首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The transition from oceanic subduction to continental collision is a key stage in the evolution of ancient orogens. We present new data for Early Cretaceous diorite and granite porphyry from north–central Tibet to constrain the evolution of the Bangong–Nujiang Tethyan Ocean (BNTO). The diorites have moderate SiO2 and high MgO contents, similar to high-Mg andesites. Zircon grains yield U–Pb ages of 128–124 Ma and positive εHf(t) values between +13.2 and + 16.3, corresponding to Hf depleted-mantle model ages (TDM) of 281–131 Ma. The high-Mg diorite was probably formed by partial melting of hydrous mantle wedge fluxed by slab-derived fluids in an oceanic subduction setting. The granite porphyries yield zircon U–Pb ages of 117–115 Ma and zircon εHf(t) values ranging from +0.1 to +4.5. Most samples have high SiO2 and Fe2O3T contents, variable FeOT/MgO and Ga/Al ratios, and are depleted in Ba, Sr, P, and Ti, similar to I- and A-type granites. The granite porphyries were most likely derived from partial melting of juvenile dioritic or granodioritic crust due to break-off of the BNTO lithosphere following collision between the Lhasa and Qiangtang blocks. The Early Cretaceous high-Mg diorite and A-type granite porphyry thus record the Early Cretaceous transition from oceanic subduction to continental collision along the Bangong–Nujiang suture zone (BNSZ).  相似文献   

2.
Chromitite pods in the Mayarí-Cristal ophiolitic massif (eastern Cuba) were formed in the Late Cretaceous when island arc tholeiites and MORB-like back-arc basin basalts reacted with residual mantle peridotites and generated chromite-rich bodies enclosed in dunite envelopes. Platinum-group minerals (PGM) in the podiform chromitites exhibit important Os-isotope heterogeneities at the kilometric, hand sample and thin section scales. 187Os/188Os calculated at the time of chromitite crystallization (~90 Ma) ranges between 0.1185 and 0.1295 (γOs = −7.1 to +1.6, relative to enstatite chondrite), and all but one PGM have subchondritic 187Os/188Os. Grains in a single hand sample have initial 187Os/188Os that spans from 0.1185 to 0.1274, and in one thin section it varies between 0.1185 and 0.1232 in two PGM included in chromite which are only several millimeters apart. As the Os budget of a single micrometric grain derives from a mantle region that was at least several m3 in size, the variable Os isotopic composition of PGM in the Mayarí-Cristal chromitites probably reflects the heterogeneity of their mantle sources on the 10–100 m scale. Our results show that this heterogeneity was not erased by pooling and mingling of individual melt batches during chromitite crystallization but was transferred to the ore deposits on mineral scale. The distribution of the Os model ages calculated for PGM shows four main peaks, at ~100, 500, 750 and 1,000 Ma. These variable Os model ages reflect the presence of different depleted domains in the oceanic (Pacific-related) upper mantle of the Greater Antilles paleo-subduction zone. The concordance between the age of crystallization of the Mayarí-Cristal chromitites and the most recent peak of the Os model age distribution in PGM supports that Os in several grains was derived from fertile domains of the upper mantle, whose bulk Os isotopic composition is best approximated by that of enstatite chondrites; on the other hand, most PGM are crystallized by melts that tapped highly refractory mantle sources.  相似文献   

3.
Ophiolites are widespread along the Bangong-Nujiang suture zone, northern Tibet. However, it is still debated on the formation ages and tectonic evolution process of these ophiolites. The Zhongcang ophiolite is a typical ophiolite in the western part of the Bangong-Nujiang suture zone. It is composed of serpentinized peridotite, cumulate and isotropic gabbros, massive and pillow basalts, basaltic volcanic breccia, and minor red chert. Zircon SHRIMP Ue Pb dating for the isotropic gabbro yielded weighted mean age of 163.4 ± 1.8 Ma. Positive zircon ε Hf(t) values(+15.0 to +20.2) and mantle-like σ~(18)O values(5.29 ±0.21)% indicate that the isotropic gabbros were derived from a long-term depleted mantle source. The isotropic gabbros have normal mid-ocean ridge basalt(N-MORB) like immobile element patterns with high Mg O, low TiO_2 and moderate rare earth element(REE) abundances, and negative Nb,Ti, Zr and Hf anomalies. Basalts show typical oceanic island basalt(OIB) geochemical features, and they are similar to those of OIB-type rocks of the Early Cretaceous Zhongcang oceanic plateau within the Bangong-Nujiang Ocean. Together with these data, we suggest that the Zhongcang ophiolite was probably formed by the subduction of the Bangong-Nujiang Ocean during the Middle Jurassic. The subduction of the Bangong-Nujiang Tethyan Ocean could begin in the Earlye Middle Jurassic and continue to the Early Cretaceous, and finally continental collision between the Lhasa and Qiangtang terranes at the west Bangong-Nujiang suture zone probably has taken place later than the Early Cretaceous(ca. 110 Ma).  相似文献   

4.
The ultramafic massifs of the Serranía de Ronda (namely Ronda, Ojén and Carratraca) are portions of Proterozoic (∼1.2–1.8 Ga) subcontinental lithospheric mantle (SCLM) affected by partial melting and infiltration of melts. The latter of these events was broadly coeval with the tectonic emplacement of the peridotites into the continental crust in the Early Miocene. This resulted in the formation of chromite and Ni-arsenide ores (Cr-Ni) associated with orthopyroxenites and cordieritites. Six zircons recovered from a massive chromitite sample from the Ronda massif yield both concordant and discordant ages between 2309 ± 37 Ma and 109 ± 15 Ma, and δ18O between 8.3‰ and 9.4‰. Two Proterozoic ages obtained for zircons of this population (1815 ± 9 Ma and 1794 ± 17 Ma) are identical, within error, to those of zircons reported previously in the garnet pyroxenites of Ronda (1783 ± 37 Ma). Similarly, concordant Early Jurassic (192 ± 13 Ma) and Cretaceous ages (109 ± 15 Ma) obtained from the core and rim, respectively, of a single zircon from the chromitite are also consistent with the ages (180 ± 5 Ma, 178 ± 6 Ma, and 131 ± 3 Ma) already reported for magmatic zircons from corunudum-bearing garnet pyroxenites in the Ronda massif. The observation that chromitites and garnet-pyroxenites contain similar populations of zircons suggests that the parental melts of chromitites inherited zircons from their protolithic garnet pyroxenites, representing relics of oceanic/arc crust recycled in the mantle. Eleven zircons recovered from a massive cordieritite associated with chromitite in the Ronda massif yield scattered concordant and discordant ages between 568 Ma and 21 Ma, with correspondingly variable δ18O (4.8–13.5‰) and unradiogenic Hf-isotope ratios (εHf(t) from −12.36 to −4.43). The youngest age is concordant at 21.18 ± 0.4 Ma and matches the ages of zircons from the chromitite (weighted average age of 20.4 ± 0.87 Ma, n = 4) and a plagioclasite dyke (scattering between 20.1 ± 0.2 Ma and 17.9 ± 0.1 Ma; n = 11) associated with the Cr-Ni mineralization in the Ojén massif. These zircons show similar unradiogenic Hf-(εHf(t) between −14.5 and −7.6) and heavy O-isotope compositions (δ18O = 11.3–12.4‰). A sample of the massive cordieritite hosting the chromitites contains abundant zircons that yield scattered concordant, sub-concordant and discordant U-Pb ages varying from 33.8 ± 1 Ma to 781 ± 10 Ma; these zircons (n = 21) have variable U-contents (105–13900 ppm) and Th/U ratios (0.003–0.8). On the basis of O- and Hf-isotope compositions, these zircons define three populations independently of their ages: (1) grains with consistent high δ18O (6.1–12.7‰) and negative εHf(t) (from −14.42 to −6.88); (2) grains with high δ18O (7.6–11.1‰) and positive εHf(t) (3.10–4.84); and (3) grains with δ18O < 5.5‰ typical of mantle values. We suggest that zircons from this cordieritite with U-Pb ages older than Miocene are inherited, and were incorporated physically into the SCLM by fluids or melts produced during dehydration-melting of the crustal rocks wrapping the peridotite massifs. The population of Early Miocene zircons found in the chromitites and associated cordieritites and the plagioclasite dyke in the mineralization of the Ojén massif date the crustal emplacement of the peridotites and, therefore, the formation of the Cr-Ni ores. We propose a model in which the unique Cr-Ni mineralizations found in the ultramafic rocks of the Serranía de Ronda were formed as a result of contamination of the SCLM with crustal components.  相似文献   

5.
Chromitites enclosed within metasomatised Finero phlogopite peridotite (FPP) contain accessory platinum-group minerals, base metal (BM) sulfides, baddeleyite, zircon, zirconolite, uraninite and thorianite. To provide new insights into mantle-crustal interaction in the Finero lithosphere this study evaluates (1) the mineral chemistry and Os-isotope composition of laurite, (2) the crystal morphology, internal structure, in-situ U-Pb, trace-element and Hf-isotope data of zircon from two chromitite localities at Alpe Polunia and Rio Creves. The osmium isotope results reveal a resticted range of ‘unradiogenic’ 187Os/188Os values for laurite at Alpe Polunia (0.1247–0.1251, mean 0.1249 ± 0.0001). Re-Os model ages (TRD) of laurite reflect an Early Paleozoic partial melting event (ca 450 Ma or older), presumably before the Variscan orogeny. The Os isotopic composition of laurite/chromitite probably preserves their mantle signature and was not affected by later metasomatic processes. U-Pb and Hf-isotope data show that the Finero chromitites have distinct zircon populations with peculiar morphology, internal cathodoluminescence textures, trace-element composition and an overall U-Pb age span from ∼310 Ma to 190 Ma. Three age peaks at Rio Creves (220 ± 4 Ma, 234.2 ± 4.5 Ma and 277.5 ± 3.2 Ma) are consistent with a prolonged formation and multistage zircon growth, in contrast to the common assumption of a single metasomatic event during chromitite formation. The trace-element signatures of zircons are comparable with those of mantle-derived zircons from alkaline ultramafic rocks, supporting the carbonatitic nature of the metasomatism. Hf-isotope compositions of the Finero zircons, with εHf values ranging mainly from −3 to +1, are consistent with crustal input during metasomatism and could indicate that the parental melts/fluids were derived from a relatively old source; the minimum estimates for Hf model ages are 0.8–1.0 Ga. Our findings imply that mantle rocks and metasomatic events at Finero have a far more complex geological history than is commonly assumed.  相似文献   

6.
徐向珍  杨经绥  熊发挥  巴登珠 《地质学报》2016,90(11):3215-3226
本文对罗布莎蛇绿岩康金拉11号铬铁矿矿体的近矿围岩纯橄岩和方辉橄榄岩分别进行了锆石SHRIMP U-Pb年代学研究。结果显示两个样品的年龄都非常发散:纯橄岩的时代跨越早白垩世到太古宙,年龄125.6±2.6~1791±23Ma,4粒锆石的加权平均年龄为130.0±2.8Ma(2.1%)。而方辉橄榄岩的年龄208.9±3.7~2770±44Ma,从晚三叠世到太古宙,2粒锆石的加权平均值为209.7±5.2Ma(2.5%),锆石的复杂年代学结果反映该岩石经历的多阶段地质演化过程。激光拉曼分析显示纯橄岩和方辉橄榄岩中的锆石含磷灰石、长石和石英为主的地壳物质包裹体,暗示其地壳成因,记录了地幔经历了地壳混染过程。这些物质存在于由洋底扩张形成的蛇绿岩中,表明俯冲下去的大陆地壳物质在地幔循环中被运移到海底扩张脊并出露地表。结合我们在康金拉地幔橄榄岩和铬铁矿中发现的大量异常地幔矿物,可能显示了一个地壳物质俯冲至地幔,而后从洋脊回到地表的物质循环过程,佐证了豆荚状铬铁矿多阶段多期次的演化模式。  相似文献   

7.
The felsic volcanogenic tuffs named “green-bean rocks” (GBRs), characterized by a green or yellowish green color, are widely distributed in the western Yangtze platform and have a high lithium content (286–957 ppm). This paper studies the ages, origin and tectonic setting of the GBRs in the Sichuan basin on the western margin of the Yangtze platform through the whole-rock geochemistry and zircon trace elements by using U–Pb dating and Hf–O isotopes. The GBR samples from the Quxian and Beibei sections yielded zircon U–Pb ages of 245.5 ± 1.8 Ma and 244.8 ± 2.2 Ma. These samples can be used as the isochronous stratigraphic marker of the Early–Middle Triassic boundary (EMTB) for regional correlation. The whole-rock and zircon geochemistry, and zircon Hf–O isotopes exhibited S-type geochemical affinities with high positive δ18O values (9.28‰–11.98‰), low negative εHf(t) values (?13.87 to ? 6.79), and TDM2 ages of 2150–1703 Ma, indicating that the lithium-rich GBRs were generated by the remelting of the pre-existing ancient Paleoproterozoic layer without mantle source contamination in the arc-related/orogenic tectonic setting. The results of this study demonstrate that the lithium-rich GBRs in the western Yangtze platform were derived from arc volcanic eruptions along the Sanjiang orogen, triggered by the closure of the eastern Paleo-Tethys Ocean and the syn-collision between the continental Indochina and Yangtze blocks at ca. 247 Ma. This was marked by a major shift from I-type magmas with intermediate εHf(t) values to S-type magmas with low negative εHf(t) values. Collectively, our results provide new insights into the origin of the GBRs and decodes the closure of the eastern Paleo-Tethys.  相似文献   

8.
Northeast Asian continental margins contain the products of magma emplacement driven by prolonged subduction of the (paleo-)Pacific plate. As observed in many Cordilleran arcs, magmatic evolution in this area was punctuated by high-volume pulses amid background periods. The present study investigates the early evolution of the Cretaceous magmatic flare-up using new and published geochronological, geochemical, and O-Hf isotope data from plutonic rocks in the southern Korean Peninsula. After a long (~50 m.y.) magmatic hiatus and the development of the Honam Shear Zone through flat-slab subduction, the Cretaceous flare-up began with the intrusion of monzonites, granodiorites, and granites in the inboard Gyeonggi Massif and the intervening Okcheon Belt. Compared to Jurassic granitoids formed during the former flare-up, Albian (~111 Ma) monzonites found in the Eopyeong area of the Okcheon Belt have distinctly higher zircon εHf(t) (?7.5 ± 1.3) and δ18O (7.78‰ ± 0.25‰) values and lower whole-rock La/Yb and Sr/Y ratios. The voluminous coeval granodiorite and granite plutons in the Gyeonggi Massif are further reduced in Sr/Y and to a lesser extent, in La/Yb, and have higher zircon εHf(t) values (?13 to ?19) than the Precambrian basement (ca. ?30). These chemical and isotopic features indicate that Early Cretaceous lithospheric thinning, most likely resulting from delamination of tectonically and magmatically overthickened lithospheric keel that was metasomatized during prior subduction episodes, and consequent asthenospheric upwelling played vital roles in igniting the magmatic flare-up. The O-Hf isotopic ranges of synmagmatic zircons from the Albian plutons and their Paleoproterozoic and Jurassic inheritance attest to the involvement of lithospheric mantle and crustal basement in magma generation during this decratonization event. Arc magmatism then migrated trenchward and culminated in the Late Cretaceous, yielding widespread granitoid rocks emplaced at shallow crustal levels. The early Late Cretaceous (94–85 Ma) granites now prevalent in Seoraksan-Woraksan-Sokrisan National Parks are highly silicic and display flat chondrite-normalized rare earth element patterns with deep Eu anomalies. Synmagmatic zircons in these granites mimic their host rock’s chemistry. Delamination-related rejuvenation of crustal protoliths is indicated by zircon εHf(t) values of granites (?6 to ?20) that are consistently higher than the Precambrian basement value. Concomitant core-to-rim variation in zircon O-Hf isotopic compositions reflects a typical sequence of crustal assimilation and fresh input into the magma chamber.  相似文献   

9.
The Mufushan Complex (MFSC), located in northeastern Hunan, is a significant producer of Nb-Ta-Li-Be rare metals in South China. The present study examines the genetic relationship, material provenance, fluid evolution, and metallogeny of the co-developed ore-free pegmatite (OFP) and ore-bearing pegmatite (OBP) in granite-related pegmatite-type Nb-Ta rare-metal deposits in MFSC. Three minerals (columbite-tantalite (coltan), zircon, and monazite) were chosen for analysis. The coltan grains display both primary crystallization structures (crystal homogeneity, oscillatory zonings, and primary growth rims) resulting from equilibrium and disequilibrium reactions due to localized changes in the physicochemical conditions and environment, as well as later replacement structures (alteration rims, patches, irregular zonations, and complex zonations) from metasomatic replacement processes related to hydrothermal fluid activity. The coltan yielded two weighted mean 206Pb/238U ages of 138.1 ± 2.1 Ma and 125.3 ± 2.0 Ma corresponding to magmatic and hydrothermal Nb-Ta mineralization ages. For the OFP, zircons also yielded two weighted mean 206Pb/238U ages of 138.4 ± 0.8 Ma and 131.5 ± 0.7 Ma, whereas monazite gave a weighted mean U-Pb age 142.9 ± 1.2 Ma. The ages of 142–138 Ma and 131 Ma represent the early and late stages of OFP crystallization and barren pegmatites in the MFSC, respectively. Zircon Lu-Hf isotopic compositions link rare-metal metallogenesis to the Lengjiaxi Group, which was the source material to the Mufushan composite batholith. Calculated εHf(t) values and TDM2 ages from the OFP (?7.6 to ?3.6 and 1676–1418 Ma, respectively) and the OBP (?14.1 to +4.9 and 2976–1548 Ma, respectively) are akin to those of schists and metasandstones of the metasedimentary Lengjiaxi Group. We propose a long-lived (ca. 13-Myr) event involving two metallogenic episodes of Nb-Ta mineralization in the Mufushan region. This study demonstrates the potential of zircon, coltan, and monazite for fingerprinting minerals and classifying the mineralization potential of pegmatite veins.  相似文献   

10.
The Ordovician Macquarie Arc in the eastern subprovince of the Lachlan Orogen, southeastern Australia, is an unusual arc that evolved in four vertically stacked volcanic phases over ~ 37 million years, and which is flanked by coeval, craton-derived, passive margin sedimentary terranes dominated by detrital quartz grains. Although these two terranes are marked by a general absence of provenance mixing, LA-ICPMS analysis of U–Pb and Lu–Hf contents in zircon grains in volcaniclastic rocks from 3 phases of the arc demonstrates the same age populations of detrital grains inherited from the Gondwana margin as those that characterise the flanking quartz-rich Ordovician turbidites. Magmatic Phase 1 is older, ~ 480 Ma, and is characterised by detrital zircons grains with ages of ~ 490–540 with negative εHf from 0 to mainly –7.78, 550–625 Ma ages with negative εHf from 0 to ?26.6 and 970–1250 Ma (Grenvillian) with εHf from + 6.47 to ?6.44. We have not as yet identified any magmatic zircons related to Phase 1 volcanism. Small amounts of detrital zircons also occur in Phase 2 (~ 468–455 Ma), hiatus 1 and Phase 4 (~ 449–443 Ma), all of which are dominated by Ordovician magmatic zircons with positive εHf values, indicating derivation from unevolved mantle-derived magmas, consistent with formation in an intraoceanic island arc. Because of the previously obtained positive whole rock εNd values from Phase 1 lavas, we rule out contamination from substrate or subducted sediments. Instead, we suggest that during Phase 1, the Macquarie Arc lay close enough to the Gondwana margin so that volcaniclastic rocks were heavily contaminated by detrital zircon grains shed from granites and Grenvillian mafic rocks mainly from Antarctica (Ross Orogen and East Antarctica) and/or the Delamerian margin of Australia. The reduced nature of a Gondwana population in Phase 2, hiatus 1 and Phase 4 is attributed to opening of a marginal basin between the Gondwana margin and the Macquarie Arc that put it out of reach of all but rare turbiditic currents.  相似文献   

11.
Numerous intrusive bodies of mafic–ultramafic to felsic compositions are exposed in association with volcanic rocks in the Late Permian Emeishan large igneous province (ELIP), southwestern China. Most of the granitic rocks in the ELIP were derived by differentiation of basaltic magmas with a mantle connection, and crustal magmas have rarely been studied. Here we investigate a suite of mafic dykes and I-type granites that yield zircon U-Pb emplacement ages of 259.9 ± 1.2 Ma and 259.3 ± 1.3 Ma, respectively. The εHf(t) values of zircon from the DZ mafic dyke are –0.3 to 9.4, and their corresponding TDM1 values are in the range of 919–523 Ma. The εHf(t) values of zircon from the DSC I-type granite are between –1 and 3, with TDM1 values showing a range of 938–782 Ma. We also present zircon O isotope data on crust-derived felsic intrusions from the ELIP for the first time. The δ18O values of zircon from the DSC I-type granite ranges from 4.87‰ to 7.5‰. The field, petrologic, geochemical and isotopic data from our study lead to the following salient findings. (i) The geochronological study of mafic and felsic intrusive rocks in the ELIP shows that the ages of mafic and felsic magmatism are similar. (ii) The DZ mafic dyke and high-Ti basalts have the same source, i.e., the Emeishan mantle plume. The mafic dyke formed from magmas sourced at the transitional depth between from garnet-lherzolite and spinel-lherzolite, with low degree partial melting (<10%). (iii) The Hf-O isotope data suggest that the DSC I-type granite was formed by partial melting of Neoproterozoic juvenile crust and was contaminated by minor volumes of chemically weathered ancient crustal material. (iv) The heat source leading to the formation of the crust-derived felsic rocks in of the ELIP is considered to be mafic–ultramafic magmas generated by a mantle plume, which partially melted the overlying crust, generating the felsic magma.  相似文献   

12.
Multi-stage igneous rocks developed in the recently discovered Huoluotai Cu-(Mo) deposit provide new insights into the controversial late Mesozoic geodynamic evolution of the northern segment of the Great Xing’an Range (NSGXR). Zircon U-Pb dating suggests that the monzogranite, ore-bearing granodiorite porphyry, diorite porphyry, and granite porphyry in the deposit were emplaced at 179.5 ± 1.6, 148.9 ± 0.9, 146.1 ± 1.3, and 142.2 ± 1.5 Ma, respectively. The Re-Os dating of molybdenite yielded an isochron age of 146.9 ± 2.3 Ma (MSWD = 0.27). The Jurassic adakitic monzogranite and granodiorite porphyry are characterized by high SiO2 and Na2O contents, low K2O/Na2O ratios, low MgO, Cr, and Ni contents, low zircon εHf(t) values relative to depleted mantle, and relatively high Th contents. They were produced by partial melting of a subducted oceanic slab, with involvement of marine sediments in the magma source and limited interaction with mantle peridotites during magma ascent. The Late Jurassic diorite porphyry is characterized by moderate SiO2 contents, high MgO, Cr, and Ni contents, and positive dominated εHf(t) values, indicating it was produced by partial melting of a subduction-modified lithospheric mantle wedge and underwent limited crustal contamination during magma ascent. The early Early Cretaceous adakitic granite porphyry shows high SiO2 and K2O contents and K2O/Na2O ratios, low MgO, Cr, and Ni contents, enriched Sr–Nd isotopic compositions, and slightly positive zircon εHf(t) values, suggesting it was produced by partial melting of thickened mafic lower crust. The NSGXR experienced a tectonic history that involved flat-slab subduction (200–160 Ma), and tearing and collapse (150–145 Ma) of the Mongol–Okhotsk oceanic lithosphere. The period of magmatic quiescence from ca. 160 to 150 Ma was a response to flat-slab subduction of the Mongol–Okhotsk oceanic lithosphere. Crustal thickening in the NSGXR (145–133 Ma) was due to the collision between the Amuria Block and the Siberian Craton.  相似文献   

13.
U–Pb dating and Hf isotopic analyses of zircons from various granitoids, combined with major and trace element analyses, were undertaken to determine the petrogenesis and geodynamic setting of Neoproterozoic and Late Paleozoic magmatism in the Manzhouli–Erguna area of Inner Mongolia, China. The Neoproterozoic granitoids are mainly biotite monzogranites with zircon U–Pb ages of 894 ± 13 Ma and 880 ± 10 Ma, and they are characterised by enrichment in large ion lithophile elements (LILEs; e.g., Rb, Ba, K) and light rare earth elements (LREEs), depletion in high field strength elements (HFSEs; e.g., Nb, Ta, Ti) and heavy rare earth elements (HREEs). The Late Devonian granitoids are dominantly syenogranites and mylonitised syenogranites with zircon U–Pb ages of 360 ± 4 Ma, and they form a bimodal magmatic association with subordinate gabbroic rocks of the same age. The Late Devonian syenogranites have A-type characteristics including high total alkalis, Zr, Nb, Ce and Y contents, and high FeOt/MgO, Ga/Al and Rb/Sr ratios. The Carboniferous granitoids are mainly tonalites, granodiorites and monzogranites with U–Pb ages varying from 319 to 306 Ma, and they show very strong adakitic characteristics such as high La/Yb and Sr/Y ratios but low Y and Yb contents. The Late Permian granitoids are dominated by monzogranites and syenogranites with zircon U–Pb ages ranging between 257 and 251 Ma. Isotopically, the εHf(t) values of the Neoproterozoic granitoids range from +4.3 to +8.3, and the two-stage model ages (TDM2) from 1.2 to 1.5 Ga. The Late Devonian granitoids are less radiogenic [εHf(t) from +12.0 to +12.8 and TDM2 from 545 to 598 Ma] than the Carboniferous [εHf(t) from +6.8 to +9.5 and TDM2 from 722 to 894 Ma] and Late Permian granitoids [εHf(t) from +6.1 to +9.4 and TDM2 in the range of 680–895 Ma]. These data indicate (1) the Neoproterozoic granitoids may have been generated by melting of a juvenile crust extracted from the mantle during the Mesoproterozoic, probably during or following the final stages of assembly of Rodinia as a result of the collision and amalgamation of Australia and the Tarim Craton; (2) the Late Devonian granitoids may have formed by partial melting of a new mantle-derived juvenile crust in a post-orogenic extensional setting; (3) the Carboniferous granitoids appear to have been produced by melting of garnet-bearing amphibolites within a thickened continental crust during and following the collision of the Songnen and Erguna–Xing’an terranes; and (4) the Late Permian granitoids may have been generated by melting of garnet-free amphibolites within the Neoproterozoic juvenile continental crust, probably in the post-collisional tectonic setting that followed the collision of the North China and Siberian cratons.  相似文献   

14.
《地学前缘(英文版)》2020,11(6):2221-2242
We present the first evidence of Archean oceanic crust submitted to Proterozoic high-pressure (HP) metamorphism in the South American Platform. Sm–Nd and Lu–Hf isotopic data combined with U–Pb geochronological data from the Campo Grande area, Rio Grande do Norte domain, in the Northern Borborema Province, reflect a complex Archean (2.9 ​Ga and 2.6 ​Ga) and Paleoproterozoic (2.0 ​Ga) evolution, culminating in the Neoproterozoic Brasiliano/Pan-African orogeny (ca. 600 Ma). The preserved mafic rocks contain massive poikiloblastic garnet and granoblastic amphibole with variable proportions of plagioclase ​+ ​diopside in symplectitic texture, typical of high-pressure rocks. These clinopyroxene-garnet amphibolites and the more common garnet amphibolites from the Campo Grande area are exposed as rare lenses within an Archean migmatite complex. The amphibolite lenses represent 2.65 ​Ga juvenile tholeiitic magmatism derived from depleted mantle sources (positive εHf(t) values of +3.81 to +30.66) later enriched by mantle metasomatism (negative εNd(t) values of –7.97). Chondrite and Primitive Mantle-normalized REE of analyzed samples and discriminant diagrams define two different oceanic affinities, with E-MORB and OIB signature. Negative Eu anomalies (Eu/Eu1 ​= ​0.75–0.95) indicate depletion of plagioclase in the source. Inherited zircon cores of 3.0–2.9 ​Ga in analyzed samples indicate that the Neoarchean tholeiitic magmatism was emplaced into 2923 ​± ​14 ​Ma old Mesoarchean crust (εNd(t) ​= ​–2.58 and Nd TDM ​= ​3.2 ​Ga) of the Rio Grande do Norte domain. The age of retro-eclogite facies metamorphism is not yet completely understood. We suggest that two high-grade metamorphic events are recognized in the mafic rocks: the first at 2.0 ​Ga, recorded in some samples, and the second, at ca. 600 Ma, stronger and more pervasive and recorded in several of the mafic rock samples. The Neoproterozoic zircon grains are found in symplectite texture as inclusions in the garnet grains and represent the age of HP conditions in the area. These zircon grains show a younger cluster of concordant analyses between 623 ​± ​3 ​Ma and 592 ​± ​5 ​Ma with εHf(t) values of +0.74 to –65.88. Thus, the Campo Grande rock assemblage is composed of Archean units that were amalgamated to West Gondwana during Neoproterozoic Brasiliano orogeny continent-continent collision and crustal reworking.  相似文献   

15.
喜马拉雅东构造结地区雅鲁藏布江蛇绿岩地质年代学研究   总被引:7,自引:0,他引:7  
耿全如  彭智敏  张璋 《地质学报》2011,85(7):1116-1127
雅鲁藏布江结合带在东构造结地区形成弧形展布的蛇绿混杂带,此前对该带蛇绿岩的地球化学特征和成因已有研究,但年代学研究十分薄弱.本文报道对该带蛇绿岩的地质年代学研究成果.从变玄武岩和变辉长岩中分选出两类锆石.一类锆石为自形的柱状双锥,具有清晰的同心韵律环带,较高的Th/U比值(主要为0.63~2.79),SHRIMP Ⅱ测...  相似文献   

16.
The recently discovered Longtougang skarn and hydrothermal vein Cu–Zn deposit is located in the North Wuyi area, southeastern China. The intrusions in the ore district comprise several small porphyritic biotite monzonite, porphyritic monzonite, and porphyritic granite plutons and dikes. The mineralization is zoned from a lower zone of Cu-rich veins and Cu–Zn skarns to an upper zone of banded Zn–Pb mineralization in massive epidote altered rocks. The deposit is associated with skarn, potassic, epidote, greisen, siliceous, and carbonate alteration. Molybdenite from the Cu-rich veins yielded a Re–Os isochron age of 153.6 ± 3.9 Ma, which is consistent with U–Pb zircon ages of 154.0 ± 1.3 Ma for porphyritic monzonite, 154.0 ± 0.8 Ma for porphyritic biotite monzonite, and 152.0 ± 0.8 Ma for porphyritic granite. Geological observations suggest that the Cu mineralization is genetically related to the porphyritic biotite monzonite and porphyritic monzonite. All the zircons from intrusive rocks in the ore district are characterized by εHf(t) values between − 13.41 and − 4.38 and Hf model ages (TDM2) between 2054 and 1482 Ma, reflecting magmas derived mainly from a Proterozoic crustal source. Molybdenite grains from the deposit have Re values of 14.6–27.7 ppm, indicative of a mixed mantle–crust source. The porphyry–skarn abundant Cu and hydrothermal vein type Pb–Zn–Ag deposits in the North Wuyi area are related to the Late Jurassic porphyritic granites and Early Cretaceous volcanism, respectively. The Late Jurassic mineralization-related granites were derived from the crustal anatexis with some mantle input, which was triggered by asthenospheric upwelling induced by slab tearing during oblique subduction of the paleo-Pacific plate beneath the South China block, and the Early Cretaceous mineralization-related granitoids mainly from crust material formed within a series of NNE-trending basins during margin-parallel movement of the plate.  相似文献   

17.
TIMS and SHRIMP U–Pb analyses of zircons from Milford Orthogneiss metadiorite (P = 1–1.4 GPa; T ≥ 750°C) of the Arthur River Complex of northern Fiordland reveal a bimodal age pattern. Zircons are predominantly either Paleozoic (357.0 ± 4.2 Ma) and prismatic with oscillatory zoning, or Cretaceous (133.9 ± 1.8 Ma) and ovoid with sector or patchy zoning. The younger age component is not observed overgrowing older grains. Most grains of both ages are overgrown by younger Cretaceous (~120 Ma) metamorphic zircon with very low U and Th/U (0.01). We interpret the bimodal ages as indicating initial igneous emplacement and crystallisation of a dioritic protolith pluton at ~357 Ma, followed by Early Cretaceous granulite-facies metamorphism at ~134 Ma, during which a significant fraction (~60%) of the zircon grains dissolved, and subsequently reprecipitated, effectively in situ, in partial melt pockets. The remaining ~40% of original Paleozoic grains were apparently not in contact with the partial melt, remained intact, and show only slight degrees of Pb loss. Sector zoning of the Cretaceous grains discounts their origin by solid state recrystallisation of Paleozoic grains. The alternative explanation—that the Paleozoic component represents a 40% inherited component in an Early Cretaceous transgressive dioritic magma—is considered less likely given the relatively high solubility of zircon in magma of this composition, the absence of 134 Ma overgrowths, the single discrete age of the older component, equivalent time-integrated 177Hf/176Hf compositions of both age groups, and the absence of the Cambrian-Proterozoic detrital zircon that dominates regional Cambro-Ordovician metasedimentary populations. Similar bimodal Carboniferous-Early Cretaceous age distributions are characteristic of the wider Arthur River Complex; 8 of 12 previously dated dioritic samples have a Paleozoic component averaging 51%. Furthermore, the age and chemical suite affinity of these and several more felsic rocks can be matched with those of the relatively unmetamorphosed Carboniferous plutonic terrane along the strike of the Mesozoic margin in southern Fiordland, also supporting the in situ derivation of the Carboniferous “inherited” component.  相似文献   

18.
The Dharwar Craton is a composite Archean cratonic collage that preserves important records of crustal evolution on the early Earth. Here we present results from a multidisciplinary study involving field investigations, petrology, zircon SHRIMP U–Pb geochronology with in-situ Hf isotope analyses, and whole-rock geochemistry, including Nd isotope data on migmatitic TTG (tonalite-trondhjemite-granodiorite) gneisses, dark grey banded gneisses, calc-alkaline and anatectic granitoids, together with synplutonic mafic dykes along a wide Northwest – Southeast corridor forming a wide time window in the Central and Eastern blocks of the Dharwar Craton. The dark grey banded gneisses are transitional between TTGs and calc-alkaline granitoids, and are referred to as ‘transitional TTGs’, whereas the calc-alkaline granitoids show sanukitoid affinity. Our zircon U–Pb data, together with published results, reveal four major periods of crustal growth (ca. 3360-3200 Ma, 3000-2960 Ma, 2700-2600 Ma and 2570-2520 Ma) in this region. The first two periods correspond to TTG generation and accretion that is confined to the western part of the corridor, whereas widespread 2670-2600 Ma transitional TTG, together with a major outburst of 2570–2520 Ma juvenile calc-alkaline magmatism of sanukitoid affinity contributed to peak continental growth. The transitional TTGs were preceded by greenstone volcanism between 2746 Ma and 2700 Ma, whereas the calc-alkaline magmatism was contemporaneous with 2570–2545 Ma felsic volcanism. The terminal stage of all four major accretion events was marked by thermal events reflected by amphibolite to granulite facies metamorphism at ca. 3200 Ma, 2960 Ma, 2620 Ma and 2520 Ma. Elemental ratios [(La/Yb)N, Sr/Y, Nb/Ta, Hf/Sm)] and Hf-Nd isotope data suggest that the magmatic protoliths of the TTGs emplaced at different time periods formed by melting of thickened oceanic arc crust at different depths with plagioclase + amphibole ± garnet + titanite/ilmenite in the source residue, whereas the elemental (Ba–Sr, [(La/Yb)N, Sr/Y, Nb/Ta, Hf/Sm)] and Hf-Nd isotope data [εHf(T) = −0.67 to 5.61; εNd(T) = 0.52 to 4.23; ] of the transitional TTGs suggest that their protoliths formed by melting of composite sources involving mantle and overlying arc crust with amphibole + garnet + clinopyroxene ± plagioclase + ilmenite in the residue. The highly incompatible and compatible element contents (REE, K–Ba–Sr, Mg, Ni, Cr), together with Hf and Nd isotope data [εHf(T) = 4.5 to −3.2; εNd(T) = 1.93 to −1.26; ], of the sanukitoids and synplutonic dykes suggest their derivation from enriched mantle reservoirs with minor crustal contamination. Field, elemental and isotope data [εHf(T) = −4.3 to −15.0; εNd(T) = −0.5 to −7.0] of the anatectic granites suggest their derivation through reworking of ancient as well as newly formed juvenile crust. Secular increase in incompatible as well as compatible element contents in the transitional TTGs to sanukitoids imply progressive enrichment of Neoarchean mantle reservoirs, possibly through melting of continent-derived detritus in a subduction zone setting, resulting in the establishment of a sizable continental mass by 2700 Ma, which in turn is linked to the evolving Earth. The Neoarchean geodynamic evolution is attributed to westward convergence of hot oceanic lithosphere, with continued convergence resulted in the assembly of micro-blocks, with eventual slab break-off leading to asthenosphere upwelling caused extensive mantle melting and hot juvenile magma additions to the crust. This led to lateral flow of hot ductile crust and 3D mass distribution and formation of an orogenic plateaux with subdued topography, as indicated by strain fabric data and strong seismic reflectivity along an E-W crustal profile in the Central and Eastern blocks of the Dharwar Craton.  相似文献   

19.
Chromitites from a single section through the mantle in the Oman ophiolite are of two different types. Low-cr# chromitites, of MORB affinity are found in the upper part of the section, close to the Moho. High-cr# chromitites, with arc affinities are found deeper in the mantle. Experimental data are used to recover the compositions of the melts parental to the chromitites and show that the low-cr# chromitites were derived from melts with 14.5–15.4 wt% Al2O3, with 0.4 to 0.9 wt% TiO2 and with a maximum possible mg# of 0.76. In contrast the high-cr# chromitites were derived from melts with 11.8–12.9 wt% Al2O3, 0.2–0.35 wt% TiO2 and a maximum melt mg# of 0.785. Comparison with the published compositions of lavas from the Oman ophiolite shows that the low-cr# chromitites may be genetically related to the upper (Lasail, and Alley) pillow lava units and the high-cr# chromitites the boninites of the upper pillow lava Alley Unit. The calculated TiO2–Al2O3 compositions of the parental chromitite magmas indicate that the high-cr# chromitites were derived from high-Ca boninitic melts, produced by melting of depleted mantle peridotite. The low-cr# chromitites were derived from melts which were a mixture of two end-members—one represented by a depleted mantle melt and the other represented by MORB. This mixing probably took place as a result of melt–rock reaction. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
The Hongseong area of the Hongseong-Imjingang Belt in the central-western Korean Peninsula forms part of a subduction-collision system that is correlated with the Qinling-Dabie-Sulu Belt in China. Several serpentinized ultramafic bodies carrying blocks of metamorphosed mafic rocks occur in this area. Here we investigate zircon grains in serpentinites from Bibong(BB) and Wonnojeon(WNJ), and high-pressure(HP) mafic granulite from Baekdong(BD) localities based on U-Pb, REE and Lu-Hf analyses. The zircons from BD HP mafic granulite show distinct age peaks at 838 Ma, 617 Ma and 410 Ma, with minor peaks at1867 Ma, 1326 Ma and 167 Ma. The Neoproterozoic age peaks in these rocks as well as in the serpentinites suggest subduction-related melt-fluid interaction in the mantle wedge at this time. The older zircon grains ranging in age from the Early to Middle Paleoproterozoic might represent detrital grains from the basement rocks transferred to the wedge mantle through sediment subduction. The BD HP mafic granulite shows a Middle Paleozoic age peak(Devonian; 410 Ma). The 242-245 Ma age peaks in the compiled age data of zircon grains serpentinites from BB and WNJ correspond to a major Triassic event that further added melts and fluids into the ancient mantle wedge to crystallize new zircons. In the chondrite normalized rare earth element diagram, the magmatic zircon grains from the studied rocks show LREE depletion and HREE enrichment with sharply negative Eu and Pr anomalies and positive Ce and Sm anomalies. The REE patterns of hydrothermal zircons show LREE enrichment, and relatively flat patterns with negative Eu anomaly. Zircon Hf signature from the WNJ serpentinite show negative εHf(t)(-18.5 and-23.5) values indicating an enriched mantle source with TDM in the range of 1614 Ma and1862 Ma. Zircons from the BD HP mafic granulite also show slightly negative εHf(t)(average-4.3) and TDM in the range of 1365-1935 Ma. Our study provides evidence for multiple zircon growth in an evolving mantle wedge that witnessed melt and fluid interaction during different orogenic cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号