首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We will report on the equipment and performance of the X-ray facility of the University of Ferrara. Initially developed to test the PDS (Phoswich Detection System) instrument aboard the BeppoSAX satellite and to perform reflectivity measurements of mosaic crystal samples of HOPG (Highly Oriented Pyrolytic Graphite), with time the facility has been improved and its applications extended. Now these applications include test and calibration of hard X-ray (> 10 keV) detectors, reflectivity measurements of hard X-ray mirrors, reflectivity tests of crystals and X-ray transparency measurements. The facility is being further improved in order to determine the optical axis mosaic crystals in Laue configuration within a project devoted to develop a hard X-ray (> 60 keV) focusing optics (Pisa, A. et al.: in press, Feasibility study of a Laue lens for hard X-rays for space astronomy, SPIE Proc., 5536).  相似文献   

2.
A numerical simulation has been made for the dynamics of non-thermal electrons (> 10keV) injected with spatial, temporal and velocity distributions into a model coronal loop. The time variations of the spatial intensity distribution and the spectrum for the expected hard X-rays are computed for many models in order to find the important physical parameters for those characteristics.The most important one is the column density of plasma, CD, along the loop. If CD is smaller than 1020 cm–2, the expected X-rays behave like the solar impulsive hard X-ray bursts, that is the spatial maximum of X-rays shifts to the top of the loop in the later phase of the burst accompanying a spectral softening. On the other hand, if CD is greater than this value, quasi-steady decay appears in the later phase. In this case the intensity distribution of X-rays above about 20 keV along the loop shows a broad maximum away from the loop top giving an extended spatial distribution of hard X-rays, and spectral hardness is kept constant. These characteristics are similar to the solar gradual hard X-ray bursts (the so-called extended burst which is not a hot thermal gradual burst).  相似文献   

3.
We present a new method of estimating the energy of microwave-emitting electrons from the observed rate of increase of the microwave flux relative to the hard X-ray flux measured at various energies during the rising phase of solar flares. A total of 22 flares observed simultaneously in hard X-rays (20–400 keV) and in microwaves (17 GHz) were analyzed in this way and the results are as follows:
  1. The observed energy of X-rays which vary in proportion to the 17 GHz emission concentrates mostly below 100 keV with a median energy of 70 keV. Since the mean energy of electrons emitting 70 keV X-rays is ?130 keV or ?180 keV, depending on the assumed hard X-ray emission model (thin-target and thick-target, respectively), this photon energy strongly suggests that the 17 GHz emission comes mostly from electrons with an energy of less than a few hundred keV.
  2. Correspondingly, the magnetic field strength in the microwave source is calculated to be 500–1000 G for the thick-target case and 1000–2000 G for the thin-target case. Finally, judging from the values of the source parameters required for the observed microwave fluxes, we conclude that the thick-target model in which precipitating electrons give rise to both X-rays and microwaves is consistent with the observations for at least 16 out of 22 flares examined.
  相似文献   

4.
The 2B/X2.8 double-ribbon flare of 30 March, 1982 is investigated using H, white light, X-rays, and microwaves. The X-ray burst seems to consist of two components, i.e., an impulsive component showing a long chain of peaks and a thermal component (T 2 × 107 K).In the early phase, the source images for the impulsive component were available simultaneously at soft (7–14 keV) and hard (20–40 keV) X-rays. Both sources are elongated along a neutral line. The core of the source for the hard X-rays is located at one end which seems to be a footpoint (or a leg) of a loop or arcade, while the core for the soft X-rays is located at the center of the elongated source which would be the center of the loop. The core for the hard X-rays shifted to this center in the main and later phase, accompanied by decrease in the source size in the later phase.A peak of one-directional intensity distribution at 35 GHz always lies on the core of the hard X-ray source, showing a shift of the position synchronous with the hard X-ray core. This may imply a common source for the radio waves and the hard X-rays.The source of the thermal component observed at the soft X-rays (7–14 keV) after the early phase covers a whole H patches. This may imply a physical relation between the thermal X-ray loops and the H brightening.  相似文献   

5.
X-ray polarimetry can be an important tool for investigating various physical processes as well as their geometries at the celestial X-ray sources. However, X-ray polarimetry has not progressed much compared to the spectroscopy, timing and imaging mainly due to the extremely photon-hungry nature of X-ray polarimetry leading to severely limited sensitivity of X-ray polarimeters. The great improvement in sensitivity in spectroscopy and imaging was possible due to focusing X-ray optics which is effective only at the soft X-ray energy range. Similar improvement in sensitivity of polarisation measurement at soft X-ray range is expected in near future with the advent of GEM based photoelectric polarimeters. However, at energies >10 keV, even spectroscopic and imaging sensitivities of X-ray detector are limited due to lack of focusing optics. Thus hard X-ray polarimetry so far has been largely unexplored area. On the other hand, typically the polarisation degree is expected to increase at higher energies as the radiation from non-thermal processes is dominant fraction. So polarisation measurement in hard X-ray can yield significant insights into such processes. With the recent availability of hard X-ray optics (e.g. with upcoming NuSTAR, Astro-H missions) which can focus X-rays from 5 KeV to 80 KeV, sensitivity of X-ray detectors in hard X-ray range is expected to improve significantly. In this context we explore feasibility of a focal plane hard X-ray polarimeter based on Compton scattering having a thin plastic scatterer surrounded by cylindrical array scintillator detectors. We have carried out detailed Geant4 simulation to estimate the modulation factor for 100 % polarized beam as well as polarimetric efficiency of this configuration. We have also validated these results with a semi-analytical approach. Here we present the initial results of polarisation sensitivities of such focal plane Compton polarimeter coupled with the reflection efficiency of present era hard X-ray optics.  相似文献   

6.
SIMBOL-X is a hard X-ray mission based on a formation flight architecture, operating in the 0.5–80 keV energy range, which has been selected for a comprehensive Phase A study, being jointly carried out by CNES and ASI. SIMBOL-X makes uses of a long (in the 25–30 m range) focal length multilayer-coated X-ray mirrors to focus for the first time X-rays with energy above 10 keV, resulting in at least a two orders of magnitude improvement in angular resolution and sensitivity compared to non focusing techniques used so far. The SIMBOL-X revolutionary instrumental capabilities will allow us to elucidate outstanding questions in high energy astrophysics, related in particular to the physics and energetic of the accretion processes on-going in the Universe, also performing a census of black holes on all scales, achieved through deep, wide-field surveys of extragalactic fields and of the Galactic center, and the to the acceleration of electrons and hadrons particles to the highest energies. In this paper, the mission science objectives, design, instrumentation and status are reviewed. PACS: 95.55 – Astronomical and space-research instrumentation 95.85 – Astronomical Observations 98.85.Nv – X-ray  相似文献   

7.
The origin of X-ray solar bursts is investigated on the basis of the theoretical model developed by Syrovatskii. According to this model (i) one of the most important manifestations of flares is the acceleration of charged particles (mainly of electrons) to subrelativistic and relativistic energies, and (ii) the two flare phases: stationary (soft) and nonstationary (hard) should be distinguished. The first phase is accompanied by the generation of the soft (2–8 Å) thermal X-rays and the second one by the generation of hard thermal and nonthermal X-rays in the 10 keV range. The thermal X-rays arise in both phases due to the heating of the ambient gas by accelerated particles. The possible mechanisms of non-thermal X-rays are investigated. Simple models of the emitting region are considered, taking into account the simultaneous observations in different regions of the electromagnetic spectrum.  相似文献   

8.
Simultaneous X-ray images in hard (20–40 keV) and softer (6.5–15 keV) energy ranges were obtained with the hard X-ray telescope aboard the Hinotori spacecraft of an impulsive solar X-ray burst associated with a flare near the solar west limb.The burst was composed of an impulsive component with a hard spectrum and a thermal component with a peak temperature of 2.8 × 107 K. For about one minute, the impulsive component was predominant even in the softer energy range.The hard X-ray image for the impulsive component is an extended single source elongated along the solar limb, rather steady and extends from the two-ribbon H flare up to 104 km above the limb. The centroid of this source image is located about 10 (7 × 103 km) ± 5 above the neutral line. The corresponding image observed at the softer X-rays is compact and located near the centroid of the hard X-ray image.The source for the thermal component observed in the later phase at the softer X-rays is a compact single source, and it shows a gradual rising motion towards the later phase.  相似文献   

9.
The evolution of hot thermal plasma in solar flares is analyzed by a single-temperature model applied to continuum emission in the 5 keV < E ? 13 keV spectral range. The general trend that the thermal plasma observed in soft X-rays is heated by the non-thermal electrons that emit as the hard X-ray bursts is confirmed by the observation of an electron temperature increase at the time interval of hard X-ray spikes and a quantitative comparison between thermal energy content and hard X-ray energy input. Non-thermal electrons of 10 keV < E < 30 keV energy may play an important role in pre- and post-burst phases.  相似文献   

10.
We present Swift observations of the black hole X-ray transient, GRO J1655−40, during the recent outburst. With its multiwavelength capabilities and flexible scheduling, Swift is extremely well suited for monitoring the spectral evolution of such an event. GRO J1655−40 was observed on 20 occasions and data were obtained by all instruments for the majority of epochs. X-ray spectroscopy revealed spectral shapes consistent with the 'canonical' low/hard, high/soft and very high states at various epochs. The soft X-ray source (0.3–10 keV) rose from quiescence and entered the low/hard state, when an iron emission line was detected. The soft X-ray source then softened and decayed, before beginning a slow rebrightening and then spending ∼3 weeks in the very high state. The hard X-rays (14–150 keV) behaved similarly but their peaks preceded those of the soft X-rays by up to a few days; in addition, the average hard X-ray flux remained approximately constant during the slow soft X-ray rebrightening, increasing suddenly as the source entered the very high state. These observations indicate (and confirm previous suggestions) that the low/hard state is key to improving our understanding of the outburst trigger and mechanism. The optical/ultraviolet light curve behaved very differently from that of the X-rays; this might suggest that the soft X-ray light curve is actually a composite of the two known spectral components, one gradually increasing with the optical/ultraviolet emission (accretion disc) and the other following the behaviour of the hard X-rays (jet and/or corona).  相似文献   

11.
The energy spectrum of diffuse hard X-rays measured in the range 10–40 keV shows a rather sharp change of slope. The logarithmic derivative of the spectrum changes around 20–30 keV by the increment significantly greater than 0.5 within an interval smaller than 50 keV.  相似文献   

12.
It has been controversial whether the flare-associated hard X-ray bursts are thermal emission or non-thermal emission. Another controversial point is whether or not the associated microwave impulsive burst originates from the common electrons emitting the hard X-ray burst.It is shown in this paper that both the thermal and non-thermal bremsstrahlung should be taken into account in the quantitative explanation of the time characteristics of the hard X-ray bursts observed so far in the photon energy range of 10–150 keV. It is emphasized that the non-thermal electrons emitting the hard X-rays and those emitting the microwave impulsive burst are not common. The model is as follows, which is also consistent with the radio observations.At the explosive phase of the flare a hot coronal condensation is made, its temperature is generally 107 to 108K, the number density is about 1010 cm–3 and the total volume is of the order of 1029 cm3. A small fraction, 10–3–10–4, of the thermal electrons is accelerated to have power law distribution. Both the non-thermal and thermal electrons in the sporadic condensation contribute to the X-ray bursts above 10 keV as the bremsstrahlung. Fast decay of the harder X-rays (say, above 20 keV) for a few minutes is attributed to the decay of non-thermal electrons due to collisions with thermal electrons in the hot condensation. Slower decay of the softer X-rays including around 10 keV is attributed to the contribution of thermal component.The summary of this paper was presented at the Symposium on Solar Flares and Space Research, COSPAR, Tokyo, May, 1968.  相似文献   

13.
We present an X-ray spectroscopic study of the prototype far-infrared galaxy NGC 6240 from ASCA . The soft X-ray spectrum (below 2 keV) shows clear signatures of thermal emission well described by a multitemperature optically thin plasma, which probably originates in a powerful starburst. Strong hard X-ray emission is also detected with ASCA and its spectrum above 3 keV is extremely flat with a prominent iron K line complex, very similar to that seen in the Seyfert 2 galaxy NGC 1068 but about an order of magnitude more luminous ( L 3−10keV ≈ 1.4 × 1042 erg s−1). The hard X-ray spectrum indicates that only reflected X-rays of an active galactic nucleus (AGN) buried in a heavy obscuration ( N H > 2 × 1024 cm−2) are visible. This is evidence for an AGN in NGC 6240, emitting possibly at a quasar luminosity (∼ 1045 erg s−1), and suggests its significant contribution to the far-infrared luminosity.  相似文献   

14.
An impulsive flare October 24, 1969 produced two bursts with virtually identical time profiles of 8800 MHz emission and X-rays above 48 keV. The two spikes of hard X-rays correspond in time to the times of sharp brightening and expansion in the H flare. The first burst was not observed at frequencies below 3000 MHz. This cut off is ascribed to plasma cutoff above the low-lying flare.A model of the flare based on H observations at Big Bear shows that the density of electrons with energy above 10 keV is 5 × 107 if the field density is 1011. The observed radio flux would be produced by this electron distribution with the observed field of 200 G. The H emission accompanying the hard electron acceleration is presumed due to excitation of the field atoms by the hard electrons.  相似文献   

15.
An observation carried out with a balloon-borne detector of an additional flux of secondary X-rays (E 30 keV) at large depths in the atmosphere is described. This excess is attributed to the emission of very hard X-rays during the solar flare of August 7, 1972. The propagation in the atmosphere of the secondary photons resulting from their electromagnetic interactions in the air is computed by utilizing the Monte Carlo method. The computations agree with the observed flux when a very hard solar X-ray spectrum is assumed.  相似文献   

16.
17.
Hard X-ray/soft gamma-ray astrophysics is on the verge of a major advance with the practical realization of technologies capable of efficiently focusing X-rays above 10 keV. Hard X-ray focusing telescopes can achieve orders of magnitude improvements in sensitivity compared to the instruments based on coded apertures and collimated detectors that have traditionally been employed in this energy band. Compact focal planes enable high-performance detectors with good spectral resolution to be employed in efficient, low-background configurations. We have developed multilayer coated grazing incidence optics and solid state Cadmium Zinc Telluride focal plane systems for the High Energy Focusing Telescope (HEFT) balloon-borne experiment, and for the Nuclear Spectroscopic Telescope Array (NuSTAR) Small Explorer satellite. In this paper we describe the technologies, telescope designs, and performance of both experiments.  相似文献   

18.
The UCSD solar X-ray instrument on the OSO-7 satellite observes X-ray bursts in the 2–300 keV range with 10.24 s time resolution. Spectra obtained from the proportional counter and scintillation counter are analyzed for the event of November 16, 1971, at 0519 UT in terms of thermal (exponential spectrum) and non-thermal (power law) components. The energy content of the approximately 20 × 106K thermal plasma increased with the 60 s duration hard X-ray burst which entirely preceded the 5 keV soft X-ray maximum. If the hard X-rays arise by thick target bremsstrahlung, the nonthermal electrons above 10 keV have sufficient energy to heat the thermally emitting plasma. In the thin target case the collisional energy transfer from non-thermal electrons suffices if the power law electron spectrum is extrapolated below 10 keV, or if the ambient plasma density exceeds 4 × 1010 cm–3.Formerly at UCSD.  相似文献   

19.
Multiple energetic injections in a strong spike-like solar burst   总被引:1,自引:0,他引:1  
An intense and fast spike-like solar burst was observed with high sensitivity in microwaves and hard X-rays, on December 18,1980, at 19h21m20s UT. It is shown that the burst was built up of short time scale structures superimposed on an underlying gradual emission, the time evolution of which showed remarkable proportionality between hard X-ray and microwave fluxes. The finer time structures were best defined at mm-microwaves. At the peak of the event the finer structures repeat every 30–60 ms (displaying an equivalent repetition rate of 16–20 s-1). The more slowly varying component with a time scale of about 1 s was identified in microwaves and hard X-rays throughout the burst duration. Similarly to what has been found for mm-microwave burst emission, we suggest that X-ray fluxes might also be proportional to the repetition rate of basic units of energy injection (quasi-quantized). We estimate that one such injection produces a pulse of hard X-ray photons with about 4 × 1021 erg, for 25 keV. We use this figure to estimate the relevant parameters of one primary energy release site both in the case where hard X-rays are produced primarily by thick-target bremsstrahlung, and when they are purely thermal, and also discuss the relation of this figure to global energy considerations. We find, in particular, that a thick-target interpretation only becomes possible if individual pulses have durations larger than 0.2 s.  相似文献   

20.
Balloon observations of the cosmic diffuse component of hard X-rays were conducted with two independent directional counters in two energy bands, from 20 keV to 120 keV and from 90 keV to 4 MeV. The build-up effect of primary X-rays and the altitude dependence of atmospheric X-rays were properly taken into account in the analysis of the growth curves. These two experiments gave consistent results in the overlapping energy region. If the differential energy spectrum of the photon flux is represented by a power lawE , the value of α is 2.3 up to 100 keV, gradually increases to 2.8 at about 500 keV, and decreases to 2.0 thereabove. The spectrum above 300 keV is in parallel to the Apollo-15 spectrum, whereas the absolute intensity is somewhat smaller. The shape of the spectrum suggests the necessity of a multi-component theory on the origin of cosmic diffuse X-rays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号