda Colorada ignimbrite(BCI), having 15% micro-porphyritic crystals with respect to magmatic components, erupted a volume estimated in more than 300 km~3. The Piedra Parada caldera is located in the Patagonian Andes foreland, at the southern end of the calderas field of the Pilcaniyeu Volcanic Belt(PVB). This belt is related to an extensional tectonic setting as a result of the collision of the Farallon-Aluk ridge with South America, which enabled the development of a transform ocean/continental plate margin followed by the detachment of the Aluk plate and the opening of a slab window. The BCI extra-caldera Plateau is a 100 m thick deposit, having a lower unit with high silica(Si O_2 76 wt.%),potassium poor rhyolitic composition(trondhjemitic like magma), and an upper unit with normal to high potassium rhyolitic composition(granitic like magma). A trace elements modeling of the BCI units shows that the BCI lower and upper units did not evolve from fractionation or immiscibility in the shallow magma reservoir. The BCI also have a primitive isotopic signature(initial87 Sr/86 Sr =0.7031-0.7049 and ε_(Nd)= +3.4 to +3.65). Thus, tectonic, compositional and isotopic constraints suggest the fast ascent of high silica magmas to a shallow reservoir, and point to an upper mantle origin for these rhyolitic magmas in a transitional(Orogenic-Anorogenic) tectono-magmatic setting. U-Th-Pb SHRIMP zircon crystallization ages of the Syn-caldera stage BCI units(56 -51.5 Ma) show a protracted life of 5 Ma for this caldera reservoir. The age of 52.9 ± 0.3 Ma is considered the best fit for the possible maximum age for the caldera collapse. The Late-caldera magmatism has trachyandesitic and rhyolitic compositions.The trace element modeling suggests that these rhyolites evolve from the trachyandesites and do not evolve from the BCI residual magma. The trachyandesites have U-Th-Pb SHRIMP zircon crystallization ages of 52 ± 1 Ma, suggesting that the caldera eruption was triggered by the arrival of the trachyandesitic magma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号