首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
了解天然气水合物的微观结构特征对水合物资源勘探和评价具有重要意义。采用显微激光拉曼光谱技术,对青海聚乎更钻探区内DK8-19、DK11-14 和DK12-13等3个站位共9个天然气水合物岩心样品进行了分析测试,探讨了钻探区天然气水合物的拉曼光谱特征。结果表明,青海聚乎更钻探区天然气水合物广泛分布,垂直方向在126.1~322.2 m范围内不连续分布,不同钻孔、不同埋深水合物样品的拉曼光谱特征基本一致,初步判断为Ⅱ型结构水合物,且为多元气体水合物。水合物客体除甲烷、乙烷、丙烷及丁烷等 烷烃外,普遍含有氮气组分。此外,在DK8-19站位埋深为126.1 m样品中发现水合物相中硫化氢组分的拉曼信号,这说明特定区域内可能存在硫化氢气体且形成了水合物。聚乎更钻探区水合 物样品拉曼光谱特征为冻土区天然气水合物成藏与分布规律研究提供了新的启示。  相似文献   

2.
温度和压力是保持天然气水合物不分解的2个重要参数。依据热物理力学理论和理想气体特性,通过计算机模拟0℃以上甲烷水合物和二氧化碳水合物在不同温度-压力条件下的分解,得到甲烷水合物分解P-T平衡相图,探讨了钻探获取陆域天然气水合物取样温压关系。  相似文献   

3.
多孔介质中甲烷水合物相变过程模拟实验研究   总被引:1,自引:0,他引:1  
天然气水合物相变过程不仅对沉积层温度场产生影响,也会改变沉积层介电常数等物理性质,深入研究水合物相变过程对周围环境的影响对今后水合物资源开发利用以及水合物地质灾害控制评估等方面都有重要的意义。通过使用专门设计的水合物模拟实验装置,综合采用二维温度梯度和时域反射等方法对甲烷水合物生成及分解过程进行监测。结果显示:水合物合成过程中甲烷水合物合成受气源和过冷度等因素影响,当气源充足时,水合物优先在过冷度大的区域合成,否则水合物优先在气源充足的区域合成;水合物相变过程引起周围多孔介质介电常数发生改变,并可据此计算沉积层中水合物饱和度;水合物稳定性受热刺激影响明显,含水合物多孔介质传热效率与热源距离成二次函数的衰减规律。  相似文献   

4.
天然气水合物的地热研究进展   总被引:8,自引:0,他引:8  
天然气水合物的地热研究在以下几个方面都取得了重要进展,热流与似海底反射层的关系,水合物稳定带的研究;水合物热物理参数的确定;水合物形成过程中的热状态;热导率的应用,指出了今后水合物的地热学研究方向。  相似文献   

5.
Natural gas hydrates have been hailed as a new and promising unconventional alternative energy, especially as fossil fuels approach depletion, energy consumption soars, and fossil fuel prices rise, owing to their extensive distribution, abundance, and high fuel efficiency. Gas hydrate reservoirs are similar to a storage cupboard in the global carbon cycle, containing most of the world’s methane and accounting for a third of Earth’s mobile organic carbon. We investigated gas hydrate stability zone burial depths from the viewpoint of conditions associated with stable existence of gas hydrates, such as temperature, pressure, and heat flow, based on related data collected by the global drilling programs. Hydrate-related areas are estimated using various biological, geochemical and geophysical tools. Based on a series of previous investigations, we cover the history and status of gas hydrate exploration in the USA, Japan, South Korea, India, Germany, the polar areas, and China. Then, we review the current techniques for hydrate exploration in a global scale. Additionally, we briefly review existing techniques for recovering methane from gas hydrates, including thermal stimulation, depressurization, chemical injection, and CH4–CO2 exchange, as well as corresponding global field trials in Russia, Japan, United States, Canada and China. In particular, unlike diagenetic gas hydrates in coarse sandy sediments in Japan and gravel sediments in the United States and Canada, most gas hydrates in the northern South China Sea are non-diagenetic and exist in fine-grained sediments with a vein-like morphology. Therefore, especially in terms of the offshore production test in gas hydrate reservoirs in the Shenhu area in the north slope of the South China Sea, Chinese scientists have proposed two unprecedented techniques that have been verified during the field trials: solid fluidization and formation fluid extraction. Herein, we introduce the two production techniques, as well as the so-called “four-in-one” environmental monitoring system employed during the Shenhu production test. Methane is not currently commercially produced from gas hydrates anywhere in the world; therefore, the objective of field trials is to prove whether existing techniques could be applied as feasible and economic production methods for gas hydrates in deep-water sediments and permafrost zones. Before achieving commercial methane recovery from gas hydrates, it should be necessary to measure the geologic properties of gas hydrate reservoirs to optimize and improve existing production techniques. Herein, we propose horizontal wells, multilateral wells, and cluster wells improved by the vertical and individual wells applied during existing field trials. It is noteworthy that relatively pure gas hydrates occur in seafloor mounds, within near-surface sediments, and in gas migration conduits. Their extensive distribution, high saturation, and easy access mean that these types of gas hydrate may attract considerable attention from academia and industry in the future. Herein, we also review the occurrence and development of concentrated shallow hydrate accumulations and briefly introduce exploration and production techniques. In the closing section, we discuss future research needs, key issues, and major challenges related to gas hydrate exploration and production. We believe this review article provides insight on past, present, and future gas hydrate exploration and production to provide guidelines and stimulate new work into the field of gas hydrates.  相似文献   

6.
海域孔隙型天然气水合物储层中,水合物主要以颗粒胶结、包裹胶结、骨架支撑、孔隙悬浮4种赋存模式充填沉积物孔隙,水合物饱和度与赋存模式的不同导致了储层弹性和电性的差异,利用声波和电阻率测井资料联合处理可以进行水合物赋存模式的定量表征。首先利用Simandoux公式计算水合物饱和度,然后通过有效介质模型构建的岩石物理模板识别水合物赋存模式,最后计算储层中不同赋存模式水合物的相对占比。以全球范围内三个典型区域(中国南海神狐海域、北美Blake海台、新西兰Hikurangi边缘)为例,利用水合物储层的实际钻探资料,对水合物赋存模式进行定量分析:(1)中国南海神狐海域SH2站位储层中,水合物主要以骨架支撑模式产出,约占水合物总量的64%;(2)Blake海台994C站位储层中,水合物主要为颗粒胶结和包裹胶结模式,分别占总量的27%和51%;(3)Hikurangi边缘U1518B站位的水合物储层中,水合物主要为包裹胶结和骨架支撑模式,分别占总量的32%和47%。前人针对水合物形成和赋存模式的实验研究显示,水合物更易以颗粒胶结、包裹胶结和骨架支撑模式赋存,从侧面验证了上述分析结果的可靠性。本研究使用...  相似文献   

7.
海底泥底辟构造与天然气水合物成藏关系密切,泥底辟既能为水合物提供充分的气源物质,同时又能促使地层温度场改变进而影响水合物成藏稳定性。南海北部神狐海域SH5站位虽然BSR明显,但钻探证实不存在天然气水合物。该钻位温度剖面异常高,温度场上移,同时在其下伏地层中发现泥底辟构造和裂隙通道。根据上述事实并结合泥底辟发育各个阶段中的特点,认为泥底辟构造对天然气水合物成藏具有控制作用。泥底辟发育早期和中期阶段,低热导率和低热量有机气体有利于天然气水合物生成;而在晚期阶段,高热量液体上侵稳定带底界,导致水合物分解迁移。SH5站位很可能由于受到处于晚期阶段的泥底辟上侵而未能获取天然气水合物。  相似文献   

8.
基于波阻抗反演的天然气水合物地震检测技术   总被引:1,自引:0,他引:1  
天然气水合物作为特殊的地质体,可以有效地粘结碎屑颗粒,降低沉积物孔隙度,它的存在改变了地层沉积物的物理性质,造成天然气水合物与围岩速度反差较大,从而与围岩之间存在明显的波阻抗差。为了对地层中是否有天然气水合物赋存进行地震检测,对南海北部神狐海域的天然气水合物赋存区域的地震资料进行波阻抗反演分析,结果显示波阻抗反演方法能够作为探测天然气水合物的一种技术手段,研究区天然气水合物矿体的波阻抗呈高值分布特征,波阻抗值约为3 850~3 960 g/cm3.m/s。综合分析认为,波阻抗反演方法能够用于天然气水合物的地震探测、储层分析和综合研究工作中,反演结果可以为天然气水合物储量计算提供比较准确的矿体面积和厚度参数。  相似文献   

9.
天然气水合物的晶体结构主要取决于客体分子种类与组成,目前单组分水合物的结构和谱学特征较为明确,但多组分水合物相关研究较少.为解决多组分水合物的结构识别问题,探讨其谱学特征,本文实验合成了甲烷-丙烷(CH4-C3 H8)和甲烷-四氢呋喃(CH4-THF)两种含CH4双组分水合物以及CH4、C3 H8和THF等三种单组分水...  相似文献   

10.
Higher-precision determinations of hydrate reservoirs, hydrate saturation levels and storage estimations are important for guaranteeing the ability to continuously research, develop and utilize natural gas hydrate resources in China. With seismic stereoscopic detection technology, which fully combines the advantages of different seismic detection models, hydrate formation layers can be observed with multiangle, wide-azimuth, wide-band data with a high precision. This technique provides more reliable data for analyzing the distribution characteristics of gas hydrate reservoirs, establishing velocity models, and studying the hydrate-sensitive properties of petrophysical parameters;these data are of great significance for the exploration and development of natural gas hydrate resources. Based on a velocity model obtained from the analysis of horizontal streamer velocity data in the hydrate-bearing area of the Shenhu Sea, this paper uses three VCs(longitudinal spacing of 25 m) and four OBSs(transverse spacing of 200 m) to jointly detect seismic datasets consisting of wave points based on an inversion of traveltime imaging sections. Accordingly, by comparing the differences between the seismic phases in the original data and the forward-modeled seismic phases, multiangle coverage constraint corrections are applied to the initial velocity model, and the initial model is further optimized, thereby improving the imaging quality of the streamer data. Petrophysical elastic parameters are the physical parameters that are most directly and closely related to rock formations and reservoir physical properties. Based on the optimized velocity model, the rock elastic hydrate-sensitive parameters of the hydrate reservoirs in the study area are inverted, and the sensitivities of the petrophysical parameters to natural gas hydrates are investigated. According to an analysis of the inversion results obtained from these sensitive parameters, λρ, Vp and λμ are simultaneously controlled by the bulk modulus and shear modulus, while Vs and μρ are controlled only by the shear modulus, and the latter two parameters are less sensitive to hydrate-bearing layers. The bulk modulus is speculated to be more sensitive than the shear modulus to hydrates. In other words, estimating the specific gravity of the shear modulus among the combined parameters can affect the results from the combined elastic parameters regarding hydrate reservoirs.  相似文献   

11.
Electrical properties are important physical parameters of natural gas hydrate, and, specifically, resistivity has been widely used in the quantitative estimation of hydrate saturation. There are three main methods to study the electrical properties of gas hydrate-bearing sediments: experimental laboratory measurements, numerical simulation, and resistivity logging. Experimental measurements can be divided into three categories: normal electrical measurement, complex resistivity measurement, and electrical resistivity tomography. Experimental measurements show that the resistivity of hydrate-bearing sediment is affected by many factors, and its distribution as well as the hydrate saturation is not uniform; there is a distinct non-Archie phenomenon. The numerical method can simulate the resistivity of sediments by changing the hydrate occurrence state, saturation, distribution, etc. However, it needs to be combined with X-ray CT, nuclear magnetic resonance, and other imaging techniques to characterize the porous characteristics of the hydrate-bearing sediments. Resistivity well logging can easily identify hydrate layers based on their significantly higher resistivity than the background, but the field data of the hydrate layer also has a serious non-Archie phenomenon. Therefore, more experimental measurements and numerical simulation studies are needed to correct the parameters of Archie''s formula.  相似文献   

12.
Gas hydrates in sediments can dissociate on heating, which causes a characteristic change in temperature over time. This can be used to detect hydrates and estimate their content. The geothermal method for gas hydrate prospecting consists in obtaining thermograms and defining regularities related to the presence of gas hydrates in the medium. The aim of this study was a quantitative estimation of hydrate content in sediments, based on data from repeated measurements of the temperature of a linear heat source (needle probe). The power of the source is chosen so that hydrate does not decompose in the first measurement but decomposes in the second. Afterward, we solve the optimization inverse problem of determination of the model parameters, one of which is a hydrate content. Experimental data on heating of the laboratory samples are processed, and hydrate contents are obtained with an accuracy of 30%. These values agree with independent estimates. The analytical solution of the axially symmetric problem of gas hydrate dissociation, based on the solution of the Stefan problem, is applied as a mathematical model for hydrate heating and decomposition in the sample.  相似文献   

13.
《China Geology》2023,6(2):208-215
The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment, due to its well-developed fractures and abundant gas sources. Understanding the formation and distribution of multi-component gas hydrates in fractures is crucial in accurately evaluating the hydrate reservoir resources in this area. The hydrate formation experiments were carried out using the core samples drilled from hydrate-bearing sediments in Qilian Mountain permafrost area and the multi-component gas with similar composition to natural gas hydrates in Qilian Mountain permafrost area. The formation and distribution characteristics of multi-component gas hydrates in core samples were observed in situ by X-ray Computed Tomography (X-CT) under high pressure and low temperature conditions. Results show that hydrates are mainly formed and distributed in the fractures with good connectivity. The ratios of volume of hydrates formed in fractures to the volume of fractures are about 96.8% and 60.67% in two different core samples. This indicates that the fracture surface may act as a favorable reaction site for hydrate formation in core samples. Based on the field geological data and the experimental results, it is preliminarily estimated that the inventory of methane stored in the fractured gas hydrate in Qilian Mountain permafrost area is about 8.67×1013 m3, with a resource abundance of 8.67×108 m3/km2. This study demonstrates the great resource potential of fractured gas hydrate and also provides a new way to further understand the prospect of natural gas hydrate and other oil and gas resources in Qilian Mountain permafrost area.©2023 China Geology Editorial Office.  相似文献   

14.
We formulate the fundamentals of the geothermal method for determining the hydrate saturation of bottom sediments. According to laboratory experiments (A.A. Trofimuk Institute of Petroleum Geology and Geophysics, A.V. Nikolaev Institute of Inorganic Chemistry), detecting gas hydrates in bottom sediments requires measurement of thermal conductivity at least twice at one bottom site, using a cylindrical probe with different heater power values. Changing the latter permits controlling gas hydrate stability and instability. A low-power probe does not destroy gas hydrates and permits measuring the true thermal conductivity of the sediments. Increasing heater power destroys gas hydrates near the probe and drastically increases effective thermal conductivity. Comparison between true and effective thermal conductivity clearly shows the presence of gas hydrates in the sample or their absence from it. A technique was proposed for the quantitative interpretation of changes in the temperature field of a cylindrical probe. It permits quite a precise determination of the mass of gas hydrate that decomposed in the layer surrounding the probe over a certain period. Also, it permits a rough estimation of the gas hydrate content of the sediments. Thermal conductivity can be measured in the field with submersible multichannel thermoprobes, which are commonly used for studying the heat flow through the bottom of water basins. Now it is important to perform field experiments, so that we gain the necessary experience with the geothermal method.  相似文献   

15.
多孔介质中天然气水合物稳定性的实验研究进展   总被引:8,自引:0,他引:8  
勘探表明天然气水合物多产出于细碎屑沉积物中,其分布和赋存形式受温度、压力、水化学条件等多种物理化学因素的影响。前人的实验研究表明不同孔径尺度中的甲烷水合物稳定性有别于块状、层状水合物,同时孔隙表面的润湿性也是影响因素之一。在综合分析前人研究成果的基础上,系统阐述了孔隙的孔径、孔隙内表面润湿性对所含天然气水合物稳定性的影响规律,总结了可能的内在机理;并指出了当前应当尽快建立包括空间效应、温度、压力和组分等因素的综合天然气水合物相图,查明含天然气水合物沉积物的孔隙结构和表界面特征,建立天然气水合物的稳定性模型,将有助于精确预测天然气水合物的分布和规模,对于水合物开发和甲烷存储技术的研发也有着重要的意义。  相似文献   

16.
海洋天然气水合物元素地球化学异常的实验研究   总被引:4,自引:1,他引:3  
刘昌岭  陈敏  业渝光 《现代地质》2005,19(1):96-100
海洋天然气水合物在生成过程中会引起周围沉积物孔隙水中元素地球化学异常,这些异常是指示天然气水合物存在的重要标志。在自制的实验装置上,模拟了海洋天然气水合物的生成过程,对海水中各离子浓度的变化进行了初步研究。结果表明:在不同的反应条件下,水合物的生成对各离子浓度变化的影响不同。压力越大,耗气量越大,生成水合物的量就大、纯度高,其排盐效应也较强,导致海水溶液中离子浓度的增高,而水合物中离子含量却呈降低趋势。  相似文献   

17.
天然气水合物研究中的几个重要问题   总被引:20,自引:0,他引:20  
综述了当前关于天然气水合物研究中的几个重要问题,提出了今后的主要研究方向,全球大约有10^19g碳以天然气水合物的形式储存在沉积物中,大约是其它所有化石燃料沉积物形式储存量的2倍多,因此,天然气水合物被认为是21世纪具有商业开发无景的潜在的战略资源,天然气水合物是一种亚稳态物质,极易受到温度和压力条件的影响,海底天然气水合物的分解将会影响沉积物的物理化学性质(如剪切强度和流变性等),地球物理性质(如地震波速和电导性),以及地球化学性质(如孔隙流体成分)的明显变化,导致诸如海底滑塌等地质灾害的发生,天然气水合物的分解会产生导致“温室效应”的甲烷气体,该气体进入大气圈中会引起全球气候和环境的变化。  相似文献   

18.
显微激光拉曼光谱测定天然气水合物的方法研究   总被引:2,自引:2,他引:0  
天然气水合物是由烃类气体在一定的温度和压力下与水作用生成的一种非化学计量的笼型晶体化合物,显微激光拉曼光谱是测定其水合指数、笼占有率等结构参数的重要手段。天然气水合物极易分解,不能在常温常压下进行分析测试。本文针对天然气水合物的特性,研制了一套适合显微激光拉曼光谱法测定水合物的小型装置,将样品放入液氮罐中,定期加入液氮(-196℃)保存,确保在测定的过程中甲烷水合物保持稳定状态,解决了肉眼不可见水合物的微观识别问题。对实验合成的一系列不同体系的甲烷水合物和我国海域和陆域的水合物样品进行了分析,探讨了水合物样品的合成、保存和处理方法,研究了拉曼光谱测试条件,揭示不同条件下形成的水合物笼型结构特征。分析结果表明,对同一样品,测定水合指数的相对标准偏差小于1%,方法准确可靠,经分析南海神弧海域水合物为典型Ⅰ型结构的水合物,祁连山冻土区水合物为Ⅱ型结构的水合物,可为我国天然气水合物研究提供必要的结构信息。  相似文献   

19.
Natural gas hydrate contains a specific amount of heavy hydrocarbons, such as ethane, propane, etc., aside from the primary guest gas of methane. Although the coexistence of two or even three hydrate structures has been discovered at several hydrate sites, the requisite formation mechanism is still not well understood. In-situ observation of the formation process of mixed methane-propane hydrate in a confined space was conducted using confocal Raman imaging microscopy. The Raman imaging results reveal that sI methane hydrate and sII mixed methane-propane hydrate are formed and coexist in the reaction system. In the confined space, the sI hydrate originates from the dissolved gas in water, while the sII hydrate is formed from free gas. The results obtained can help explain the coexistence of sI and sII hydrates found in natural hydrate samples, as well as providing insights into a possible dynamic scenario of hydrate reservoirs in geological history.  相似文献   

20.
陆地天然气水合物孔底冷冻取样方法   总被引:3,自引:0,他引:3  
如何获得品质优良的原状样品成为探明陆地天然气水合物赋存条件与储量的关键技术之一。在分析天然气水合物热物理性质和温压特性的基础上,采用主动式降温的方法,通过外部冷源在孔底降低水合物岩心温度,降低水合物的临界分解压力,抑制水合物分解,获得水合物保真样品:据此提出了天然气水合物孔底冷冻取样方法。设计的取样器总体结构由单动机构、控制机构和制冷机构组成,其工作原理主要为孔底冷冻岩心和地表取心,同时分析计算了取样器冷冻岩心所需的能量。通过钻探取样试验钻获冷冻岩心,证明天然气水合物孔底冷冻取样方法能够实现孔底冷冻岩样。该方法可以应用于天然气水合物保真取样。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号