共查询到20条相似文献,搜索用时 15 毫秒
1.
The stability and high-pressure behavior of perovskite structure in MnGeO 3 and CdGeO 3 were examined on the basis of in situ synchrotron X-ray diffraction measurements at high pressure and temperature in a laser-heated diamond-anvil cell. Results demonstrate that the structural distortion of orthorhombic MnGeO 3 perovskite is enhanced with increasing pressure and it undergoes phase transition to a CaIrO 3-type post-perovskite structure above 60 GPa at 1,800 K. A molar volume of the post-perovskite phase is smaller by 1.6% than that of perovskite at equivalent pressure. In contrast, the structure of CdGeO 3 perovskite becomes less distorted from the ideal cubic perovskite structure with increasing pressure, and it is stable even at 110 GPa and 2,000 K. These results suggest that the phase transition to post-perovskite is induced by a large distortion of perovskite structure with increasing pressure. 相似文献
2.
自二十世纪九十年代起,通过对天然样品的观察、矿物中水的溶解度的实验研究、以及地球物理的观测,人们逐步认识到地球内部以矿物晶格缺陷形式蕴含着至少与现今海洋水量相当的水。地球内部的水除了显著影响矿物的热导率、电导率、流变学、扩散等性质之外,还对不同构造背景下的地幔熔融产生了重要影响。水作为强不相容元素,在地幔发生熔融时会更倾向于进入到熔体相中,从而改变熔体的结构,影响与残留固相之间的平衡。总体上讲,在等温等压条件下,地幔中水的存在可以显著降低其固相线并增大熔融程度;而在绝热减压过程中,水的存在则可以加深初始熔融的深度,增大地幔整体熔融的区间,从而降低平均熔融程度。近年来,越来越多的证据表明,水对于从岩石圈-软流圈边界的低程度熔融到地幔超大规模熔融产物(大火成岩省)的形成都具有重要作用。本文综述了不同构造背景下(大洋中脊、岛弧、地幔过渡带、大火成岩省、大陆板内、洋岛等)水对地幔熔融影响的新进展,并提出现有研究的不足和未来的挑战。 相似文献
3.
Small-volume alkali basaltic volcanism has occurred intermittently for the past + 30 My across a vast area of thick continental crust from southern Siberia, through Mongolia to northeast China. With a lack of evidence for Basin-and-Range-type crustal extension or rifting, models to explain the widely dispersed, yet long-lived, volcanism tend to favour involvement of one or more mantle plume(s). We examine the range of 3He/ 4He isotope values in olivine phenocrysts from basalts, and their entrained mantle xenoliths, from Hamar Daban in southern Siberia, and Hangai in central Mongolia, in order to examine whether upwelling lower mantle appears to be present beneath central Asia and thus test the validity of the plume model for this region. Our results show that the maximum 3He/ 4He value for the Siberian basalts is 8.12 ± 0.2 Ra, and the maximum value for Mongolian basalts is 9.5 ± 0.5 Ra. These values suggest that there is no significant contribution from a high 3He/ 4He primordial component that would strongly argue a lower mantle source. Overlap with commonly reported values for MORB leads us to propose that the source of the magmatism derives from the shallow asthenosphere. Alternative models to a deeply sourced mantle plume that may be able to explain the magmatism include: a shallow thermal anomaly confined to the upper mantle but either fed laterally or caused by thermal blanketing of the large Asian landmass; replacement or delamination of the lowermost lithosphere in response to tectonic stresses; or large-scale mantle disturbance or overturn caused by a protracted history of subduction beneath central Asia that ended regionally with the Jurassic closure of the Mongol-Okhotsk Ocean, but continues further afield with the present Indo-Asia collision. 相似文献
4.
Formation of reservoirs in crystalline rocks is associated with the development of rifts, with the periodic axial plunge of the rift floor during the extension of the Earth's crust, and with the elevation of consolidated basement masses during a compression phase. 相似文献
5.
早期地球是地球科学前沿研究方向之一,涉及地-月形成、核幔分异、原始大气圈和水圈的形成等关键科学问题。地幔是硅酸盐地球的主要组成部分,也是地球上最大的化学储库,其早期演化为揭示早期地球增生、核-幔分异、壳-幔分异等重大地质事件提供重要制约。近年来,地球早期地幔不均一性逐渐被认知,本文在总结早期地幔不均一性的稀有气体同位素、钕同位素和钨同位素等证据基础上,探讨了早期地幔不均一性形成动力学机制,并指出发展高精度同位素分析技术,结合地球物理和实验岩石学,揭示核幔边界结构、核幔物质交换过程是深入研究早期地幔不均一的重要发展方向。 相似文献
6.
地球上发生的各种地壳运动,大规模的火山喷发,不同深度不同规模的地震活动,规模宏大的山脉和高原的形成,以及地球历史上发生的大陆漂移运动,都被认为与板块构造活动密切相关。但这些运动的动力源究竟来自何方?如何去发现和证明它们的存在以及从理论上去认识和解释,是当今地球科学面临的巨大挑战,也是今后很长一段时间内地球科学的前沿和热点问题。近些年,人们通过各种方法,试图从更深部寻找板块作用动力学的证据。首先是地震层析研究取得了很大进展,获得了许多区域性和全球的高分辨率3-D地震地幔波速结构,使得我们得以认识地球深部的结构,探讨地幔的物质组成,流体的作用和动力学过程。证据显示,板块俯冲不仅可以到达地幔过渡带深度,而且可达到下地幔底部,堆积在核幔边界的上部,成为核幔边界产生的地幔柱的重要物质组成。其次是开展了大量的实验岩石学研究,模拟了一系列地球深部的高温高压矿物组合,被认为可能代表了地幔过渡带和下地幔的矿物组合,甚至核幔边界的含水矿物组合。另一方面,计算机模拟实验揭示了冷的大洋岩石圈发生深俯冲是可行的。尤为重要的是,许多来自地幔过渡带甚至下地幔深度的高压矿物已经在自然界陆续被发现,证明其中一些矿物是源... 相似文献
7.
We present the first detailed seismic velocity models of the crust and uppermost mantle around the Mirnyi kimberlite field in Yakutia, Siberia. We have digitized vintage seismograms that were acquired in 1981 and 1983 by use of Taiga analogue seismographs along two perpendicular seismic profiles. The 370-km long, northwest striking profile I across the kimberlite pipe was covered by 41 seismographs, which recorded seismic signals from 21 chemical shots along the line, including one off-end shot. The perpendicular, 340-km long profile II across profile I ca. 30 km to the south of the Mirnyi kimberlite field was covered by 45 seismographs, which recorded seismic signals from 22 chemical shots, including four off-end shots. Each shot involved detonation of between 1.5 and 6.0 tons of TNT, distributed in individual charges of 100–200 kg in shallow water (< 2 m deep). The data is of high quality with high signal/noise ratio to the farthest offsets. We present the results from two-dimensional ray tracing, forward modelling.Both velocity models show normal cratonic structure of the ca. 45-km-thick crust with only slight undulation of the Moho. However, relatively small seismic velocity is detected to 25-km depth in a ca. 60-km wide zone around the kimberlite pipe, surrounded by elevated velocity (> 6.3 km/s) in the upper crust. The lower crust has a relatively constant velocity of 6.8–6.9 km/s. It appears relatively unaffected by the presence of the kimberlite field. Extremely large P-wave velocity (> 8.7 km/s) of the sub-Moho mantle is interpreted along profile I, except for a 70-km wide zone with a “normal” Pn velocity of 8.1 km/s below the kimberlite. Profile II mainly shows Pn velocities of 8.0–8.2 km/s, with unusually large velocity (> 8.5 km/s) in two, ca. 100-km wide zones, at its southwestern end, one zone being close to the kimberlite field. The nature of these exceptionally large, sub-Moho mantle velocities is not yet understood. The difference in velocity in the two profile directions indicates anisotropy, but the effect of unusual rock composition, e.g. from a high concentration of garnet, cannot be excluded. 相似文献
8.
Episodic plate reorganisations abruptly change plate boundary configurations. To illustrate their role, we review the plate reorganisations that appear in the present-day oceans and in the reconstructed Tethys ocean. These time periods cover the dispersal of the Pangea super-continent and the collisions with Eurasia that foreshadow a new super-continent. Plate reorganisations have played a fundamental role in the tectonic history of the Earth, being responsible for continental break-up and, after oceanic spreading, for continental collisions. As a result, they governed the formation and dispersal of super-continents. We observe a bulk polarity in plate motion that governs continental collision and the opposite bulk polarity in plate reorganisation that governs continental break-up. Such opposite polarities show in the tectonic history that we follow since the 550 Ma formation of the Gondwana super-continent.In order to decipher the rules that govern plate reorganisation, we investigate the distribution of spreading and subduction that derives from the current plate motion. We observe a mismatch between the evolution tendency of the plate boundary network and convection in the deep mantle. The actual network of plate boundaries illustrates a compromise between the two. Based on the opposite polarities in plate motion and plate reorganisation, we propose that this compromise is maintained by plate reorganisations that counterbalance free evolution of the network in abruptly changing its boundaries. We propose that plate reorganisations are basically caused by the mismatch between the free evolution of the plate boundary network and the current convection pattern in the deep mantle.Evidence on Proterozoic rifting and continent collisions allows dating the oldest known plate reorganisation around 2 Ga, which is the age of the oldest known super-continent. Based on the geology of the Archean before 3 Ga, mantle convection appears limited under a greenstone cover and different from the current mantle convection. The distribution of the diapiric granitoids that intrude this cover points to a honeycomb convection centred on downwelling sites separated by diffuse upwelling, which fits the theory on the early Earth mantle convection when plates did not cover the globe. We propose that the plate reorganisation regime appeared sometime between 3 and 2 Ga. 相似文献
9.
地幔橄榄岩捕虏体中石榴石次变边的形成过程对理解地幔的构造演化和转变具有非常重要的意义。兴蒙造山带锡林浩特地区新生代玄武岩携带的石榴石橄榄岩捕虏体中的石榴石普遍发育冠冕状次变边结构。本文通过对石榴石及其次变边进行详细的岩相学和电子探针分析,探讨石榴石次变边的成因及其揭示的岩石圈地幔经历的深部过程。根据次变边矿物组成的不同,将其分为原始的次变边(R1和R2)和交代的次变边(MR1和MR2)。原始的次变边中,新鲜的石榴石由内向外依次被放射状且矿物颗粒较细的R1和粒状且矿物颗粒较粗的R2包围,且R1通常比R2宽。R1主要组成矿物为Opx+Sp+Melt1/Pl±Cpx,R2主要组成矿物为Opx+Sp+Cpx。与R2及橄榄岩捕虏体相比,R1的斜方辉石和单斜辉石具有较高的Al2O3含量和较低Mg#值及SiO2含量。与橄榄岩捕虏体相比,R1和R2中的尖晶石均具有较低的Cr#值和较高的Mg#值。R1的斜长石为钙长石,熔体成分与斜长石相比具有偏高的MgO和FeO含量。计算的R1的全岩成分与新鲜的石榴石一致,是石榴石等化学分解的产物。R2的全岩成分比新鲜的石榴石具有偏高的MgO和偏低的SiO2及Al2O3含量,是石榴石和橄榄石反应的产物。交代的次变边是由原始的次变边受到部分或完全的交代作用形成的。完全交代的次变边仍然保留原始次变边的双圈层结构,而未完全交代的次变边则仅在原始次变边的局部出现。交代的次变边中,矿物颗粒较细的核部(MR1)和矿物颗粒较粗的边部(MR2)主要矿物组成一致,皆为Ol+Cpx+Sp+Melt2。与原始的次变边相比,MR1和MR2中的橄榄石和单斜辉石均具有较高的Mg#值,单斜辉石同时具有较高Ca/Al比值(>8),尖晶石具有较高的Cr#值和较低的Mg#值,熔体较富SiO2、Na2O和K2O含量。这些现象说明交代的次变边可能是碳酸盐熔/流体交代原始的次变边消耗斜方辉石生成橄榄石和单斜辉石形成的,这与岩相学观察到的单斜辉石中包裹斜方辉石残余体一致。此外,同一样品中R1的平衡温度略高于R2的平衡温度,且二者均高于橄榄岩的平衡温度。因此,锡林浩特地区石榴石橄榄岩至少经历了两阶段的退变质作用:第一阶段为橄榄岩自石榴石相抬升至尖晶石相,且受到地幔上涌的加热作用,导致石榴石和橄榄石进行缓慢的反应形成R2;第二阶段是在连续减压且加热的背景下,第一阶段残余的石榴石发生快速等化学分解反应,形成R1。退变质作用之后,石榴石原始的次变边又经历了碳酸盐熔/流体的交代作用形成MR1和MR2,最终被寄主玄武岩携带至地表。所以,石榴石次变边的形成记录了新生代时期兴蒙造山带经历的广泛的地幔上涌和多次的地幔隆升,以及地幔交代作用,为研究深部地幔过程提供了重要证据。华北克拉通晚中生代时期经历了强烈的岩石圈伸展运动并伴随着软流圈的上涌,这些过程同样会造成岩石圈地幔的减压和加热,从而导致石榴石相橄榄岩向尖晶石相转变,这可能也是华北克拉通岩石圈地幔转变的机制之一。 相似文献
10.
High-pressure phase transitions of CaRhO 3 perovskite were examined at pressures of 6–27 GPa and temperatures of 1,000–1,930°C, using a multi-anvil apparatus. The results indicate that CaRhO 3 perovskite successively transforms to two new high-pressure phases with increasing pressure. Rietveld analysis of powder X-ray diffraction data indicated that, in the two new phases, the phase stable at higher pressure possesses the CaIrO 3-type post-perovskite structure (space group Cmcm) with lattice parameters: a = 3.1013(1) Å, b = 9.8555(2) Å, c = 7.2643(1) Å, V m = 33.43(1) cm 3/mol. The Rietveld analysis also indicated that CaRhO 3 perovskite has the GdFeO 3-type structure (space group Pnma) with lattice parameters: a = 5.5631(1) Å, b = 7.6308(1) Å, c = 5.3267(1) Å, V m = 34.04(1) cm 3/mol. The third phase stable in the intermediate P, T conditions between perovskite and post-perovskite has monoclinic symmetry with the cell parameters: a = 12.490(3) Å, b = 3.1233(3) Å, c = 8.8630(7) Å, β = 103.96(1)°, V m = 33.66(1) cm 3/mol ( Z = 6). Molar volume changes from perovskite to the intermediate phase and from the intermediate phase to post-perovskite are –1.1 and –0.7%, respectively. The equilibrium phase relations determined indicate that the boundary slopes are large positive values: 29 ± 2 MPa/K for the perovskite—intermediate phase transition and 62 ± 6 MPa/K for the intermediate phase—post-perovskite transition. The structural features of the CaRhO 3 intermediate phase suggest that the phase has edge-sharing RhO 6 octahedra and may have an intermediate structure between perovskite and post-perovskite. 相似文献
11.
New (revised) data on thermodynamic properties of 60 substances are calculated by extrapolating their compressibilities and calorific properties up to 4000 K and 1 Mbar. Stability of pyrrhotite throughout the mantle supports Goldschmidt's idea about a sulphide zone between the mantle and the core. Such a zone could serve as a primary source of ores. Volatile H 2O and H 2S are stable throughout the mantle. Some hydrocarbons decompose into a mixture of methane and carbon over a wide range of pressures and temperatures. Natural oil may be regarded as a mixture of metastable hydrocarbons. FeO does not dissociate into a mixture of Fe 2O 3 and Fe at high pressure and temperature. Alkali-free carbonate magmas may arise in the mantle. The greater the proportion of iron-silicates in the mantle, the more probable is the existence of a ferrous-ferric garnet zone at great depth. 相似文献
12.
The high-pressure stability limit of calcium aluminosilicate (CAS) phase has been examined in its end-member CaAl 4Si 2O 11 composition at 18–39 GPa and 1,670–2,300 K in a laser-heated diamond-anvil cell (LHDAC). The in-situ synchrotron X-ray diffraction
measurements revealed that the CAS phase decomposes into three-phase assemblage of cubic Al-bearing CaSiO 3 perovskite, Al 2O 3 corundum, and SiO 2 stishovite above 30 GPa and 2,000 K with a positive pressure–temperature slope. Present results have important implications
for the subsolidus mineral assemblage of subducted sediment and the melting phase relation of basalt in the lower mantle. 相似文献
13.
The crystal structure of MgFe 2O 4 was investigated by in situ X-ray diffraction at high pressure, using YAG laser annealing in a diamond anvil cell. Magnesioferrite
undergoes a phase transformation at about 25 GPa, which leads to a CaMn 2O 4-type polymorph about 8% denser, as determined using Rietveld analysis. The consequences of the occurrence of this dense MgFe 2O 4 form on the high-pressure phase transformations in the (MgSi) 0.75(Fe III) 0.5O 3 system were investigated. After laser annealing at about 20 GPa, we observe decomposition to two phases: stishovite and a
spinel-derived structure with orthorhombic symmetry and probably intermediate composition between MgFe 2O 4 and Mg 2SiO 4. At pressures above 35 GPa, we observe recombination of these products to a single phase with Pbnm perovskite structure.
We thus conclude for the formation of Mg 3Fe 2Si 3O 12 perovskite.
Received: 27 March 2000 / Accepted: 1 October 2000 相似文献
14.
地幔氧逸度通过改变含碳相的存在形式和迁移方式来影响深部碳循环。本文结合最新的地幔氧逸度实验模拟和岩石学研究成果,探讨了地幔氧逸度时空分布对深部碳循环的影响。文章重点结合地幔减压熔融形成洋壳、新生洋壳蚀变、洋壳俯冲变质、深俯冲洋壳熔融以及俯冲洋壳物质(流体和固体)通过岩浆(岛弧和地幔柱)作用循环出地表等重要地质过程,探讨了伴随洋壳俯冲作用的深部碳循环过程。由于地幔氧逸度的时空变化,俯冲带含碳相表现出不同的存在形式和迁移能力。通过对西南天山俯冲带碳循环的岩石学和实验研究,我们认为应当进一步深入研究俯冲带氧化还原状态及其对俯冲带深部碳循环的影响。 相似文献
15.
Temperature estimates and chemical composition of mantle xenoliths from the Cretaceous rift system of NW Argentina (26°S) constrain the rift evolution and chemical and physical properties of the lithospheric mantle at the eastern edge of the Cenozoic Andean plateau. The xenolith suite comprises mainly spinel lherzolite and subordinate pyroxenite and carbonatized lherzolite. The spinel lherzolite xenoliths equilibrated at high- T (most samples >1000 °C) and P below garnet-in. The Sm–Nd systematics of compositionally unzoned clino- and orthopyroxene indicate a Cretaceous minimum age for the high- T regime, i.e., the asthenosphere/lithosphere thermal boundary was at ca. 70 km depth in the Cretaceous rift. Major elements and Cr, Ni, Co and V contents of the xenoliths range between values of primitive and depleted mantle. Calculated densities based on the bulk composition of the xenoliths are <3280 kg/m 3 for the estimated P– T conditions and indicate a buoyant, stable upper mantle lithosphere. The well-equilibrated metamorphic fabric and mineral paragenesis with the general lack of high- T hydrous phases did not preserve traces of metasomatism in the mantle xenoliths. Late Mesozoic metasomatism, however, is obvious in the gradual enrichment of Sr, U, Th and light to medium REE and changes in the radiogenic isotope composition of an originally depleted mantle. These changes are independent of the degree of depletion evidenced by major element composition. 143Nd/ 144Nd i ratios of clinopyroxene from the main group of xenoliths decrease with increasing Nd content from >0.5130 (depleted samples) to ca. 0.5127 (enriched samples). 87Sr/ 86Sr i ratios (0.7127–0.7131, depleted samples; 0.7130–0.7134, enriched samples) show no variation with variable Sr contents. Pb i isotope ratios of the enriched samples are rather radiogenic ( 206Pb/ 204Pb i 18.8–20.6, 207Pb/ 204Pb i 15.6–15.7, 208Pb/ 204Pb i 38.6–47) compared with the Pb isotope signature of the depleted samples. The large scatter and high values of 208Pb/ 204Pb i ratios of many xenoliths indicates at least two Pb sources that are characterized by similar U/Pb but by different Th/Pb ratios. The dominant mantle type in the investigated system is depleted mantle according to its Sr and Nd isotopic composition with relatively radiogenic Pb isotope ratios. This mantle is different from the Pacific MORB source and old subcontinental mantle from the adjacent Brazilian Shield. Its composition probably reflects material influx into the mantle wedge during various episodes of subduction that commenced in early Paleozoic or even earlier. Old subcontinental mantle was already replaced in the Paleozoic, but some inheritance from old mantle lithosphere is represented by rare xenoliths with isotope signatures indicating a Proterozoic origin. 相似文献
16.
Because of the strongly different conditions in the mantle of the early Earth regarding temperature and viscosity, present-day geodynamics cannot simply be extrapolated back to the early history of the Earth. We use numerical thermochemical convection models including partial melting and a simple mechanism for melt segregation and oceanic crust production to investigate an alternative suite of dynamics which may have been in operation in the early Earth. Our modelling results show three processes that may have played an important role in the production and recycling of oceanic crust: (1) Small-scale ( x×100 km) convection involving the lower crust and shallow upper mantle. Partial melting and thus crustal production takes place in the upwelling limb and delamination of the eclogitic lower crust in the downwelling limb. (2) Large-scale resurfacing events in which (nearly) the complete crust sinks into the (eventually lower) mantle, thereby forming a stable reservoir enriched in incompatible elements in the deep mantle. New crust is simultaneously formed at the surface from segregating melt. (3) Intrusion of lower mantle diapirs with a high excess temperature (about 250 K) into the upper mantle, causing massive melting and crustal growth. This allows for plumes in the Archean upper mantle with a much higher excess temperature than previously expected from theoretical considerations. 相似文献
17.
The employed method of 3D gravity modeling is based on calculation of the gravity effects of the main density boundaries of the lithosphere, subtraction of these effects from the observed gravity field, and the subsequent conversion of the residual gravity anomalies first to the Moho depth and then to the total thickness of the Earth's crust and the thickness of its consolidated part. On the modeling, we also took into account the gravity effects due to an increase in the sediment density with increasing sediment depth and a rise of the top of the asthenosphere beneath the mid-ocean Gakkel Ridge. The resulting 3D models of the Moho topography and crustal thickness are well consistent with the data of deep seismic investigations. They confirm the significant differences in crustal structure between the Eurasian and Amerasian Basins and give an idea of the regional variations in crustal thickness beneath the major ridges and basins of the Arctic Ocean. 相似文献
18.
We present petrography and mineral chemistry for both phlogopite,from mantle-derived xenoliths(garnet peridotite,eclogite and clinopyroxene-phlogopite rocks)and for megacryst,macrocryst and groundmass flakes from the Grib kimberlite in the Arkhangelsk diamond province of Russia to provide new insights into multi-stage metasomatism in the subcratonic lithospheric mantle(SCLM)and the origin of phlogopite in kimberlite.Based on the analysed xenoliths,phlogopite is characterized by several generations.The first generation(Phil)occurs as coarse,discrete grains within garnet peridotite and eclogite xenoliths and as a rock-forming mineral within clinopyroxene-phlogopite xenoliths.The second phlogopite generation(Phl2)occurs as rims and outer zones that surround the Phil grains and as fine flakes within kimberlite-related veinlets filled with carbonate,serpentine,chlorite and spinel.In garnet peridotite xenoliths,phlogopite occurs as overgrowths surrounding garnet porphyroblasts,within which phlogopite is associated with Cr-spinel and minor carbonate.In eclogite xenoliths,phlogopite occasionally associates with carbonate bearing veinlet networks.Phlogopite,from the kimberlite,occurs as megacrysts,macrocrysts,microcrysts and fine flakes in the groundmass and matrix of kimberlitic pyroclasts.Most phlogopite grains within the kimberlite are characterised by signs of deformation and form partly fragmented grains,which indicates that they are the disintegrated fragments of previously larger grains.Phil,within the garnet peridotite and clinopyroxene-phlogopite xenoliths,is characterised by low Ti and Cr contents(TiO_21 wt.%,Cr_2 O_31 wt.% and Mg# = 100 × Mg/(Mg+ Fe)92)typical of primary peridotite phlogopite in mantle peridotite xenoliths from global kimberlite occurrences.They formed during SCLM metasomatism that led to a transformation from garnet peridotite to clinopyroxene-phlogopite rocks and the crystallisation of phlogopite and high-Cr clinopyroxene megacrysts before the generation of host-kimberlite magmas.One of the possible processes to generate low-Ti-Cr phlogopite is via the replacement of garnet during its interaction with a metasomatic agent enriched in K and H_2O.Rb-Sr isotopic data indicates that the metasomatic agent had a contribution of more radiogenic source than the host-kimberlite magma.Compared with peridotite xenoliths,eclogite xenoliths feature low-Ti phlogopites that are depleted in Cr_2O_3 despite a wider range of TiO_2 concentrations.The presence of phlogopite in eclogite xenoliths indicates that metasomatic processes affected peridotite as well as eclogite within the SCLM beneath the Grib kimberlite.Phl2 has high Ti and Cr concentrations(TiO_22 wt.%,Cr_2O_31 wt.% and Mg# = 100× Mg/(Mg + Fe)92)and compositionally overlaps with phlogopite from polymict brecc:ia xenoliths that occur in global kimberlite formations.These phlogopites are the product of kimberlitic magma and mantle rock interaction at mantle depths where Phl2 overgrew Phil grains or crystallized directly from stalled batches of kimberlitic magmas.Megacrysts,most macrocrysts and microcrysts are disintegrated phlogopite fragments from metasomatised peridotite and eclogite xenoliths.Fine phlogopite flakes within kimberlite groundmass represent mixing of high-Ti-Cr phlogopite antecrysts and high-Ti and low-Cr kimberlitic phlogopite with high Al and Ba contents that may have formed individual grains or overgrown antecrysts.Based on the results of this study,we propose a schematic model of SCLM metasomatism involving phlogopite crystallization,megacryst formation,and genesis of kimberlite magmas as recorded by the Grib pipe. 相似文献
19.
地幔转换带是联系上下地幔的纽带,对于认识整个地幔的组成和演化、地幔对流、岩石圈深俯冲及深源地震等地球深部动力学问题具有重要意义。一般认为,转换带地震不连续面主要与橄榄石的高压相变密切相关。最新的高温高压实验研究表明,地幔中非橄榄石组分的相变,如辉石和石榴子石的相变,对不连续面的深度和宽度以及转换带内的波速和密度梯度也起到很大的影响。另外地幔全岩成分、端员组分、温度和水也对相变和不连续面具有重要影响,这些精细的实验研究成果更好地解释了转换带地震不连续面一些相对局部的性质和变化,促进了我们对地球深部性质和动力学过程的了解。因为缺少直接来自地球深部的样品,而地球物理和地球化学研究也有它们的相对局限性,所以高温高压实验仍然是我们了解地球深部成分和性质的重要手段之一。 相似文献
20.
Garnet peridotite xenoliths in the Quaternary Pali-Aike alkali olivine basalts of southernmost South America are samples of the deeper portion of continental lithosphere formed by accretion along the western margin of Gondwanaland during the Phanerozoic. Core compositions of minerals in garnet peridotites indicate temperatures of 970 to 1160°C between 1.9 and 2.4 GPa, constraining a geothermal gradient which suggests a lithospheric thickness of approximately 100 km below this region. Previously, this lithosphere may have been heated and thinned to ≤80 km during the Jurassic break-up of Gondwanaland, when widespread mafic and silicic volcanism occurred in association with extension in southern South America. Subsequent cooling, by up to >175°C, and thickening, by about 20 km, of the lithosphere is reflected in low-temperature (<970°C) spinel peridotites by chemical zonation of pyroxenes involving a rimward decrease in Ca, and in moderate- and high-temperature (>970°C) peridotites by textural evidence for the transformation of spinel to garnet. A recent heating event, which probably occurred in conjunction with modal metasomatism related to the genesis of the Pali-Aike alkali olivine basalts, has again thinned the lithosphere to <100 km. Evidence for this heating is preserved in moderate- and high-temperature (>970°C) peridotites as chemical zonation of pyroxenes involving a rimward increase in Ca, and by kelyphitic rims around garnet. The majority of moderate- and high-temperature (>970°C) xenoliths are petrochemically similar to the asthenospheric source of mid-oceanic ridge basalts: fertile (>20% modal clinopyroxene and garnet), Fe-rich garnet lherzolite with major element composition similar to estimates of primitive mantle, but large-ion-lithophile and light-rare-earth element depletion relative to heavy-rare-earth elements, and with Sr, Nd, Pb, Os, and O isotopic compositions similar to MORB. In contrast, infertile, Mg-rich spinel harzburgite is predominant among low-temperature (<970°C) xenoliths. This implies a significant chemical gradient and increasing density with depth in the mantle section represented by the xenoliths, and the absence of a deep, low density, olivine-rich root below the southernmost South American crust such as has been inferred below Archean cratons. With respect to both temperature/rheology and chemistry/density, the subcontinental mantle lithosphere below southernmost South America is similar to that below oceanic crust. It is interpreted to have formed by tectonic capture, during the Paleozoic, of a segment of what had previously been oceanic lithosphere generated at a late Proterozoic mid-oceanic spreading ridge. 相似文献
|