首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Early Palaeozoic was an important period in the geologic evolution of the South China block (SCB), marking the intracontinental orogen in the Wuyi-Yunkai region. One salient feature of the western SCB is the absence of Early Palaeozoic oceanic subduction-related magmatism. Here, we report the first known occurrence of Late Ordovician andesites from the Shimian area, western SCB. Zircon SHRIMP U–Pb dating reveals that the andesites formed at ca. 451 Ma. They have geochemical features of high-Mg adakitic andesite (HMAA) and are characterized by low K2O (1.09–2.24 wt.%) and Th (2.50–5.65 ppm) and high MgO (4.02–6.91 wt.%) and Mg# (56–71). Furthermore, their zircon grains display positive εHf(t) (+11.4 to +19.6) and low δ18O (4.72–6.20‰) values. The andesites are interpreted to have been derived from partial melting of a peridotitic mantle wedge in an oceanic subduction setting and subsequent fractional crystallization. Integrating previous studies of the Qinling-Dabie orogenic belt with the data presented in this contribution, we suggest that the SCB was probably involved in the Early Palaeozoic Andean-type orogeny along the Gondwanan proto-Tethyan margin.  相似文献   

2.
ABSTRACT

The Mesozoic tectonic transition from the Palaeo-Tethys tectonic regime to the Palaeo-Pacific tectonic regime in the eastern South China Block has long been debated. Geochemical and zircon U–Pb–Hf isotopic studies were conducted on the Dashuang complex in the eastern Zhejiang Province. The Dashuang complex consists mainly of quartz syenite in the northwestern part and quartz monzonite in the southeastern part. New laser ablation inductively coupled plasma mass spectrometry zircon U–Pb data show that the quartz syenite, the quartz monzonite, and its chilled margin (fine-grained granite) crystallized at 235 ± 4 Ma, 232 ± 3 Ma, and 230 ± 1 Ma, respectively. The Dashuang complex intrudes into the Chencai Group gneiss that postdated ~646 Ma and underwent anatexis at 443 ± 14 Ma. The quartz monzonite shows A-type granite affinity, characterized by high K2O + Na2O and Zr + Nb + Ce + Y, high FeOT/(MgO + FeOT) and Ga/Al ratios, an enrichment in light rare earth elements, and depletions in Ba, Sr, and Eu. The quartz monzonite has zircon εHf(t) values of ?14.2 to –11.9 and two-stage model ages of 1788–1922 Ma. Zircon εHf(t) values of the chilled margin (fine-grained granite) and wall rock (gneiss) are scattered (?18.2 to –6.3 and ?19.5 to 10.2). The corresponding two-stage model ages are 1482–2133 Ma and 1184–2471 Ma, respectively. The Dashuang complex was derived mainly from partial melting of Neoproterozoic clastic rocks in the Cathaysia Block. Geochemical data indicate that the quartz monzonite formed in a post-collision extensional environment. These results, considered with previous data, indicate that the transition from the Palaeo-Tethys to the Palaeo-Pacific tectonic regimes of the eastern South China Block occurred during the Late Triassic (225–215 Ma).  相似文献   

3.
《International Geology Review》2012,54(15):1876-1886
ABSTRACT

The Neoproterozoic glaciations represent a milestone in the Earth evolution due to their influence on atmosphere, biosphere and hydrosphere. Evidence for the Sturtian glaciation, the early stage of Cryogenian, has been recorded worldwide, but the precise timing and synchroneity of its counterpart, the Chang’an glaciation, in South China have been controversial. As such, new zircon U–Pb ages from the pre-Sturtian Gongdong Formation and the overlying the Chang’an Formation in southeastern Yangtze Block were reported. The youngest U–Pb zircon age from a tuff sample of the topmost Gongdong Formation was 716.8 ± 6.8 Ma, and that from a sandstone sample of the lower Chang’an Formation was 725.9 ± 4.4 Ma. The zircon weighted mean age of 716.8 ± 6.8 Ma was interpreted as the maximum depositional age of the termination of the Danzhou Group. This age, along with the ages reported from the bottom of the Danzhou Group, constrains deposition of the Danzhou Group to between ca. 820 Ma and ca. 715 Ma. The age of 716.8 ± 6.8 Ma from the top of the Gongdong Formation is consistent with the SIMS U-Pb age of 715.9 ± 2.8 Ma from the Sibao section, as well as ages from the Banxi Group, Liantuo Group, and Kaijianqiao Formation in the Yangtze Block, which further constrain the onset time of the Sturtian glaciation in South China at ca. 715 Ma. It is also, with uncertainties, consistent with ages from pre-Sturtian strata in Laurentia and Oman, which indicates a global synchroneity and extent for the Sturtian glaciation.  相似文献   

4.
《International Geology Review》2012,54(12):1445-1461
We present zircon U–Pb ages, Hf isotopes, and whole-rock geochemistry of the Xiaochuan gneissic granite intrusion, SE China, to constrain its petrogenesis and provide insights into early crustal evolution of the Cathaysia Block. LA-ICP-MS zircon U–Pb dating of a representative sample yields a weighted mean 206Pb/207Pb age of 1839 ±16 Ma, interpreted as the emplacement age of the Xiaochuan granite. Zircons have ?Hf(t) values ranging from –8.1 to 2.7 and T DM2 model ages from 2.23 to 3.03 Ga. The granites are strongly peraluminious (A/CNK = 1.14–1.41), with relatively high FeOt, TiO2, and CaO/Na2O, and low CaO, Al2O3/TiO2, and Rb/Sr values. In addition, they show strongly negative Ba, Sr, Nb, and Ta and positive Th and Pb anomalies in the primitive mantle-normalized spider diagram, similar to other Cathaysia Palaeoproterozoic S-type granites. The geochemical and Hf isotopic signatures suggest that the Xiaochuan gneissic granites were generated by partial melting of Archaean crustal materials in an intraplate extensional setting. Our results, combined with existing geochronological data, further demonstrate that the Wuyishan terrane is underlain by Palaeoproterozoic crystalline basement.  相似文献   

5.
The depositional and metamorphic ages and provenances of the Ailaoshan(ALS) Group in the Ailaoshan-Red River(ALS-RR) shear zone, southwestern South China Block(SCB), were investigated to constrain the tectonic history of the southwestern SCB. In this study, we use petrology, geochemical analysis, zircon cathodoluminescence imaging and UPb geochronology to analyse samples of quartzite, garnet-bearing two-mica schist and metapelite. The age spectra of detrital zircon grains from these metasediments show two dominant age peaks at 550–424 Ma and 876–730 Ma and two subordinate peaks at 970–955 Ma and ~2450 Ma. The youngest peak, corresponding to the early Palaeozoic, accounts for more than 20% of the total dates and constrains the deposition of the ALS Group to the Palaeozoic rather than the Palaeoproterozoic as traditionally thought. Moreover, two peaks of metamorphic ages corresponding to the Permo-Triassic and Cenozoic were also identified, and these ages document the tectonothermal events associated with the Indosinian collision between the Indochina Block and the SCB and the Himalayan collision between the Indian and Asian plates. Geochemical data suggest that the provenances of the ALS Group were dominated by continental arc and recycled metasedimentary rocks. The comparison of probability density distribution plots of the detrital zircon U-Pb age data indicates that the Neoproterozoic detritus in the ALS Group was probably derived from the arc-related Neoproterozoic intrusive bodies in the northwestern and southwestern SCB. Furthermore, the early Palaeozoic detritus might have been sourced from eroded early Palaeozoic strata and magmatic plutons in Cathaysia and volcanic rocks in the western Indochina Block.  相似文献   

6.
The Duguer area represents one of the few occurrences of high-grade metamorphic rocks in the ‘Central Uplift’ zone of the Qiangtang terrane, central Tibet. The metamorphic rocks consist mainly of orthogneiss, paragneiss, and schist. To better understand the formation of these rocks, seven samples of gneiss and schist from the Duguer area were selected for in situ zircon U–Pb analysis and Ar–Ar dating of metamorphic minerals. The results suggest two distinct metamorphic stages, during the Late Triassic (229–227 Ma) and Late Jurassic (150–149 Ma). These stages correspond to the closure of the Palaeo-Tethys Ocean and northward subduction of the Bangong–Nujiang Neo-Tethys oceanic crust, respectively. We suggest that the Late Triassic metamorphic rocks of the Duguer area in the central South Qiangtang subterrane provide evidence of continental collision between the North and South Qiangtang subterranes, following the subduction of oceanic crust. It is likely that deep subduction of oceanic crust occurred along the Longmu Co–Shuanghu–Lancangjiang suture zone (LSLSZ), which would have hindered exhumation owing to the high density of oceanic crust. Subsequent break-off and delamination of the subducted oceanic slab at ~220 Ma may have resulted in exhumation of high-pressure and high-grade metamorphic rocks in the South Qiangtang subterrane. The Late Jurassic ages of metamorphism and deformation obtained in this study indicate the occurrence of an Andean-type orogenic event within the South Qiangtang subterrane. This hypothesis is further supported by an apparent age gap in magmatic activity (150–130 Ma) along the magmatic arc, and the absence of Late Jurassic sediments.  相似文献   

7.
南秦岭城口火山岩锆石LA-ICP-MS U-Pb定年和地球化学研究   总被引:3,自引:0,他引:3  
南秦岭大巴山城口断裂带出露一套玄武安山岩、安山岩组合,火山岩锆石LA-ICP-MS U-Pb定年测试结果为716±4Ma,表明其为新元古代岩浆产物;岩石地球化学研究表明火山岩富集轻稀土元素,原始地幔标准化微量元素蛛网图显示以富集大离子亲石元素Cs、Ba、Th、U及高场强元素分异为特征,Nb、Ta强烈亏损以及低的Ti(Ti O_20.85%)含量,与典型的岛弧火山岩相似;微量元素La/Nb、Th/Yb及Hf/Ta比值特征也显示岛弧岩浆属性,相对高的Zr/Y、Ta/Yb和低的Zr/Nb比值区别于大洋岛弧火山岩,具有明显的大陆亲缘性,表明城口火山岩形成于陆缘岛弧环境。综合已有的地质、地球化学及同位素年代学研究表明新元古代晚期扬子板块北缘及南秦岭地区为一活动陆缘岩浆杂岩弧,暗示中国华南板块很可能位于Rodinia超大陆的边缘部位。  相似文献   

8.
The amalgamation of South (SCB) and North China Blocks (NCB) along the Qinling‐Dabie orogenic belt involved several stages of high pressure (HP)‐ultra high pressure (UHP) metamorphism. The new discovery of UHP metamorphic rocks in the North Qinling (NQ) terrane can provide valuable information on this process. However, no precise age for the UHP metamorphism in the NQ terrane has been documented yet, and thus hinders deciphering of the evolution of the whole Qinling‐Dabie‐Sulu orogenic belt. This article reports an integrated study of U–Pb age, trace element, mineral inclusion and Hf isotope composition of zircon from an eclogite, a quartz vein and a schist in the NQ terrane. The zircon cores in the eclogite are characterized by oscillatory zoning or weak zoning, high Th/U and 176Lu/177Hf ratios, pronounced Eu anomalies and steep heavy rare earth element (HREE) patterns. The zircon cores yield an age of 796 ± 13 Ma, which is taken as the protolith formation age of the eclogite, and implies that the NQ terrane may belong to the SCB before it collided with the NCB. The ?Hf(t) values vary from ?11.3 to 3.2 and corresponding two‐stage Hf model ages are 2402 to 1495 Ma, suggesting the protolith was derived from an enriched mantle. In contrast, the metamorphic zircon rims show no zoning or weak zoning, very low Th/U and 176Lu/177Hf ratios, insignificant Eu anomalies and flat HREE patterns. They contain inclusions of garnet, omphacite and phengite, suggesting that the metamorphic zircon formed under eclogite facies metamorphic conditions, and their weighted mean 206Pb/238U age of 485.9 ± 3.8 Ma was interpreted to date the timing of the eclogite facies metamorphism. Zircon in the quartz vein is characterized by perfect euhedral habit, some oscillatory zoning, low Th/U ratios and variable HREE contents. It yields a weighted mean U–Pb age of 480.5 ± 2.5 Ma, which registers the age of fluid activity during exhumation. Zircon in the schist is mostly detrital and U–Pb age peaks at c. 1950 to 1850, 1800 to 1600, 1560 to 1460 and 1400 to 1260 Ma with an oldest grain of 2517 Ma, also suggesting that the NQ terrane may have an affinity to the SCB. Accordingly, the amalgamation between the SCB and the NCB is a multistage process that spans c. 300 Myr, which includes: the formation of the Erlangping intra‐oceanic arc zone onto the NCB before c. 490 Ma, the c. 485 Ma crustal subduction and UHP metamorphism of the NQ terrane, the c. 430 Ma arc‐continent collision and granulite facies metamorphism, the 420 to 400 Ma extension and rifting in relation to the opening of the Palaeo‐Tethyan ocean, the c. 310 Ma HP eclogite facies metamorphism of oceanic crust and associated continental basement, and the final 250 to 220 Ma continental subduction and HP–UHP metamorphism.  相似文献   

9.
ABSTRACT

The Tiantang Cu–Pb–Zn polymetallic deposit in western Guangdong, South China, is hosted in the contact zone between the monzogranite porphyry and limestone of the Devonian Tianziling Formation. Orebodies occur in the skarn and skarnized marble as bedded, lenses, and irregular shapes. In this study, we performed LA-ICP-MS zircon U–Pb dating, zircon trace elements, and Hf isotopic analyses on the Tiantang monzogranite porphyry closely related to Cu–Pb–Zn mineralization. Twenty-two zircons from the sample yield excellent concordia results with a weighted mean 206Pb/238U age of 104.5 ± 0.7 Ma, which shows that the emplacement of the monzogranite porphyry in the Tiantang deposit occurred in the Early Cretaceous. The zircon U–Pb age is largely consistent with the sulphide Rb–Sr isochron ages, indicating that both the intrusion and Cu–Pb–Zn mineralization were formed during the Early Cretaceous in South China. The εHf(t) values of three inherited zircons from the monzogranite porphyry are 13.1, 11.9, and 12.9, respectively, and the two-stage Hf model ages are 1096 Ma, 1087 Ma, and 1055 Ma, respectively. Except for the three inherited zircons, all εHf(t) values of zircons are negative and have a range of ?7.6 to ?3.4, with the two-stage model ages (TDM2) of 1380–1643 Ma, which indicates the rock-forming materials were mainly derived from the partial melting of Mesoproterozoic to Neoproterozoic crust rocks, and probably included some Neoproterozoic arc-related volcanic-sedimentary materials. In this study, the monzogranite porphyry from the Tiantang deposit has calculated Ce4+/Ce3+ ratios of zircon ranging from 91 to 359, indicative of a more oxidized signature and significant prospecting potential for ore-related magmatism. Based on ore deposit geology, isotope geochemistry, and geochronology of the Tiantang Cu–Pb–Zn deposit and regional geodynamic evolution, the formation of Early Cretaceous magmatism and associated polymetallic mineralization in South China is believed to be related to large-scale continental extension and subsequent upwelling of the asthenosphere.  相似文献   

10.
《International Geology Review》2012,54(14):1769-1782
The early Palaeozoic tectonic evolution of South Mongolia is not well constrained due to the limited exposure of early Palaeozoic rocks in the area and the scarcity of both geochemical and geochronological data. In order to help rectify this situation, we have conducted detailed studies on the Biluutiin ovoo ophiolite in South Mongolia to provide constraints on the tectonic evolution of the region during this period. The Biluutiin ovoo ophiolite consists of ultramafic rocks, mylonitic gabbro, basalt, tuff sandstone, plagiogranite, calcite, and chert. Gabbro and plagiogranite samples from the ophiolitic complex yielded SHRIMP zircon ages of 525 ± 5 Ma and 503 ± 6 Ma, respectively. Biluutiin ovoo ophiolitic basalts display LREE and LILE enrichment and strong HFSE depletion, indicating that the ophiolite is supra-subduction zone (SSZ) type. Plagiogranite with adakite-like geochemical compositions suggests that palaeo-ocean subduction occurred in South Mongolia during Cambrian time. Intruding granite yielded a SHRIMP zircon age of 353 ± 2 Ma, indicating that the ophiolite was emplaced before early Carboniferous time. Identification of the Cambrian ophiolitic complex and the occurrence of Cambrian adakites indicate that southern Mongolia underwent a period of active volcanism during the Cambrian. The Cambrian formations are likely correlated to the early Palaeozoic subduction-accretion belt of Western Mongolia.  相似文献   

11.
ABSTRACT

The Xilamulun Mo belt of Northeastern China, located in the southeastern segment of the Central Asia Orogenic Belt (CAOB), is composed of large deposits of porphyry Mo and quartz-vein-type Mo, which are related to Mesozoic granitoids. Previous studies led to the conclusion that all granitoids in the region formed during the Cretaceous and Triassic, but our new laser ablation inductively coupled plasma mass spectrometry U–Pb zircon dating of magmatic zircons from five samples of four mineralized plutons (Nailingou, Longtoushan, and Hashitu granites and Erbadi and Hashitu granite porphyries) reveals that these range in age from 143.8 ± 1.2 to 149.5 ± 1.0 Ma. These granites show post-collisional (A-type) geochemical characteristics (e.g. enrichment in total alkali, LILE, and LREE and depletion in Eu, Ba, P, and Nb). The Erbadi, Longtoushan, Hashitu, and Longtoushan granitoids exhibit moderately positive Hf isotopic compositions (εHf(t) = ?0.3 to 10.2), indicating that granitic magmas may reflect mixtures of mantle melts and continental crust. These mineralized granites were all emplaced along a major fault over a time span of ~6 million years during the Late Jurassic. We conclude that igneous activity and mineralization resulted from the rollback of the subducted Palaeo-Pacific plate beneath Eurasia. Confirming that the Late Jurassic granitic intrusives are related to the Mo mineralization is useful for understanding the Mesozoic tectonic evolution of the Xilamulun Mo belt and also has significant implications for the regional exploration of ores.  相似文献   

12.
《International Geology Review》2012,54(10):1180-1193
The basement of the Maya block of eastern Mexico is generally covered by Mesozoic and Cenozoic platformal carbonate rocks. However, the 65.5 Ma Chicxulub meteorite impact in the northern Yucatan Peninsula excavated deep into the crust and brought crystalline basement fragments into the impact breccias. Common Pb isotopic data from impact melt and a granitic clast from drill core (Y6) are highly radiogenic, consistent with the Archaean derivation. A granodiorite clast in this breccia from drill core (Yaxcopoil-1) yielded a continuous range of concordant 206Pb/238U laser ablation inductively coupled plasma mass spectrometry zircon ages between 546 ± 5 Ma and 465 Ma, with three discordant zircons having 206Pb/238U ages between 130 Ma and 345 Ma. The ca. 546 Ma age is interpreted as the age of granodiorite intrusion, with younger ages representing variable Pb loss during melting associated with the meteorite impact. This is consistent with previous U–Pb zircon data that gave an upper intercept age of 550 ± 15 Ma at Chicxulub, which becomes 545 ± 5 Ma when combined with the zircon data from distal ejecta. Such arc rocks are absent in the southern Maya block, and in the neighbouring Oaxaquia terrane (s.s.) they are replaced by a 546 ± 5 Ma plume-related dike swarm. On the other hand, Ediacaran arc rocks continue through the peri-Gondwanan terranes of the Appalachians and Europe (Florida, Carolinia, Avalonia, Iberia, Armorica, Massif Central, Bohemia, and NW Africa). Arc magmatism in these areas ended between 570 Ma (Newfoundland) and 540 Ma (Carolinia/UK) as the subduction zone was replaced by a transform fault along the northern Gondwanan margin. This age range is synchronous with the two-stage birth of Iapetus, suggesting that both are related to major plate reorganization. The source of plume-related dikes may have been located at the rift–rift–transform triple junction between Laurentia, Baltica, and Gondwana.  相似文献   

13.
Detrital zircon U–Pb LAM-ICPMS age patterns for sandstones from the mid-Permian –Triassic part (Rakaia Terrane) of the accretionary wedge forming the Torlesse Composite Terrane in Otago, New Zealand, and from the early Permian Nambucca Block of the New England Orogen, eastern Australia, constrain the development of the early Gondwana margin. In Otago, the Triassic Torlesse samples have a major (64%), younger group of Permian–Early Triassic age components at ca 280, 255 and 240 Ma, and a minor (30%) older age group with a Precambrian–early Paleozoic range (ca 1000, 600 and 500 Ma). In Permian sandstones nearby, the younger, Late Permian age components are diminished (30%) with respect to the older Precambrian–early Paleozoic age group, which now also contains major (50%) and unusual Carboniferous age components at ca 350–330 Ma. Sandstones from the Nambucca Block, an early Permian extensional basin in the southern New England Orogen, follow the Torlesse pattern: the youngest. Early Permian age components are minor (<20%) and the overall age patterns are dominated (40%) by Carboniferous age components (ca 350–320 Ma). These latter zircons are inherited from either the adjacent Devonian–Carboniferous accretionary wedge (e.g. Texas-Woolomin and Coffs Harbour Blocks) or the forearc basin (Tamworth Belt) farther to the west, in which volcaniclastic-dominated sandstone units have very similar pre-Permian (principally Carboniferous) age components. This gradual variation in age patterns from Devonian–late Carboniferous time in Australia to Late Permian–mid-Cretaceous time in New Zealand suggests an evolutionary model for the Eastern Gondwanaland plate margin and the repositioning of its subduction zone. (1) A Devonian to Carboniferous accretionary wedge in the New England Orogen developing at a (present-day) Queensland position until late in the Carboniferous. (2) Early Permian outboard repositioning of the primary, magmatic arc allowing formation of extensional basins throughout the New England Orogen. (3) Early to mid-Permian translocation of the accretionary wedge and more inboard active-margin elements, southwards to their present position. This was accompanied by oroclinal bending which allowed the initiation of a new, late Permian to Early Triassic accretionary wedge (eventually the Torlesse Composite Terrane of New Zealand) in an offshore Queensland position. (4) Jurassic–Cretaceous development of this accretionary wedge offshore, in northern Zealandia, with southwards translation of the various constituent terranes of the Torlesse Composite Terrane to their present New Zealand position.  相似文献   

14.
The low-grade Nahuel Niyeu Formation in the Aguada Cecilio area (40°50′S–65°53′W) shows ultramafic to felsic metaigneous rocks forming a sill swarm intercalated in the metasedimentary sequence and a polyphase deformation which permit an integrated study of the magmatic and tectonometamorphic evolution of this geological unit.In this paper we present a geological characterization of the Nahuel Niyeu Formation in the Aguada Cecilio area combining mapping, structural and metamorphic analysis with a SHRIMP U–Pb age and geochemical data from the metaigneous rocks.The metasedimentary sequence consists of alternating metagreywackes and phyllites, and minor metasandstones and granule metaconglomerates. The sills are pre-kinematic intrusions and yielded one SHRIMP U–Pb, zircon crystallization age of 513.6 ± 3.3 Ma. Their injection occurred after consolidation of the sedimentary sequence. A syn-sedimentary volcanic activity is interpreted by a metaandesite lava flow interlayered in the metasedimentary sequence. Sedimentary and igneous protoliths of the Nahuel Niyeu Formation would have been formed in a continental margin basin associated with active magmatic arc during the Cambrian Epoch 2. Two main low-grade tectonometamorphic events affected the Nahuel Niyeu Formation, one during the Cambrian Epoch 2–Early Ordovician and the other probably in the late Permian at ∼260 Ma. Local late folds could belong to the final stages of the late Permian deformation or be even younger.In a regional context, the Nahuel Niyeu and El Jagüelito formations and Mina Gonzalito Complex show a comparable Cambrian–Ordovician evolution related to the Terra Australis Orogen in the south Gondwana margin. This evolution is also coeval with the late and early stages of the Pampean and Famatinian orogenies of Central Argentina, respectively. The late Permian event recorded in the Nahuel Niyeu Formation in Aguada Cecilio area is identified by comparable structures affecting the Mina Gonzalito Complex and El Jagüelito Formation and resetting ages from granitoids. This event represents the Gondwanide Orogeny within the same Terra Australis Orogen.  相似文献   

15.
To constrain the provenance of the Ordos Basin and the evolution history of the Qinling Orogen Belt from the Triassic to the Jurassic, 10 samples from the Dongsheng area and 28 samples from the Yan’an area were analyzed for U–Pb ages and Lu–Hf and Sm–Nd isotopic compositions. The results indicate that Middle Jurassic sediments in the Dongsheng area were derived from the Khondalite Belt, Langshan Mountain and the Yinshan Terrane. Mesozoic sediments in the Yan’an area consist of two parts. One part is derived from the North China Craton (NCC), which has U–Pb age groups of ∼1.8 Ga and ∼2.5 Ga, and Hf model ages of ∼2.8 Ga. The other part is derived from the Qilian–Qinling Orogenic Belt, which has U–Pb age groups of 600–1500 Ma and 100–500 Ma, and Nd and Hf isotopic model ages of less than 2.2 Ga. Combining the U–Pb ages with the Hf and Nd isotopic model ages, Mesozoic detrital zircons with U–Pb age groups of ∼1.8 Ga and ∼2.5 Ga in the Yan’an area are found to also be derived from the Khondalite Belt, Langshan Mountain and the Yinshan Terrane, not from the Trans-China Orogen Belt. From the late–Late Triassic sediments of the Yan’an area, the low average values of the Hf (2.03 Ga) and Nd (2.03 Ga) model ages and the characteristic age population of 600–1500 Ma reveal that the main collision or continental subduction between the NCC and the South China Craton (SCC) occurred in the late–Late Triassic. After the main collision or continental subduction, the proportion of sediments from the Qinling–Qilian Orogenic Belt began to decrease (recorded in the early Jurassic samples), which may be in response to the gradual slowing of the uplift speed of the Qinling Orogenic Belt. In the early-middle Jurassic, the sediments have a main U–Pb age population of 100–500 Ma, low detrital zircon Hf model ages (average value is 1.17 Ga) and low whole rock Nd model ages (average value is 1.13 Ga), which suggests that the Qilian–Qinling Orogenic Belt may have a fast uplift history in the early-middle Jurassic.  相似文献   

16.
This paper reports LA–ICP–MS U–Pb dates and in situ Hf isotope analyses of detrital zircons from the Mesozoic basins in western Shandong, China, with the aim to constrain the depositional ages and provenances of the Mesozoic strata as well as the Mesozoic tectonic evolution of the eastern North China Block (NCB). The Mesozoic strata in western Shandong, from bottom to top, include the Fenghuangshan, Fangzi, Santai and Wennan formations. Most of the analyzed zircon grains exhibit oscillatory growth zoning and have relatively high Th/U ratios (generally 0.2–3.4), suggesting a magmatic origin. Zircons from the Fenghuangshan Formation in the Zhoucun Basin yield six main age populations (2489, 1854, 331, 305, 282, and 247 Ma). Zircons from the Fangzi Formation in the Zhoucun and Mengyin basins yield eight main age populations (2494, 1844, 927, 465, 323, 273, 223, and 159 Ma) and ten main age populations (2498, 1847, 932, 808, 540, 431, 315, 282, 227, and 175 Ma), respectively, whereas zircons from the Santai Formation in the Zhoucun and Mengyin basins yield nine main age populations (2519, 1845, 433, 325, 271, 237, 192, 161, and 146 Ma) and six main age populations (2464, 1845, 853, 277, 191, and 150 Ma), respectively. Five main age populations (2558, 1330, 609, 181, and 136 Ma) are detected for zircons from the Wennan Formation in the Pingyi Basin. Based on the youngest age, together with the contact relationships among formations, we propose that the Fenghuangshan Formation formed in the Early–Middle Triassic, the Fangzi Formation in the Middle–Late Jurassic, the Santai Formation after the Late Jurassic, and the Wennan Formation after the Early Cretaceous. These results, together with previously published data, indicate that: (1) the sediments of the Fenghuangshan Formation were sourced from the Precambrian basement and from late Paleozoic to early Mesozoic igneous rocks in the northern part of the NCB; (2) the sediments of the Fangzi and Santai formations were sourced from the Precambrian basement, late Paleozoic to early Mesozoic igneous rocks in the northern part of the NCB, and the Sulu terrane, as well as from Middle–Late Jurassic igneous rocks in the southeastern part of the NCB; and (3) the Wennan Formation was sourced from the Tongshi intrusive complex, the Sulu terrane, and minor Precambrian basement and Early Cretaceous igneous rocks. The evolution of detrital provenance indicates that in the Early–Middle Triassic, the northern part of the NCB was higher than its interior; during the Late Triassic to Early Jurassic, the eastern NCB was uplifted, resulting in a period of non-deposition; and an important transition from a compressional to an extensional tectonic regime occurred during the Middle–Late Jurassic. The presence of Neoproterozoic and Triassic detrital zircons in the Fangzi Formation sourced from the Sulu terrane suggests that large-scale sinistral strike-slip movement along the Tan-Lu Fault Zone did not occur after the Middle Jurassic (ca. 175 Ma).  相似文献   

17.
The SE margin of the Yangtze Block, South China is composed of the Mesoproterozoic Lengjiaxi Group and the Neoproterozoic Banxi Group, with Sinian- and post-Sinian-cover. A geochemical study was undertaken on the Mesoproterozoic–Neoproterozoic clastic sediments in order to delineate the characteristics of the sediment source and to constrain the tectonic development and crustal evolution of South China.Our results show that the Mesoproterozoic clastic sediments have a dominant component derived from a metavolcanic-plutonic terrane, with a large of mafic component. There is a minor contribution of mafic rocks and older upper crustal rocks to the provenance. Strong chemical weathering in the source area occurred before transport and deposition. The provenance for the Neoproterozoic clastic sediments was most likely old upper continental crust composed of tonalite–granodiorite-dominated, tonalite–granodiorite–granite source rocks, which had undergone strong weathering and/or recycling. A minor component of older K-rich granitic plutonic rocks and younger volcanogenic bimodal rocks is also indicated.Based on the regional geology, the geochemical data and the inferred provenance, the Mesoproterozoic Group is interpreted as a successive sedimentary sequence, deposited in an extensional/rifting back-arc basin, adjacent to a >1.80 Ga continental margin arc-terrane. The progressive extension/rifting of the back-arc basin was followed by increasing subsidence and regional uplift during continental marginal arc-continent (the Cathaysian Block) collision at 1.0 Ga caused the deposition of the Neoproterozoic Group into back-arc to retro-arc foreland basin. Therefore, the depositional setting of the Proterozoic clastic sediments and associated volcanic rocks within the back-arc basin reflected basin development from an active continental margin (back-arc basin), with extension or rifting of the back-arc basin, to a passive continental margin.  相似文献   

18.
19.
The southern part of the New England Orogen exhibits a series of remarkable orogenic bends (oroclines), which include the prominent Z-shaped Texas and Coffs Harbour oroclines. The oroclines are defined by the curvature of Devonian–Carboniferous forearc basin and accretionary complex rock units. However, for much of the interpreted length of the Texas Orocline, the forearc basin is mostly concealed by younger strata, and crops out only in the Emu Creek Block in the eastern limb of the orocline. The geology of the Emu Creek Block has hitherto been relatively poorly constrained and is addressed here by presenting new data, including a revised geological map, stratigraphic sections and new detrital zircon U–Pb ages. Rocks of the Emu Creek Block include shallow-marine and deltaic sedimentary successions, corresponding to the Emu Creek and Paddys Flat formations, respectively. New detrital zircon U–Pb data indicate that these formations were deposited during the late Carboniferous and that strata were derived from a magmatic source of Devonian to Carboniferous age. The sedimentary provenance and detrital zircon age distribution suggest that the sequence was deposited in a forearc basin setting. We propose that the Emu Creek and Paddys Flat formations are arc-distal, along-strike correlatives of the northern Tamworth Belt, which is part of the forearc basin in the western limb of the Texas Orocline. These results confirm the suggestion that Devonian–Carboniferous forearc basin rocks surround the Texas Orocline and have been subjected to oroclinal bending.  相似文献   

20.
《地学前缘(英文版)》2020,11(5):1593-1608
The Gejiu-Bozushan-Laojunshan W-Sn polymetallic metallogenic belt(GBLB) in southeast Yunnan Province is an important part of the southwestern Yangtze Block in South China.Tin polymetallic mineralization in this belt includes the Niusipo,Malage,Songshujiao,Laochang and Kafang ore fields in the Gejiu area which are spatially and temporally associated with the Kafang-Laochang and Songshujiao granite plutons.These granites are characterized by variable A/CNK values(mostly 1.1,except for two samples with 1.09),high contents of SiO_2(74.38-76.84 wt.%) and Al_2 O_3(12.46-14.05 wt.%) and variable CaO/Na_2 O ratios(0.2-0.65) as well as high zircon δ~(18)O values(7.74‰-9.86‰),indicative of S-type affinities.These rocks are depleted in Rb,Th,U,Ti,LREE[(La/Yb)N=1.4-20.51],Ba,Nb,Sr,and Ti and display strong negative Eu and Ba anomalies.The rocks possess high Rb/Sr and Rb/Ba ratios,relatively low initial ~(87)Sr/~(86)Sr ratios(0.6917-0.7101),and less radiogenic εNd(t)values(-8.0 to-9.1).The zircon grains from these rocks show negative ε_(Hf)(t) values in the range of-3.7 to-9.9 with mean T_(DM2)(Nd) and T_(DM2)(Hf) values of 1.57 Ga and 1.55 Ga.They show initial ~(207)Pb/~(204)Pb ranging from15.69 to 15.71 and ~(206)Pb/~(204)Pb from 18.36 to 18.70.Monazite from Songshujiao granites exhibits higher U and lower Th/U ratios,lower δ~(18)O values and higher ε_(Hf)(t) values than those of the zircon grains in the KafangLaochang granites.The geochemical and isotopic features indicate that the Laochang-Kafang granites originated by partial melting of Mesoproterozoic crustal components including biotite-rich metapelite and metagraywacke,whereas the Songshujiao granites were derived from Mesoproterozoic muscovite-rich metapelite crustal source.Most zircon grains from the Songshujiao,Laochang and Kafang granites have high-U concentrations and their SIMS U-Pb ages show age scatter from 81.6 Ma to 88.6 Ma,80.7 Ma to 86.1 Ma and 82.3 Ma to 87.0 Ma,suggesting formation earlier than the monazite and cassiterite.Monazite SIMS U-Pb ages and Th-Pb ages of three same granite samples are consistent and show yielded 206 Pb/~(238)U ages of 83.7 ± 0.6 Ma,83.7±0.6 Ma,and 83.4±0.6 Ma,and ~(208)Pb/~(232)Th ages of 83.2 ± 0.5 Ma,83.8 ± 0.4 Ma,and 83.5±0.9 Ma,which are within the range of the SIMS zircon U-Pb ages from these rocks.The data constrain the crystallization of the granites at ca.83 Ma.In situ U-Pb dating of two cassiterite samples from the cassiterite-sulfide ore in the Songshujiao ore field and Kafang ore field,and two from the cassiterite-oxide+cassiterite bearing dolomite in the Laochang ore field yielded weighted mean 206 Pb/~(238)U ages of 83.5±0.4 Ma(MSWD=0.6),83.5 ± 0.4 Ma(MSWD=0.5),83.6 ±0.4 Ma(MSWD=0.6) and 83.2 ±0.7 Ma(MSWD=0.6),respectively.Combined with geological characteristics,the new geochronological data indicate that the formation of the granites and Sn polymetallic deposits are coeval.We correlate the magmatic and metallogenic event with lithospheric thinning and asthenosphere upwelling in continental extension setting in relation to the eastward subduction of the Neo-Tethys beneath the Sanjiang tectonic domain during Late Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号