首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
This paper provides an overview of a new large scale laboratory data set on the kinematics of breaking tsunami wavefronts. The aim of the experiments was to provide an open access data set for model testing, calibration and verification, with particular emphasis on fluid kinematics in the wave breaking and run-up (swash) zones. The experiments were performed over a composite slope in the tsunami wave basin at the O. H. Hinsdale Wave Research Laboratory at Oregon State University. Data for ten different wave conditions were collected, including non-breaking and breaking waves, and both shore breaks and fully developed long bores.Surface elevation and fluid kinematics were measured with a closely spaced array of surface piercing wave gauges, non-contact ultrasonic wave gauges and four 3-D side-looking Acoustic Doppler Velocimeters. The array was traversed from the nearshore (depth = 0.2 m) to the middle and upper run-up zone, providing kinematic data at 30 cross-shore locations. Video was also recorded from 4 cameras covering the propagation, breaking and run-up zones. Surface elevation, flow velocities and the wave maker displacement were also recorded to provide offshore boundary conditions.The experiments include conditions with wave heights up to 0.55 m, notional wave periods up to 20 s and run-up lengths of up to 15.2 m on a 1/30 slope. In terms of the slope in the shoaling and breaker zones, the data correspond to Iribarren numbers in the range of 0.26–5.6. Raw, calibrated and processed data are stored with open access within the OSU Tsunami Wave Basin Experiment Notebook, which provides full access to all the wave maker control signals, data, instrument coordinates, and processing and plotting software. This paper serves as an introduction to the data set, demonstrates data quality and provides an initial analysis of some key parameters that govern the impact of tsunami events, including run-up versus offshore wave conditions and nearshore bore height, the maximum inundation depths at the original shoreline position, and the time to maximum inundation depth and flow reversal. Examples of temporal and convective accelerations and turbulent flow components are also presented to illustrate further details of the kinematics.  相似文献   

2.
This paper presents the results of a parametric study of irregular wave run-up over fringing reefs using the shock-capturing Boussinesq wave model Funwave-TVD to better understand the role of fringing reefs in the mitigation of wave-driven flooding. Laboratory experiments were newly performed with a typical fringing reef profile and typical hydrodynamic conditions to validate the model. Experimental data shows irregular wave run-ups are dominated by the low-frequency motions and confirms the run-up resonant phenomenon over the back-reef slope, which has been revealed in previous numerical studies. It is demonstrated that irregular wave evolution and run-up over fringing reefs are reasonably reproduced by the present model with a proper grid size. However, the infragravity run-up height and highest 2% run-up height over the back-reef slope are under-predicted due to the underestimation of the infragravity wave height over the reef flat. The validated model was then utilized to model irregular wave transformations and run-ups under different conditions. Through a series of numerical experiments, the effects of key hydrodynamic and reef geometry parameters, including the reef flat width, water depth over the reef flat, fore-reef slope angle and back-reef slope angle, on the irregular wave run-up were investigated. Variations of spectral components of irregular wave run-ups were examined to better understand the physical process underlying the effect of each parameter.  相似文献   

3.
During the last decade, several offshore wind-farms were built and offshore wind energy promises to be a suitable alternative to provide green energy. However, there are still some engineering challenges in placing the foundations of offshore wind turbines. For example, wave run-up and wave impacts cause unexpected damage to boat landing facilities and platforms. To assess the forces due to wave run-up, the distribution of run-up around the pile and the maximum run-up height need to be known. This article describes a physical model study of the run-up heights and run-up distribution on two shapes of foundations for offshore wind turbines, including both regular and irregular waves. The influence of wave steepness, wave height and water depth on run-up is investigated. The measured run-up values are compared with applicable theories and previous experimental studies predicting run-up on a circular pile.  相似文献   

4.
The benchmark simulations of wave run-up on a fixed single truncated circular cylinder and four circular cylinders are presented in this paper. Our in-house CFD solver naoe-FOAM-SJTU is adopted which is an unsteady two-phase CFD code based on the open source package OpenFOAM. The Navier-Stokes equations are employed as the governing equations, and the volume of fluid (VOF) method is applied for capturing the free surface. Monochromatic incident waves with the specified wave period and wave height are simulated and wave run-up heights around the cylinder are computed and recorded with numerical virtual wave probes. The relationship between the wave run-up heights and the incident wave parameters are analyzed. The numerical results indicate that the presented naoe-FOAM-SJTU solver can provide accurate predictions for the wave run-up on one fixed cylinder and four cylinders, which has been proved by the comparison of simulated results with experimental data.  相似文献   

5.
This paper presents laboratory and numerical simulations of run-up induced by irregular waves breaking on a gentle-sloping planar beach. The experimental data are well reproduced by a numerical model based on the nonlinear shallow water equations. By extending the incoming wave conditions considered in the laboratory experiments, the model is applied to study the run-up variability under highly energetic incoming conditions. The numerical results support the idea that, for cases characterized by the same incident peak frequency, infragravity run-up increases almost linearly with the offshore significant wave height. Moreover, the most energetic conditions lead to an upper limit of the swash similarity parameter of about 1.8.  相似文献   

6.
《Coastal Engineering》2006,53(8):675-690
It is important to accurately locate the wave breaking region for the calculation of nearshore hydrodynamics. Energy from breaking waves drives hydrodynamic phenomena such as wave set-up, set-down, wave run-up, longshore currents, rip currents, and nearshore circulation. Numerous studies have been undertaken to describe when and where wave breakings occurs. Recent development of computer resources permits the use of phase-resolving numerical models for the study of wave propagation, transformation, and nearshore hydrodynamics. This requires new types of wave breaking criteria for the numerical model. The Relative Trough Froude Number (RTFN) is a new wave breaking criterion. This model is based on the moving hydraulic jump concept, therefore it satisfies properly posed boundary-value conditions. It has been experimentally proved that a critical RTFN at the initiation of wave breaking is consistent with and without the presence of an opposing current, but previous efforts did not investigate the theory for the critical value. This paper provides a theoretical analysis and a numerical analysis to demonstrate why the RTFN theory works as a wave breaking initiation (trigger) index. The theoretical analysis provides a universal constant for the initiation of wave breaking for all water depths assuming the Miche formula properly describes the wave breaking condition. A subroutine for wave breaking in a numerical model, FUNWAVE was modified to include the RTFN trigger. The numerical model was calibrated with data from wave tank experiments, and it was found that the critical condition is very close to the theoretical number, CTFN = 1.45. A second paper (in preparation) provides details of the theory and experiments for a second criterion for termination of wave breaking. The time scale for the establishment of the breaking region i.e., between the initiation position and termination position, depends upon the additional momentum present under turbulent condition within the breaking wave. This subject is not considered herein.  相似文献   

7.
本文采用圆柱体阵列来模拟珊瑚礁面的大糙率,通过波浪水槽实验研究礁面糙率对孤立波传播变形及岸滩爬高的影响.结果表明,粗糙礁面的存在显著削弱了礁坪上孤立波的首峰和礁后岸滩反射造成的次峰,同时降低了波浪在珊瑚礁面的传播速度;垂直于岸线方向沿礁相对波高随着入射波增大而减小,随着礁坪水深的增大而增大,粗糙礁面上波高沿礁的衰减更为...  相似文献   

8.
本文通过波浪水槽试验研究了大糙率礁面影响下波浪沿礁的演化和爬高规律,测试了一系列规则波工况并对比了光滑礁面和粗糙礁面的情况。结果分析表明:二次谐波是礁坪上透射波的重要组成成分,粗糙礁面使主频波和二次谐波减小,对更高阶波的影响不显著;相对礁坪水深是描述礁坪上波浪透射的关键参数,礁面从光滑变为粗糙时海岸附近透射系数显著减小,能量衰减系数平均增大了8%,但礁前反射系数与礁面糙率之间无明显关系;礁后岸滩爬高随着透射波高的增大而增长,最后拟合了本文试验条件下珊瑚礁大糙率礁面预测规则波爬高的关系式。  相似文献   

9.
Liu  Wei-jie  Shao  Ke-qi  Ning  Yue  Zhao  Xi-zeng 《中国海洋工程》2020,34(2):162-171
Wave hydrodynamics over fringing reefs is largely controlled by the reef surface roughness and hydrodynamic forcing. It is believed that climate change will result in a net increase in the water depth over the reef flat, a degrading of the surface roughness of coral reefs and changes in extreme incident wave heights. For an accurate assessment of how climate change affects the safety of reef-fringed coasts, a numerical study of the impact of climate change on irregular wave run-up over reef-fringed coasts was carried out based on a Boussinesq wave model,FUNWAVE-TVD. Validated with experimental data, the present model shows reasonable prediction of irregular wave evolution and run-up height over fringing reefs. Numerical experiments were then implemented based on the anticipated effects of climate change and carried out to investigate the effects of sea level rise, degrading of the reef surface roughness and increase of extreme incident wave height on the irregular wave run-up height over the backreef beach respectively. Variations of run-up components(i.e., spectral characteristics of run-up and mean water level) were examined specifically and discussed to better understand the influencing mechanism of each climate change-related effect on the run-up.  相似文献   

10.
This paper discusses the effect of berm width and elevation of composite slope on irregular wave run-up. Based on the data obtained from model tests, the formula and distribution of irregular wave run-up on composite slope are derived. The changing of wind speed, width and elevation of the berm are considered comprehensively. The wave run-up with various exceedance probability can be es-timated utilizing the distribution curves of irregular wave run-up.  相似文献   

11.
《Coastal Engineering》2006,53(4):349-362
This paper provides information on the experimental set-up, data collection methods and results to date for the project “Large scale modelling of coarse grained beaches”, undertaken at the Large Wave Channel (GWK) of FZK in Hannover by an international group of researchers in Spring 2002. The main objective of the experiments was to provide full scale measurements of cross-shore processes on gravel and mixed beaches for the verification and further development of cross-shore numerical models of gravel and mixed sediment beaches. Identical random and regular wave tests were undertaken for a gravel beach and a mixed sand/gravel beach set up in the flume. Measurements included profile development, water surface elevation along the flume, internal pressures in the swash zone, piezometric head levels within the beach, run-up, flow velocities in the surf-zone and sediment size distributions.The purpose of the paper is to present to the scientific community the experimental procedure, a summary of the data collected, some initial results, as well as a brief outline of the on-going research being carried out with the data by different research groups. The experimental data is available to all the scientific community following submission of a statement of objectives, specification of data requirements and an agreement to abide with the GWK and EU protocols.  相似文献   

12.
The performance of coastal vertical seawalls in extreme weather events is studied numerically, aiming to provide guidance in designing and reassessing coastal structures with vertical wall. The extreme wave run-up and the pressure on the vertical seawall are investigated extensively. A time-domain higher-order boundary element method (HOBEM) is coupled with a mixed Eulerian-Lagrangian technique as a time marching technique. Focused wave groups are generated by a piston wave-maker in the numerical wave tank using a wave focusing technique for accurately reproducing extreme sea states. An acceleration-potential scheme is used to calculate the transient wave loads. Comparisons with experimental data show that the extended numerical model is able to accurately predict extreme wave run-ups and pressures on a vertical seawall. The effects of the wave spectrum bandwidth, the wall position and the wave nonlinearity on the wave run-up and the maximum wave load on the vertical seawall are investigated by doing parametric studies.  相似文献   

13.
This paper presents new laboratory experiments carried out in a supertank (300 m × 5 m × 5.2 m) of breaking solitary waves evolution on a 1:60 plane beach. The measured data are employed to re-examine existing formulae that include breaking criterion, amplitude evolution and run-up height. The properties of shoreline motion, underwater particle velocity and scale effect on run-up height are briefly discussed. Based on our analyses, it is evidently found that there exist five zones during a wave amplitude evolution course on the present mild slope. A simple formula which is capable of predicting maximum run-up height for a breaking solitary wave on a uniform beach with a wide range of beach slope (1:15–1:60) is also proposed. The calculated results from the present model agree favorably with available laboratory data, indicating that our method is compatible with other predictive models.  相似文献   

14.
Underwater landslide can trigger impulsive waves with high amplitude and run-up, which may cause substantial damage. In this work, the experimental investigations are performed to study the impulsive wave characteristics caused by underwater landslides. The effects of landslide geometry and kinematics on wave characteristics are studied by performing 84 laboratory experiments. The influences of thickness, volume and shape of failure mass on the characteristics of initial wave are discussed. The impacts of water body conditions such as the slope of sliding bed and the initial submergence of underwater landslide are also examined. The present experimental data as well as the available data in the literature are used to provide an applied method for prediction of the initial wave amplitude. The present prediction method is properly verified by several experimental, numerical and real case data.  相似文献   

15.
为了研究波浪非线性对爬高的影响,解决防波堤等工程设计的实际问题,通过对数学模型试验、物理模型试验、规范公式得到的防波堤波浪爬高对比分析,分析了非线性主要影响参数厄塞尔数、相对水深和波陡对波浪爬高的影响规律,指出规范公式计算时存在的缺陷,并对其计算公式、适用范围进行修正、拟合,得到了强非线性规则波浪爬高的计算方法,可适用于斜坡堤断面的波浪爬高计算,与物理模型试验和数学模型试验结果对比表明,新的波浪爬高计算公式具有较好的计算精度,研究结果可为防波堤等实际工程设计提供重要参考。  相似文献   

16.
《Coastal Engineering》1999,36(3):219-242
This paper presents numerical simulations and analytical predictions of key aspects of swash oscillations on a steep beach. Simulations of the shoreline displacement based on bore run-up theory are found to give excellent agreement with recent experimental data for regular waves, wave groups and random waves. The theory is used to derive parameters that predict the onset of swash saturation and the spectral characteristics of the saturated shoreline motion. These parameters are again in good agreement with the measured laboratory data and are also consistent with previous experimental data. Simulation of irregular wave run-up using a series of overlapping monochromatic swash events is found to reproduce typical features of swash oscillations and can accurately describe both the low and high frequency spectral characteristics of the swash zone. In particular, the low frequency components of the run-up can be modelled directly using a sequence of incident short wave bores, with no direct long wave input to the numerical simulations. This suggests that wave groupiness must be accounted for when modelling shoreline oscillations.  相似文献   

17.
A novel theoretical approach is applied to predict the propagation and transformation of transient nonlinear waves on a current. The problem was solved by applying an eigenfunction expansion method and the derived semi-analytical solution was employed to study the transformation of wave profile and the evolution of wave spectrum arising from the nonlinear interactions of wave components in a wave train which may lead to the formation of very large waves. The results show that the propagation of wave trains is significantly affected by a current. A relatively small current may substantially affect wave train components and the wave train shape. This is observed for both opposing and following current. The results demonstrate that the application of the nonlinear model has a substantial effect on the shape of a wave spectrum. A train of originally linear and very narrow-banded waves changes its one-peak spectrum to a multi-peak one in a fairly short distance from an initial position. The discrepancies between the wave trains predicted by applying the linear and nonlinear models increase with the increasing wavelength and become significant in shallow water even for waves with low steepness. Laboratory experiments were conducted in a wave flume to verify theoretical results. The free-surface elevations recorded by a system of wave gauges are compared with the results provided by the nonlinear model. Additional verification was achieved by applying a Fourier analysis and comparing wave amplitude spectra obtained from theoretical results with experimental data. A reasonable agreement between theoretical results and experimental data is observed for both amplitudes and phases. The model predicts fairly well multi-peak spectra, including wave spectra with significant nonlinear wave components.  相似文献   

18.
Tsunami run-up height is a significant parameter for dimemsions of coastal structures.In the present study,tsunami run-up heights are estimated by three different Artificial Neural Network (ANN) models,i.e.Feed Forward Back Propagation (FFBP),Radial Basis Functions (RBF) and Generalized Regression Neural Network (GRNN).As the input for the ANN configuration,the wave height (H) values are employed.It is shown that the tsunami run-up height values are closely approximated with all of the applied ANN methods.The ANN estimations are slightly superior to those of the empirical equation.It can he seen that the ANN applications are especially significant in the absence of adequate number of laboratory experiments.The restdts also prove that the available experiment data set can he extended with ANN simulations.This may be helpful to decrease the burden of the experimental studies and to supply results for comparisons.  相似文献   

19.
The boundary integral equation method (BIEM) is developed as a tool for studying two-dimensional, nonlinear water wave problems, including the phenomena of wave generation, propagation and run-up. The wave motions are described by a potential flow theory. Nonlinear free-surface boundary conditions are incorporated in the numerical formulation. Examples are given for either a solitary wave or two successive solitary waves. Special treatment is developed to trace the run-up and run-down along a shoreline. The accuracy of the present scheme is verified by comparing numerical results with experimental data of maximum run-up.  相似文献   

20.
In this paper, first we introduce the wave run-up scale which describes the degree of wave run-up based on observed sea conditions near and on a coastal structure. Then, we introduce a simple method which can be used for daily forecast of wave run-up on a coastal structure. The method derives a multiple linear regression equation between wave run-up scale and offshore wind and wave parameters using long-term photographical observation of wave run-up and offshore wave forecasting model results. The derived regression equation then can be used for forecasting the run-up scale using the offshore wave forecasting model results. To test the implementation of the method, wave run-up scales were observed at four breakwaters in the East Coast of Korea for 9 consecutive months in 2008. The data for the first 6 months were used to derive multiple linear regression equations, which were then validated using the run-up scale data for the remaining 3 months and the corresponding offshore wave forecasting model results. A comparison with an engineering formula for wave run-up is also made. It is found that this method can be used for daily forecast and warning of wave run-up on a coastal structure with reasonable accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号