首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New and published data on the distribution and speciation of manganese and iron in seawater are analyzed to identify and parameterize major biogeochemical processes of their cycling within the suboxic (15.6σt16.2) and anoxic layers (σt16.2) of the Black Sea. A steady-state transport-reaction model is applied to reveal layering and parameterize kinetics of redox and dissolution/precipitation processes. Previously published data on speciation of these elements in seawater are used to specify the nature of the transformations. Two particulate species of iron (Fe(III) hydroxide and Fe(II) sulfide) are necessary to adequately parameterize the vertical profile of suspended iron, while three particulate species (hydrous Mn(IV) oxide, Mn(II) sulfide, and Mn(II) carbonate) are necessary to describe the profile of suspended manganese. In addition to such processes as mixing and advection, precipitation, sinking, and dissolution of manganese carbonate are found to be essential in maintaining the observed vertical distribution of dissolved Mn(II). These results are used to interpret the observed difference in the form of vertical distribution for dissolved Mn(II) and Fe(II). Redox transformations of iron and manganese are coupled via oxidation of dissolved iron by sinking suspended manganese at σt16.2±0.2 kg m−3. The particulate manganese, necessary for this reaction, is supplied through oxidation of dissolved Mn(II). The best agreement with observations is achieved when nitrate, rather than oxygen, is set to oxidize dissolved Mn(II) in the lower part of the suboxic layer (15.90σt16.2). The results support the idea that, after sulfides of these metals are formed, they sink with particulate organic matter. The sinking rates of the particles and specific rates of individual redox and dissolved-particulate transformations have been estimated by fitting the vertical profile of the net rate.  相似文献   

2.
Jingfeng Wu   《Marine Chemistry》2007,103(3-4):370-381
A low-blank pre-concentration procedure is described for the analysis of picomolar iron (Fe) in seawater by isotope dilution high-resolution inductively coupled plasma mass-spectrometry (HR-ICPMS). The procedure uses a two-step Mg(OH)2 co-precipitation procedure to extract Fe from a 50 ml seawater sample into a 100 μl 4% nitric acid (HNO3) solution followed by HR-ICPMS measurement. The high pre-concentration ratio ( 500:1) achieved by the procedure minimizes the Fe blank due to ICPMS instrumental Fe background and results in a detection limit of  2 pM and a precision of  4% at the 50 pM Fe level. The measurement of a low-Fe seawater sample spiked with gravimetric Fe standard shows that the method can clearly distinguish 0.01 nM Fe from 0.02 nM Fe in seawater with high accuracy. The method is demonstrated by the analysis of dissolved Fe in the equatorial Pacific Ocean.  相似文献   

3.
Dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) measured in deep profiles in the N-E Atlantic and in the N-W Mediterranean in the period 1984–2002 are described. After accurate validation, they show close agreement with those previously published.Classic profiles were obtained, with concentrations decreasing in deep waters. In the Mediterranean and in the Atlantic comparable concentrations were found in the 1500–2000 m waters, 44–46 μmol l−1 DOC, 2.6–2.8 μmol l−1 DON and 0.02–0.03 μmol l−1 DOP. In the surface layers, DOC concentrations were higher, but DON and DOP concentrations lower, in the Mediterranean than in the Atlantic, leading to higher element ratios in the Mediterranean. In autumn, values were, respectively, DOC:DON 17 vs. 14, DOC:DOP 950 vs. 500 and DON:DOP 55 vs. 35. The data suggest an increase in DOC and DON in the North Atlantic Central Water over 15 years, which may be linked to the North Atlantic climatic oscillations.Refractory DOM found in the 1500–2000 m layer exhibited C:N:P ratios of 1570:100:1. The labile+semi-labile (=non-refractory) DOM (nrDOM) pool was computed as DOM in excess of the refractory pool. Its contribution to total DOM above the thermocline in the open sea amounted to 25–35% of DOC, 30–35% of DON, and 60–80% of DOP. Element ratios of the nrDOM varied among stations and were lower than those of refractory DOM, except for C:N in the Mediterranean: nrDOC:nrDON 10–19, nrDOC:nrDOP 160–530 and nrDON:nrDOP 15–38. The specific stoichiometry of DOM in the Mediterranean led us to postulate that overconsumption of carbon is probably a main process in that oligotrophic sea.By coupling non-refractory DOM stoichiometry and relationships between the main DOM elements in the water column, the relative mineralization of C, N and P from DOM was studied. Below the thermocline, the preferential removal of phosphorus with regard to carbon from the semi-labile DOM can be confirmed, but not the preferential removal of nitrogen. In the ocean surface layers, processes depend on the oceanic area and can differ from deep waters, so preferential carbon removal seems more frequent. Bacterial growth efficiency data indicate that bacteria are directly responsible for mineralization of a high proportion of DON and DOP in the deep water.  相似文献   

4.
Benthic foraminiferal biomass, density, and species composition were determined at 10 sites in the Gulf of Mexico. During June 2001 and 2002, sediment samples were collected with a GoMex box corer. A 7.5-cm diameter subcore was taken from a box core collected at each site and sliced into 1-cm or 2-cm sections to a depth of 2 or 3 cm; the >63-μm fraction was examined shipboard for benthic foraminifera. Individual foraminifers were extracted for adenosine triphosphate (ATP) using a luciferin–luciferase assay, which indicated the total ATP content per specimen; that data was converted to organic carbon. Foraminiferal biomass and density varied substantially (2–53 mg C m−2; 3600–44,500 individuals m−2, respectively) and inconsistently with water depth: although two 1000-m deep sites were geographically separated by only 75 km, the foraminiferal biomass at one site was relatively low (9 mg C m−2) while the other site had the highest foraminiferal biomass (53 mg C m−2). Although most samples from Sigsbee Plain (>3000 m) had low biomass, one Sigsbee site had >20 mg foraminiferal C m−2. The foraminiferal community from all sites (i.e. bathyal and abyssal locales) was dominated by agglutinated, rather than calcareous or tectinous, species. Foraminiferal density never exceeded that of metazoan meiofauna at any site. Foraminiferal biomass, however, exceeded metazoan meiofaunal biomass at 5 of the 10 sites, indicating that foraminifera constitute a major component of the Gulf's deep-water meiofaunal biomass.  相似文献   

5.
Methods are described for the rapid (11 min) automated shipboard analysis of dissolved sulfur hexafluoride (SF6) in small volume (200 cm3) seawater samples. Estimated precision for the SF6 measurements is 2% or 0.02 fmol kg−1 (whichever is greater). The method also allows for the simultaneous measurement of chlorofluorocarbon-11 (CFC11) and chlorofluorocarbon-12 (CFC12) on the same water sample, with significantly improved sensitivity over previous analytical methods.  相似文献   

6.
Sources and discharges of dissolved organic carbon (DOC) from the central Sumatran river Siak were studied. DOC concentrations in the Siak ranged between 560 and 2594 μmol l−1 and peak out after its confluence with the river Mandau. The Mandau drains part of the central Sumatran peatlands and can be characterized as a typical blackwater river due to its high DOC concentration, its dark brown-coloured, acidic water (pH 4.4–4.7) and its low concentration of total suspended matter (12–41 mg l−1). The Mandau supplies about half of the DOC that enters the Siak Estuary where it mixes conservatively with ocean water. The DOC input from the Siak into the ocean was estimated to be 0.3 Tg C yr−1. Extrapolated to entire Indonesia the data suggest a total Indonesian DOC export of 21 Tg yr−1 representing 10% of the global riverine DOC input into the ocean.  相似文献   

7.
Quasi-synoptic observations of the horizontal and vertical structure of a cold-core cyclonic mesoscale eddy feature (Cyclone Noah) were conducted in the lee of Hawai’i from November 4–22, 2004 as part of the E-Flux interdisciplinary collaborative research program. Cyclone Noah appears to have spun up to the southwest of the ‘Alenuihaha Channel (between Maui and Hawai’i) as a result of strong and persistent northeasterly trade winds through the channel. Shipboard hydrographic surveys 2.5 months later suggest that Noah weakened and was in a hypothesized spin-down phase of its life cycle. Although the initial surface expression of Noah was limited in scale to 40 km in diameter and, as evidenced by surface temperatures, 2–3 °C cooler than the surrounding waters, depth profiles revealed a fully developed semi-elliptical shallow feature (200 m), 144 km long and 90 km wide (based on sigma-t=23 kg m−3) with tangential speeds of 40–80 cm s−1, and substantial isopycnal doming. Potential vorticity distribution of Noah suggests that radial horizontal flow of the core water was inhibited from the surface to depths of 75 m, with high vorticity confined above the sigma-t=23.5 kg m−3 isopycnal surface. Upward displacements of isopycnal surfaces in the eddy's center (50 m) were congruent with enhanced pigment concentrations (0.50 mg m−3). Comparisons of the results obtained for E-Flux I (Noah) and E-Flux III (Opal) suggest that translation characteristics of cyclonic Hawaiian lee eddies may be important in establishing the biogeochemical and biological responses of the oligotrophic ocean to cyclonic eddies.  相似文献   

8.
From observations of ice cover, temperature, salinity, currents and nitrate, it is evident that along-shelf variability was significant over the middle shelf of the eastern Bering Sea, but less distinct than that observed in the cross-shelf domains. Along the 70-m isobath, three zones were evident in the summer: the southeastern cold pool (centered at 57°N); an intermediate zone, consisting of warmer water, with weaker stratification; and the northern cold pool, extending northward from 58°N. Small-scale (20 km) horizontal features that persisted for months were common. Nutrient concentrations were related to salinity and were replenished more uniformly over the southern shelf, than north of the Pribilof Islands. Although mean currents were weak (1 cm s−1), short energetic advective events impacted the temperature and salinity structure.  相似文献   

9.
The chemical speciation of copper in the estuarine waters of the Vigo Ria was determined by titrations with salicylaldoxime (reverse copper titrations) and with copper (forward titrations). The forward titrations quantified the concentrations of ligands present in excess whereas the reverse titrations demonstrated the presence of low concentrations of very strong binding ligands, approximately matching the copper concentration. The data obtained by the reverse titrations indicated that copper was about 10× stronger bound than data based on the usual forward titrations.The copper concentration in these ria waters was low at 5 nM with a minor mid-estuarine maximum of 8 nM. These copper levels are amongst the lowest reported for estuarine waters and therefore represent uncontaminated waters. The concentration of inorganic copper was very low across the ria at  10–100 fM, except at Bouzas harbour (salinity 35.5) where it was raised to  1 pM due to copper contamination, in waters affected by the port facilities, to total levels of 15 to 20 nM copper, exceeding the concentration of the very strong ligand detected by the reverse titrations.  相似文献   

10.
The dissolved organic carbon pool (DOC) is among the largest reservoir of reduced carbon on our planet. The demonstration that DOC polymers remain in assembly/dispersion equilibrium forming microscopic hydrogels has a broad range of critical implications. Previous studies estimate that  10% of DOC could be assembled as gels, yielding values of  7 × 1016 g of organic carbon present as microscopic hotspots of high substrate concentration. This huge mass of reduced carbon emphasizes the need to develop reliable methods to systematically investigate the budget of self-assembled marine gels (SAG), and their role in biogeochemical cycling. However, a quantitative method to measure SAG in seawater has not been available. Here we present the validation of a simple assay to measure the mass of organic carbon assembled as microgels in native seawater. This method is based on the ratio of Chlortetracycline (CTC) fluorescence quenching between Ca bound to non-assembled organic molecules and molecules assembled as microgels. This assay can be readily implemented on board using a low cost fluorometer and provisions to measure TOC.  相似文献   

11.
Concentrations of thiol compounds, copper-complexing ligands, and total dissolved copper were followed over the course of 1 year (October 2002 until September 2003) in the Elizabeth River, Virginia to evaluate seasonality. Copper-complexing ligand concentrations were determined by competitive ligand equilibration-adsorptive cathodic stripping voltammetry (CLE/ACSV). Thiol detection was carried out by high performance liquid chromatography (HPLC) and calibration using a suite of nine thiol compounds (cysteine, glutathione, mercaptoacetic acid, 2-mercaptoethanesulfonic acid, 2-mercaptoethanol, 2-mercaptopropionic acid, 3-mercaptopropionic acid, mercaptosuccinic acid, and monothioglycerol). Total dissolved copper concentrations reached a January low of 13.1 nM to a June high of 24.7 nM and were found to vary seasonally with higher concentrations occurring from June to September. With a low of 26 nM during April to a high of 56 nM in October, copper-complexing ligand (average log KCuL of 12.0 ± 0.2) concentrations displayed a similar seasonal pattern to that of total dissolved copper. Free cupric ion concentrations remained below 1.5 pM for a majority of the year except during March, April, and December when values reached pM levels greater than 1.5. Six of the nine thiol compounds surveyed were detected in the Elizabeth River samples and ranged in concentration from below detectable concentrations (< 5 nM) to individual highs ranging from 25.3 to168.5 nM. The thiol compound concentrations displayed a clear seasonality fluctuating at below detection limits during November to February then increasing with increasing surface water temperatures from March to July. CLE/ACSV was used to assess whether or not the suite of thiol compounds detected by HPLC could contribute to the copper-complexing ligand pool. Conditional stability constants for each one of six thiol standards (average log KCuL  12.1 ± 0.5) were found to be statistically equivalent to the naturally occurring copper-complexing ligands (average log KCuL  12.0 ± 0.2). This suggests that these thiol compounds could act as copper-complexing ligands in natural samples and could contribute to the copper-complexing ligand pool detected by CLE/ACSV. This study involving seasonality of copper-complexing ligands and thiols in an industrialized, urban estuary underscored several points that have to be substantiated in future research efforts including copper-complexing ligands sources and the role that thiol compounds as well as other unidentified organic compounds play in the copper-complexing ligand pool.  相似文献   

12.
Biogeochemical processes in sediments under the influence of the Rhône River plume were studied using both in situ microelectrodes and ex situ sediment core incubations. Organic carbon (OC) and total nitrogen (TN) content as well as stable carbon isotopic composition of OC (δ13COC) were analysed in 19 surface sediments to determine the distribution and sources of organic matter in the Rhône delta system. Large spatial variations were observed in both the total O2 uptake (5.2 to 29.3 mmol m−2 d−1) and NH4+ release (−0.1 to −3.5 mmol m−2 d−1) rates at the sediment–water interface. The highest fluxes were measured near the Rhône River mouth where sedimentary OC and TN contents reached 1.81% and 0.23% respectively. Values of δ13COC ranged from −26.83‰ to −23.88‰ with a significant seawards enrichment tracing the dispersal of terrestrial organic matter on the continental shelf. The amount of terrestrial-derived OC reaches 85% in sediments close to the Rhône mouth decreasing down to 25% in continental shelf sediments. On the prodelta, high terrestrial OC accumulation rates support high oxygen uptake rates and thus indicating that a significant fraction of terrestrial OC is remineralized. A particulate organic carbon (POC) mass balance indicates that only 3% of the deposited POC is remineralized in prodelta sediments while 96% is recycled on the continental shelf. It was calculated that a large proportion of the Rhône POC input is either buried (52%) or remineralized (8%), mostly on the prodelta area. The remaining fraction (40%) is either mineralized in the water or exported outside the Rhône delta system in dissolved or particulate forms.  相似文献   

13.
The Wadden Sea (North Sea, Europe) is a shallow coastal sea with high benthic and pelagic primary production rates. To date, no studies have been carried out in the Wadden Sea that were specifically designed to study the relation between pelagic respiration and production by comparable methods. Because previous studies have suggested that the import of primary-produced pelagic organic matter is important for benthic Wadden Sea carbon budgets, we hypothesised that on an annual average the northern Wadden Sea water column is autotrophic. To test this hypothesis, we studied annual dynamics of primary production and respiration at a pelagic station in a shallow tidal basin (List Tidal Basin, northern Wadden Sea). Since water depth strongly influences production estimates, we calculated primary production rates per unit area in two ways: on the basis of the mean water depth (2.7 m) and on the basis of 1 m depth intervals and their respective spatial extent in the List Tidal Basin. The latter more precise estimate yielded an annual primary production of 146 g C m− 2 y− 1. Estimates based on the mean water depth resulted in a 40% higher annual rate of 204 g C m− 2 y− 1. The total annual pelagic respiration was 50 g C m− 2 y− 1. The P/R ratio varied between seasons: from February to October the water column was autotrophic, with the highest P/R ratio of 4–5 during the diatom spring bloom in April/May. In autumn and winter the water column was heterotrophic. On an annual average, the water column of the List Tidal Basin was autotrophic (P/R 3). We suggest that a large fraction of the pelagic produced organic matter was respired locally in the sediment.  相似文献   

14.
This study presents a sea-level curve from 9500 to 6500 cal BP for the farfield location of Singapore, on the Sunda Shelf in southeast Asia. The curve is based on more than 50 radiocarbon dates from elevations of +1.43 m to −15.09 m representing sea-level index points in intertidal mangrove and shallow marine sediments deposited by sea-level rise accompanying deglaciation. The results indicate that mean sea level rose rapidly from around −17 m at 9500 cal BP to around −3 m by 8000 cal BP. After this time, the data suggest (but do not unequivocally prove) that the rate of sea-rise slowed for a period of 300–500 years centred on 7700 cal BP, shortly after the cessation of meltwater input to the oceans from the northern hemisphere. Renewed sea-level rise amounting to 3–5 m began around 7400 cal BP and was complete by 7000 cal BP. The existence of an inflection in the rate of sea-level rise, with a slow-down centred on 7700 cal BP, is broadly consistent with other available sea-level curves over this interval and is supported by evidence of stable shorelines and delta initiation elsewhere at this time, as well as evidence of comparatively rapid retreat of the West Antarctic ice sheet beginning around 7500 cal BP. ‘Stepped’ sea-level rise occurring shortly after 7500 cal BP and also earlier during deglaciation may have served to focus significant post-glacial episodes of human maritime/coastal dispersal, into comparatively narrow time intervals.  相似文献   

15.
16.
Geochemical estimates of N2 fixation in the North Atlantic often serve as a foundation for estimating global marine diazotrophy. Yet despite being well-studied, estimations of nitrogen fixation rates in this basin vary widely. Here we investigate the variability in published estimates of excess nitrogen accumulation rates in the main thermocline of the subtropical North Atlantic, testing the assumptions and choices made in the analyses. Employing one of these previously described methods, modified here with improved estimates of excess N spatial gradients and ventilation rates of the main thermocline, we determine a total excess N accumulation rate of 7.8 ± 1.7 × 1011 mol N yr− 1. Contributions to excess N development include atmospheric deposition of high N:P nutrients (adding excess N at a rate of 3.0 ± 0.9 × 1011 mol N yr− 1 for  38% of the total), high N:P dissolved organic matter advected into and mineralized in the main thermocline (adding excess N at 2.2 ± 1.1 × 1011 mol N yr− 1 for  28% of the total), and, calculated by mass balance of the excess N field, N2 fixation (adding excess N at 2.6 ± 2.2 × 1011 mol N yr− 1 for  33% of the total). Assuming an N:P of 40 and this rate of excess N accumulation due to the process, N2 fixation in the North Atlantic subtropical gyre is estimated at  4 × 1011 mol N yr− 1. This relatively low rate of N2 fixation suggests that i) the rate of N2 fixation in the North Atlantic is greatly overestimated in some previous analyses, ii) the main thermocline is not the primary repository of N fixed by diazotrophs, and/or iii) the N:P ratio of exported diazotrophic organic matter is much lower than generally assumed. It is this last possibility, and our uncertainty in the N:P ratios of exported material supporting excess N development, that greatly lessens our confidence in geochemical measures of N2 fixation.  相似文献   

17.
Different estimates were used to assess the diversity of the total macrofauna and its major taxonomic groups separately from a broad bathymetric range at a site in the NE Atlantic. In the Goban Spur region, a transect was sampled from the shelf to the abyssal plain over a depth range from 200 to 4500 m and in the Porcupine Sea Bight two stations were sampled (at 3670 m and 4115 m). Species diversity (the number of species per number of individuals) increased with increasing water depth, both when expressed as Hurlbert's E(Sn) and as Shannon's H′log e. The expected number of species in a 100-individual sample E(S100) of total macrofauna increased from 30 on the shelf to 68 on the abyssal plain. Evenness (the proportional abundance of species), estimated with Shannon's J′, also increased with water depth from 0.66 to 0.91, whereas dominance (Simpson's D) decreased from 0.09 to 0.01. Species richness (the number of species per unit of area), however, showed a parabolic pattern with a peak at the upper slope. The largest number of species was found at the slope station at 1425 m (232 species within 0.66 m2). It is argued that species richness is not a synonym of species diversity, but that species richness depends both on species density (which decreases with increasing water depth) and on species diversity. Across the whole bathymetric range (200 to 4500 m) a total of 696 species within 8327 specimens in a total sampled area of 4.12 m2 were counted, yielding mean values of 12 individuals per species and 169 species per m2. Different communities were found to exist on the shelf, slope and abyss. It is suggested that this could have been caused by different selection processes. Differences in life-history strategies and organic-matter supply could (at least partly) explain the different community structures and diversity patterns found along the depth gradient.  相似文献   

18.
We report measurements of dissolved iron (dFe, <0.4 μm) in seawater collected from the upper 300 m of the water column along the CLIVAR SR3 section south of Tasmania in March 1998 (between 42°S and 54°S) and November–December 2001 (between 47°S and 66°S). Results from both cruises indicate a general north-to-south decrease in mixed-layer dFe concentrations, from values as high as 0.76 nM in the Subtropical Front to uniformly low concentrations (<0.1 nM) between the Polar Front and the Antarctic continental shelf. Samples collected from the seasonal sea-ice zone in November–December 2001 provide no evidence of significant dFe inputs from the melting pack ice, which may explain the absence of pronounced ice-edge algal blooms in this sector of the Southern Ocean, as implied by satellite ocean-color images. Our data also allow us to infer changes in the dFe concentration of surface waters during the growing season. South of the Polar Front, a comparison of near-surface with subsurface (150 m depth) dFe concentrations in November–December 2001 suggests a net seasonal biological uptake of at least 0.14–0.18 nM dFe, of which 0.05–0.12 nM is depleted early in the growing season (before mid December). A comparison of our spring 2001 and fall 1998 data indicates a barely discernible seasonal depletion of dFe (0.03 nM) within the Polar Frontal Zone. Further north, most of our iron profiles do not exhibit near-surface depletions, and mixed-layer dFe concentrations are sometimes higher in samples from fall 1998 compared to spring 2001; here, the near-surface dFe distributions appear to be dominated by time-varying inputs of aerosol iron or advection of iron-rich subtropical waters from the north.  相似文献   

19.
Delayed coincidence counters (RaDeCC), used for measuring 223Ra and 224Ra preconcentrated from water onto MnO2-impregnated acrylic fiber (“Mn-fiber”), require a standard Mn-fiber column that has a precisely known activity of 224Ra for calibration. This may be done by adding an aged 228Th standard solution to adsorb both 228Th and its daughter 224Ra quantitatively onto a Mn fiber. We used both seawater and deionized water (DIW) for testing the adsorption efficiency of Th and Ra onto Mn fibers. Our experimental results show that more than 50% of thorium (232Th and 228Th) breaks through the Mn-fiber column when DIW is used as a medium. However, near quantitative recoveries are obtained if filtered (0.45 μm) seawater is used to prepare the standard. In the case of pure DIW, the pH (initial pH  5.3) rises to > 10 after passing through the column while seawater (initial pH  7.8) changes to  7.2. Thus, the lack of thorium adsorption in DIW may be attributed to this huge increase of pH and the consequent formation of Th(OH)4 and polyhydroxyl colloids. Based on these observations, we recommend that one should use either artificial seawater or natural seawater (which has negligible 224Ra and 228Th) as a loading solution after 0.45 μm filtration. In addition, the thorium adsorption efficiency should be confirmed either by thorium analysis of the effluent solution or long-term monitoring of the supported 224Ra on the Mn fiber using the RaDeCC. Similar cautions are likely necessary for making 223Ra standards by adsorption of 227Ac onto Mn fibers.  相似文献   

20.
Nutrient and oxygen data collected in the southern Aegean Sea (Cretan Sea) and the straits of the Cretan Arc, during the four seasonal PELAGOS cruises in 1994–1995, are investigated and compared with data collected from 1987 to 1992 within the same area. During the cruises of the PELAGOS Project, nutrient enrichment of the intermediate layers of the Cretan Sea was observed, as a result of intrusion of ‘nutrient-rich, oxygen-poor’ Transition Mediterranean Water (TMW) compensating the Cretan Deep Water (CDW) outflow. TMW occupied the intermediate layers of the entire Cretan Sea. The concentrations of nutrients within this layer were often two times higher than those observed in the same area during previous studies undertaken before 1992 (increase 2.5 μmol/l of nitrate, 0.05 μmol/l of phosphate and 2.5μmol/l of silicate). The decrease of oxygen in this layer is about 0.8ml/l (35 μmol/l). Outflow of CDW occurs principally through the Antikithira and Kassos Straits (the two deeper straits of the Cretan Arc); it results in an increase of oxygen content but a decrease in the nutrient content of water in the deep and bottom layers outside the Cretan Sea. The major mesoscale features in the area have a major influence of the distributions and exchanges of nutrients and oxygen through the straits of the Cretan Arc. The surface and the intermediate layers were richer in nutrients and poorer in oxygen in spring (March 1994), than in autumn (September 1994).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号