首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the Caozhuang complex in eastern Hebei, North China Craton, the Paleo- to Eoarchean crustal evolution was earlier revealed by the preservation of detrital zircon grains older than (or as old as) 3.8 Ga in fuchsite-quartzite. In order to test if the Eoarchean antiquity is also preserved in rocks other than the fuchsite quartzite, we collected two paragneisses, a hornblende gneiss and a garnet–biotite gneiss, from Huangbaiyu village and dated their detrital zircon grains. The zircon dating of the hornblende gneiss yielded concordant 207Pb/206Pb ages ranging from 3684 to 3354 Ma. However, an older date of 3782 Ma with 18% discordancy was also obtained. Detrital zircon grains from the garnet–biotite gneiss gave a similar 207Pb/206Pb age range, from 3838 to 3342 Ma. The metamorphic domains of the zircon grains from both samples, including the strongly recrystallized cores and rims, recorded an overprinting metamorphism at ca. 2.5 Ga, which correlates with the most widespread tectono-thermal event in the North China Craton. In situ zircon Hf-isotope analyses on the dated zircon grains yielded a wide range of model ages (TDM1) from 4.0 to 3.3 Ga with corresponding εHf(T) from −36.0 to +4.8. This suggests that the evolution of the crustal segment in this area has involved multiple phases of juvenile crustal addition as well as recycling of older crustal rocks. The new geochronological results imply the presence of a significant amount of Eoarchean crustal fragments in the eastern Hebei area. The sedimentary protoliths of the paragneisses and other high-grade metamorphic rocks in the Caozhuang complex were probably deposited between 3.4 and 2.5 Ga.  相似文献   

2.
Santunying is an important area for revealing nature of the late Neoarchean tectono-magmato-thermal events in the eastern Hebei part of the North China Craton. It is mainly composed of meta-intrusive rocks. Supracrustal rocks sporadically occur in the meta-intrusive rocks. The meta-intrusive rocks are subdivided into the Santunying tonalitic gneiss, Qiuhuayu tonalitic-trondhjemitic gneiss, Xiaoguanzhuang dioritic gneiss and Qingyangshu meta-gabbro. Respectively, SHRIMP U–Pb zircon dating on fourteen samples yielded weighted mean 207Pb/206Pb ages of 2525–2537, 2532–2546, 2530–2544 and ∼2531 Ma for magmatic zircons from them. Dioritic gneiss of the Xiaoguanzhuang gneiss contain abundant 2544–3487 Ma xenocrystic zircons. SHRIMP U–Pb dating on a garnet-biotite gneiss sample yielded a weighted mean 207Pb/206Pb age of 2537 Ma for detrital zircons. All rocks underwent strong metamorphism, deformation and anatexis, resulting in formation of leucosomes and residues, with some leucosomes concentrating to form large veins. They record a strong late Neoarchean event by metamorphic zircon ages of 2489–2519 Ma. Some rocks also record metamorphic zircon ages of 1772–1843 Ma. Magmatic zircons from the magmatic rocks show large variations in εHf(t) values ranging from −1.7 to +8.7. Combined with early studies, conclusions are: 1) Intrusive rocks with the involvement of mantle-derived materials have a narrow range of magmatic zircon ages from 2525 to 2546 Ma, and supracrustal rocks were formed during the same period. 2) Ancient crustal remnants (>2600 Ma) are present, consistent with the late Neoarchean arc magmatism involving older continental crust, similar to Phanerozoic Andean margins. 3) The Archean basement underwent a strong tectonothermal event at the end of the Neoarchean, with the metamorphic zircon ages being 10–30 million years younger than the timing of magmatism, a common feature of the North China Craton. 4) A late Paleoproterozoic tectonothermal event widely occurred in the western part of eastern Hebei, which is linked with regional ductile deformation.  相似文献   

3.
This study documents the metamorphic evolution of mafic granulites from the Eastern Hebei Complex in the Eastern Block of the North China Craton. Mafic granulites from Eastern Hebei occur as boudins or enclaves within Neoarchean high-grade TTG gneisses. Petrographic observations reveal three characteristic metamorphic mineral assemblages in the mafic granulites: the pre-peak hornblende + plagioclase + ilmenite + quartz + sphene assemblage (M1) existing as mineral inclusions within coarse-grained peak assemblage (M2) represented by garnet + clinopyroxene + orthopyroxene + plagioclase + hornblende + ilmenite + quartz, and post-peak assemblage (M3) marked by garnet + quartz ± ilmenite symplectites surrounding the peak pyroxene and plagioclase. Based on pseudosection modeling calculated in the NCFMASHTO model system using the program THERMOCALC, P–T conditions of the pre-peak (M1), peak (M2) and post-peak (M3) assemblages are constrained at 600–715 °C/6.0 kbar or below, 860–900 °C/9.6–10.3 kbar, and 790–810 °C/9.6–10.4 kbar, respectively. These P–T estimates, combined with their mineral compositions and reaction relations, define an anticlockwise P–T path incorporating isobaric cooling subsequent to the peak medium-pressure granulite-facies metamorphism for the mafic granulites from Eastern Hebei. Such an anticlockwise P–T path suggests that the end-Neoarchean metamorphism of the Eastern Hebei Complex correlated closely with underplating and intrusion of voluminous mantle-derived magmas. In conjunction with other geological considerations, a mantle-plume model is favored to interpret the Neoarchean tectonothermal evolution of the Eastern Hebei Complex and other metamorphic complexes in the Eastern Block. The prograde amphibolite-facies metamorphism (M1) was initiated due to the upwelling of the relatively cooler mantle plume head, followed by the peak medium-pressure granulite-facies metamorphism (M2) as triggered by the uprising hotter plume “tail”, and finally when plume activity ceased, the heated metamorphic crust experienced nearly isobaric cooling (M3).  相似文献   

4.
5.
The abundances and isotopic compositions of Helium and Argon have been analyzed in a suite of fresh spinel peridotite xenoliths in Cenozoic basalts from the eastern North China Craton (NCC) by step-wise heating experiments, to investigate the nature of noble gas reservoirs in the subcontinental lithospheric mantle beneath this region. The xenoliths include one harzburgite collected from Hebi in the interior of the NCC, two lherzolites from Hannuoba at the northern margin of the craton, and three lherzolites from Shanwang and Nushan on the eastern margin. 3He/4He ratios in most of the xenoliths are similar to those of mid-ocean ridge basalts (MORB) or slightly lower (2–10.5 Ra, where Ra is the 3He/4He ratio of the atmosphere), suggesting mixing of MORB-like and radiogenic components. One olivine separate from Nushan has a helium value of 25.3 Ra, probably suggesting cosmogenic 3He addition. The 40Ar/36Ar ratios vary from atmospheric value (296) to 1625, significantly lower than the MORB value. Available data of the peridotite xenoliths indicate the He and Ar isotopic systematics of the mantle reservoirs beneath the NCC can be interpreted as mixtures of at least three end-members including MORB-like, radiogenic and atmospheric components. We suggest that the MORB-like noble gases were derived from the underlying asthenosphere during mantle upwelling, whereas the radiogenic and recycled components probably were incorporated into the lithospheric mantle during circum-craton subduction of oceanic crust. Available data suggest that the MORB-like fluids are better preserved in the interior of the NCC, whereas the radiogenic ones are more prevalent at the margins. The Paleo-Asian ocean subduction system probably was responsible for the enriched and recycled noble gas signatures on the northern margin of the craton, while the Pacific subduction system could account for the observed He–Ar isotopic signatures beneath the eastern part. Therefore, integration of helium and argon isotopes reflects heterogeneous metasomatism in the lithospheric mantle and demonstrates the critical importance of lithospheric mantle modification related to both circum-craton subduction of oceanic crust and asthenospheric upwelling beneath the eastern NCC.  相似文献   

6.
This article discusses the Meso–Cenozoic thermal history, thermal lithospheric thinning, and thermal structure of the lithosphere of the Bohai Bay Basin, North China. The present-day thermal regime of the basin features an average heat flow of 64.5 ± 8.1 mW m–2, a lithospheric thickness of 76–102 km, and a ‘hot mantle but cold crust’-type lithospheric thermal structure. The Meso–Cenozoic thermal history experienced two heat flow peaks in the late Early Cretaceous and in the middle to late Palaeogene, with heat flow values of 82–86 mW m?2 and 81–88 mW m?2, respectively. Corresponding to these peaks, the thermal lithosphere experienced two thinning stages during the Cretaceous and Palaeogene, reaching a minimum thickness of 43–61 km. The lithospheric thermal structure transformed from the ‘hot crust but cold mantle’ type in the Triassic–Jurassic to the ‘cold crust but hot mantle’ type in the Cretaceous–Cenozoic, according to the ratio of mantle to surface heat flow (qm/qs). The research on the thermal history and lithospheric thermal structure of sedimentary basins can effectively reveal the thermal regime at depth in the sedimentary basins and provide significance for the study of the basin dynamics during the Meso–Cenozoic.  相似文献   

7.
To better understand the origin, migration, and evolution of melts in the lithospheric mantle and their roles on the destruction of the North China Craton (NCC), we conducted a petrological and geochemical study on a quartz-bearing orthopyroxene-rich websterite xenolith from Hannuoba, the NCC, and its hosted melt and fluid inclusions. Both clinopyroxene and orthopyroxene in the xenolith contain lots of primary and secondary inclusions. High-temperature microthermometry of melt inclusions combined with Raman spectroscopy analyses of coexisting fluid inclusions shows that the entrapment temperature of the densest inclusions was ~1215°C and the pressure ~11.47 kbar, corresponding to a depth of ~38 km, i.e. within the stability of the spinel lherzolite. Intermediate pressure inclusions probably reflect progressive fluid entrapment over a range of depths during ascent, whereas the low-pressure inclusions (P < 2 kbar) may represent decrepitated primary inclusions. In situ laser-ablation ICP-MS analyses of major and trace elements on individual melt inclusions show that the compositions of these silicate melt inclusions in clinopyroxene and orthopyroxene are rich in SiO2, Al2O3, and alkalis but poor in TiO2 and strongly enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs), with negative anomalies of high-field strength elements (HFSEs). These characteristics suggest that the silica-rich melts could be derived from the partial melting of subducted oceanic slab. Therefore, this kind of quartz-bearing orthopyroxene-rich websterite may be produced by interaction between the slab-derived melts with the mantle peridotite. This study provides direct evidence for the origin, migration, and evolution of melts in the lithospheric mantle, which may play an important role in the destruction of the NCC.  相似文献   

8.
An arguable point regarding the Neoarchean and Paleoproterozoic crustal evolution of the North China Craton(NCC)is whether the tectonic setting in the central belt during the mid-Paleoproterozoic(2.35-2.0 Ga)was dominated by an extensional regime or an oceanic subduction-arc regime.A review of the midPaleoproterozoic magmatism and sedimentation for the Hengshan-Wutai-Fuping region suggests that a back-arc extension regime was dominant in this region.This conclusion is consistent with the observation that the 2.35-2.0 Ga magmatism shows a typical bimodal distribution where the mafic rocks mostly have arc affinities and the acidic rocks mainly comprise highly-fractioned calc-alkaline to alkaline(or A-type)granites,and that this magmatism was coeval with development of extensional basins characteristic of transgressive sequences with volcanic interlayers such as in the Hutuo Group.Although the final amalgamation of the NCC was believed to occur at ~1.85 Ga,recent zircon U-Pb age dating for mica schist in the Wutai Group suggests a collisional event may have occurred at ~1.95 Ga.The metamorphic ages of ~1.85 Ga,obtained mostly from the high-grade rocks using the zircon U-Pb approach,most probably indicate uplifting and cooling of these high-grade terranes.This is because(i)phase modeling suggests that newly-grown zircon grains in highgrade rocks with a melt phase cannot date the age of peak pressure and temperature stages,but the age of melt crystallization in cooling stages;(ii)the metamorphic P-T paths with isobaric cooling under 6-7 kb for the Hengshan and Fuping granulites suggest their prolonged stay in the middle-lower crust;and(iii)the obtained metamorphic age data show a continuous distribution from 1.95 to 1.80 Ga.Thus,an alternative tectonic scenario for the Hengshan-Wutai-Fuping region involves:(i)formation of a proto-NCC at ~2.5 Ga;(ii)back-arc extension during 2.35-2.0 Ga resulting in bimodal magmatism and sedimentation in rifting basins on an Archean basement;?  相似文献   

9.
《International Geology Review》2012,54(11):1409-1428
ABSTRACT

The Mauranipur and Babina greenstone belts of the Bundelkhand Craton are formed of the Central Bundelkhand greenstone complex (CBGC). This complex represents tectonic collage which has not been previously studied in depth. The purpose of this study is to contribute to the understanding of the main features of the Archaean crustal evolution of the Bundelkhand Craton. The CBGC consists of two assemblages: (1) the early assemblage, which is composed of basic-ultramafic, rhyolitic–dacitic, and banded iron formation units, and (2) the late assemblage, which is a felsic volcanic unit. The units and assemblages are tectonically unified with epidote–quartz–plagioclase metasomatic rocks formed locally in these tectonic zones.

The early assemblage of the Mauranipur greenstone belt is estimated at 2810 ± 13 Ma, from the U–Pb dating (SHRIMP, zircon) of the felsic volcanics. Also, there are inherited 3242 ± 65 Ma zircons in this rock. It is deduced that this assemblage is related to early felsic subduction volcanism during the Mesoarchaean that occurred in the Bundelkhand Craton.

Zircons extracted from metasomatic rocks in the early assemblage’s high-Mg basalts show a concordant age of 2687 ± 11 Ma. This age is interpreted as a time of metamorphism that occurred simultaneously with an early accretion stage in the evolution of the Mauranipur greenstone belt.

The felsic volcanism, appearing as subvolcanic bodies in the late assemblage of the Mauranipur greenstone belt, is estimated to be 2557 ± 33 Ma from the U–Pb dating (SHRIMP, zircon) of the felsic volcanic rocks. This rock also contains inherited 2864 ± 46 Ma zircons. The late assemblage of the Mauranipur greenstone belt corresponds with a geodynamic setting of active subduction along the continental margin during Neoarchaean.

The late assemblage Neoarchaean felsic volcanic rocks from the Mauranipur and Babina greenstone belts are comparable in age and geochemical characteristics. The Neoarchaean rocks are more enriched in Sr and Ba and are more depleted in Cr and Ni than the Mesoarchaean felsic volcanic rocks of the early assemblage.

Through isotopic dating and the geochemical analysis of the volcanic and metasomatic rocks of the CBGC, this study has revealed two subduction–accretion events, the Meso–Neoarchaean (2.81–2.7 Ga) and Neoarchaean (2.56–2.53 Ga), during the crustal evolution of the Bundelkhand Craton (Indian Shield).  相似文献   

10.
The Izera Block in the West Sudetes, which is composed of granites, gneisses (and transitional granite-gneisses) and minor mica schists, is one of the largest outcrops of Early Palaeozoic (ca. 500 Ma) metagranitoid rocks in the basement units of the Variscides of Central Europe. The Izera granites show S-type features: magmatic cordierite, relict garnet and sillimanite, lack of mafic enclaves, and absence of coexisting tonalites and diorites. The paucity of pegmatites indicates that the granitic magma was relatively dry. The S-type character of these granites is further supported by their peraluminous character (A/CNK 1.0–1.63), high content of normative corundum (up to 3.5%) and relatively high 87Sr /86Sr initial ratio. The chemical variation of these rocks was controlled by the fractional crystallization of plagioclase (CaO, Sr, Eu/Eu*), biotite and cordierite (Al2O3, MgO, FeO), zircon (Zr, Hf) and monazite (REE). Initial Nd values range from –5.2 to –6.9 (mean: –5.9, SD=0.6). These largely negative Nd values imply that the granitic magmas emplaced ca. 500 Ma were extracted from a source reservoir that was strongly enriched in LREE (i.e., with low Sm/Nd ratio) on a time-integrated basis. The relatively consistent depleted mantle model ages (1,730–2,175 Ma; mean: 1,890 Ma) is in agreement with the earlier reported presence of ca. 2.1 Ga old inherited Pb component in zircon from the closely related Rumburk granite. This points to an old (Early Proterozoic) crustal residence age of the inferred metasedimentary protoliths of the Izera granitoids, with only minor contribution to their protoliths of juvenile components of Late Proterozoic/Early Palaeozoic age. Although the Izera granites show some trace element features reminiscent of syn-collisional or post-collisional granitoids, they more likely belong to the broad anorogenic class. Our data corroborate some previous interpretations that granite generation was connected with the Early Palaeozoic rifting of the passive margin of the Saxothuringian block, well documented in the region by bimodal volcanic suites of similar age (Kaczawa Unit, eastern and southern envelope of the Karkonosze–Izera Block). In this scenario, granite magmatism and bimodal volcanism would represent two broadly concomitant effects of a single major event of lithospheric break-up at the northern edge of Gondwana.  相似文献   

11.
We present and compare whole-rock and zircon O and Pb isotopic compositions for the Hannuoba granulite xenoliths and Mesozoic intermediate-to-felsic igneous rocks from the Zhangjiakou region, northern margin of the North China Craton, northeast China. The xenoliths have an overall Pb isotopic range similar to rocks from the regionally exposed Neoarchaean granulite terrain. Mesozoic zircons from different types of granulite xenoliths have a narrow range of δ18O values (6.0–7.7‰) higher than normal mantle δ18O values (~5.7‰). Mesozoic intermediate–felsic igneous rocks have O and Pb isotopic compositions indistinguishable from the Hannuoba intermediate–mafic granulite xenoliths. Our new data suggest that the Mesozoic igneous rocks and granulite xenoliths are genetically linked and that both were derived from the late Neoarchaean lower crust. This argues against previous proposals that the granulite xenoliths are either products of Mesozoic basaltic underplating or formed by mixing between mantle-derived and pre-existing crustal magmas.  相似文献   

12.
The mechanism and process of lithospheric thinning beneath the North China Craton (NCC) are still debated. A key criterion in distinguishing among the proposed mechanisms is whether associated continental basalts were derived from the thinning lithospheric mantle or upwelling asthenosphere. Herein, we investigate the possible mechanisms of lithospheric thinning based on a systematic Re–Os isotopic study of Mesozoic to Cenozoic basalts from the NCC. Our whole-rock Re–Os isotopic results indicate that the Mesozoic basalts generally have high Re and Os concentrations that vary widely from 97.2 to 839.4 ppt and 74.4 to 519.6 ppt, respectively. They have high initial 187Os/188Os ratios ranging from 0.1513 to 0.3805, with corresponding variable γOs(t) values (+20 to +202). In contrast, the Re–Os concentrations and radiogenic Os isotope compositions of the Cenozoic basalts are typically lower than those of the Mesozoic basalts. The lowest initial 187Os/188Os ratios of the Cenozoic basalts are 0.1465 and 0.1479, with corresponding γOs(t) values of +15 and +16, which are within the range of ocean island basalts. These new Re–Os isotopic results, combined with the findings of previous studies, indicate that the Mesozoic basalts were a hybrid product of the melting of pyroxenite and peridotite in ancient lithospheric mantle beneath the NCC. The Cenozoic basalts were derived mainly from upwelling asthenosphere mixed with small amounts of lithospheric materials. The marked differences in geochemistry between the Mesozoic and Cenozoic basalts suggest a greatly reduced involvement of lithospheric mantle as the magma source from the Mesozoic to the Cenozoic. The subsequent lithospheric thinning of the NCC and replacement by upwelling asthenospheric mantle resulted in a change to asthenosphere-derived Cenozoic basalts.  相似文献   

13.
《International Geology Review》2012,54(13):1688-1704
The Yinshan Block, part of the Neoarchaean basement of the Western Block of the North China Craton, is composed of granite–greenstone and granulite–charnockite complexes. We report research on a suite of charnockites from the granulite–charnockite complex and characterize their geochemistry, zircon U–Pb geochronology, and Hf isotopic composition. The charnockites can be divided into intermediate (SiO2 = 59–63 wt.%) and silicic (SiO2 = 69–71 wt.%) groups. U–Pb zircon data yield protolith formation ages of 2524 ± 4 Ma, 2533 ± 15 Ma, followed by metamorphism at 2498 ± 3 Ma, 2490 ± 11 Ma, respectively, for these groups. Although the intermediate charnockites are characterized by higher Al2O3, TiO2, Fe2O3T, MnO, MgO, CaO, P2O5, K2O, Sr, and ΣREE content than the silicic charnockites, the ages and Hf isotopic composition of zircons and REE patterns of both intermediate and silicic charnockites are remarkably consistent, which indicates that they are genetically related. These charnockites are predominantly metaluminous to slightly peraluminous, calc-alkalic to calcic, and magnesian – characteristics generally related to a subduction setting. High-Sr + Ba granites with low K2O/Na2O characteristics, shown by these charnockites, imply a mixture of mafic and felsic magmas generated from an enriched mantle + lower crust. High MgO, Ni, Cr and Mg#, low K2O/Na2O, and metaluminous to slightly peraluminous natures imply that the source rocks most likely were amphibolites. Coeval calc-alkaline magmatism and high-T granulite-facies metamorphism under low-H2O activity in the area lead us to propose a model involving mid-ocean ridge subduction within a Neoarchaean convergent margin. The arc-related rocks accreted along the continent margin, and became a barrier when the lithospheric mantle ascended through the slab window. Melt derived from the decompressing mantle mixed with melt derived from the overlying, juvenile lower crust melt, which was warmed and metamorphosed by the ascending lithospheric mantle.  相似文献   

14.
How the earth's crust formed and evolved during the Precambrian times is one of the key questions to decipher the evolution of the early Earth. As one of the few cratons containing well-preserved Eoarchean to Neoarchean basement on Earth, the North China Craton is an ideal natural laboratory to unravel the early crustal evolution. It is controversial whether the Archean tectonothermal events in this area represents reworking or growth of the continental crust. To solve this issue, we have compelled field-based mapping, zircon U–Pb dating by SHRIMP RG and LA–ICP–MS U–Pb, zircon SHRIMP SI oxygen and LA–MC–ICP–MS Hf isotope, and whole-rock Nd–O isotope analyses from the Archean granitoids in northern Liaoning, North China Craton. On the basis of zircon U–Pb isotopic dating and measured geological section investigation, two distinct magmatic suites as enclaves in the Jurassic granites are recognized, viz. a newly discovered 3.0 Ga crustal remnant and a 2.5 Ga granitoid. The Mesoarchean zircons from the 3.0 Ga granodioritic gneisses exhibit heterogeneous Hf isotopic compositions, with the most radiogenic analysis (εHf(t) = +3.8) following the depleted mantle evolution array and the most unradiogenic εHf(t) extending down to −3.4. This implies that both ancient continental crust at least as old as 3.4 Ga and depleted mantle contributed to the magma source of the protoliths of the Mesoarchean gneisses. The εHf(t) values of the Neoarchean zircons from these gneisses overlap the 3.4–3.0 Ga zircon evolution trend, indicating that the ancient crustal materials have been reworked during the late Neoarchean. The Neoarchean zircons from the 2.5 Ga granitoids have a relatively small variation in the Hf isotope and are mainly plotted in the 3.0–2.8 Ga zircon evolution field. However, taking all the εHf(t) values of the Neoarchean zircons into the consideration, we find that the Hf model age of the Neoarchean zircon does not represent the time of crustal growth or reworking but are artifacts of magma mixing. The interaction between the magmas derived from the ancient crustal materials and the depleted mantle is also supported by zircon O isotopic data and Hf–O isotopic modeling of the Neoarchean granitoids. Both Mesoarchean and late Neoarchean tectonothermal events involved synchronous crustal growth and reworking, which may be applicable to other parts of the world.  相似文献   

15.
We report new zircon U–Pb geochronologic and Hf-isotopic data, and whole-rock major and trace element data, for the Labuco granitoids of the southern margin of the Southern Qiangtang terrane (SQ), Tibet. Five intermediate–felsic samples yielded zircon U–Pb ages of 169–156 Ma, making the Labuco granitoids contemporaneous with Middle–Late Jurassic magmatism in the SQ. The granitoids exhibit a range of zircon εHf(t) values from − 7.3 to − 0.6. The samples from Labuco can be divided into low-Sr/Y granitoids (LSG) and high-Sr/Y granitoids (HSG). The LSG are normal calc-alkaline I-type granitoids, characterized by varying major and trace element contents indicative of partial melting of ancient mafic lower crust. The HSG are characterized by high Sr/Y ratios (64–75), (La/Yb)N (chondrite-normalized) ratios of 57–76, and (Gd/Yb)N ratios of 6.6–8.9. These signatures indicate that the HSG were derived by partial melting of garnet-bearing thickened lower crust. The across-arc variation in magma geochemistry in the SQ was caused by tectonic shortening and crustal thickening, which occurred as a result of the northward subduction of the Bangong–Nujiang Ocean lithosphere during the Middle–Late Jurassic. These results have important implications for our understanding of tectonic shortening, crustal thickening, and the geometry of modern and ancient subduction zones.  相似文献   

16.
The Lingshan Island in Shandong Province in the eastern North China Craton, well known for the Late Mesozoic multi-scale slide-slump structures is related to paleo-earthquake. Terrigenous clastic rocks, volcanic clastic rocks and volcanic lavas are extensively exposed in the Lingshan Island and its adjacent regions of the Shandong Province, which led to fierce debates on their ages, sedimentary characteristics and tectono-sedimentary evolution. In this contribution, we present the characteristics of the Late Mesozoic stratigraphy in the Lingshan Island. Whole-rock K–Ar dating of dyke at Beilaishi and rhyolites at Laohuzui of the Lingshan Island yielded ages of 159 Ma and \(106\hbox {–}92\hbox { Ma}\) which coincides with the Laiyang Period rifting and the Qingshan Period rifting in the Jiaolai Basin, respectively. On the basis of the analysis to the Late Mesozoic sedimentary environment of ‘flysch’ and ‘molasse’-like formations as well as tectonic stress fields reconstruction, four episodes of the tectono-sedimentary evolution were established in the Lingshan Island and its adjacent regions in the eastern North China Craton. They consist of two episodes of extensional events for the syn-rift, and two episodes of compression events for the inversion of the post-rift. The entire episodes can be summarized as follows: (1) the first syn-rift NW–SE extension in Laiyang Period can be identified by the ‘flysch’ formation (Unit 1) and by emplacement of the NE-trending dyke in the Laiyang Group. This syn-rift episode can be related to the NW–SE post-orogenic extension resulted from the gravity collapse of the thickened lithosphere along the Sulu Orogen. (2) The first post-rift NW–SE inversion, which was caused by the NW-directed subduction of Izanaqi Plate, can be well documented by the ‘X’ type conjugate joints as well as slide slump folds in Unit 1. (3) The second syn-rift NW–SE extension in Qingshan Period is characterized by rhyolite rocks (Unit 2). This syn-rift episode can be considered to be associated with lithospheric delamination of the thickened lithosphere in the eastern North China Craton. And finally, (4) the second post-rift NW–SE inversion which resulted from the subduction of the Pacific Plate under the eastern North China Craton in the NW direction at the end of the Qingshan Period is recorded by ‘molasse’-like formation (Unit 3).  相似文献   

17.
The North China Craton (NCC) witnessed a prolonged subduction–accretion history from the early to late Palaeoproterozoic, culminating with final collision at ca. 1.85 Ga and assembling the continental blocks into the cratonic framework. Subsequently, widespread post-collisional magmatism occurred, particularly along the Trans-North China Orogen (TNCO) that sutures the Eastern and Western blocks of the NCC. Here we present petrological, geochemical, and zircon U–Pb geochronological and Lu–Hf data from a pyroxenite (websterite)–gabbro–diorite suite at Xinghe in Inner Mongolia along the northern segment of the TNCO. The internal structures and high Th/U values of the zircons from the gabbro–diorite suite suggest magmatic crystallization. LA-ICP-MS U–Pb age data on three gabbros and one diorite from the suite yield emplacement ages of 1786.1 ± 4.8, 1783 ± 15 ,1754 ± 16 and 1767 ± 13 Ma, respectively. The εHf(t) shows mostly positive values (up to 5.8), with the lowest value at –4.2, suggesting that the magma was derived from dominantly juvenile sources. The generally low SiO2 and high MgO values, and other trace element features of the Xinghe suite are consistent with fractionation from a mantle-derived magma with a broadly E-MORB affinity, with no significant crustal contamination. Recent studies clearly establish that the major magmatic pulse associated with rifting of the NCC within the Columbia supercontinent occurred in the late Mesoproterozoic at ca. 1.3–1.2 Ga associated with mantle plume activity. This, together with the lack of robust geochemical imprints of rift-related magmatism in the Xinghe suite, prompts us to suggest a tectonic model that envisages magma genesis associated with post-collisional extension during slab break-off, following the westward subduction of the Eastern Block and its collision with the Western Block. The resulting asthenospheric upwelling and heat input might have triggered the magma generation from a heterogeneous, subduction-modified sub-lithospheric mantle source for the Xinghe rocks, as well as for similar late Palaeoproterozoic suites in the TNCO.  相似文献   

18.
19.
The North China Craton (NCC) represents one of only a few cratonic nuclei on the globe with a geological history extending back to the Eoarchean. However, extensive ca. 2.5 Ga crustal reworking has destroyed a considerable portion of the pre-existing crustal record, hindering the investigation of tectonothermal evolution prior to 2.5 Ga. The Huoqiu Complex (HQC), located at the southeastern margin of the NCC, preserves the vestiges of crustal components that survived the ca. 2.5 Ga tectonothermal events, which provide the opportunity to investigate the Meso- to Neoarchean episodic crustal evolution of the NCC. Here we present results from in-situ detrital zircon U–Pb dating and Hf isotope analyses on zircons from three paragneisses in three drill cores that cut through the basement of the HQC. In combination with published data, the concordant age spectra of the detrital zircons in the paragneisses yield 207Pb/206Pb ages of 2343–3997 Ma that cluster into two principal age populations with peaks at 3015 and 2755 Ma. One zircon grain dated at 3997 ± 8 Ma with 98% concordance provides new evidence for 4.0 Ga components in the NCC. The εHf(t) values of all zircons range from − 5.2 to + 6.5, with most of the spots (n = 31 of 47) showing positive values, indicating at least two episodes of juvenile continental crustal growth at 3.01 Ga and 2.75 Ga. The older episode is recorded only in few ancient cratons, suggesting limited crustal accretion occurred globally at a time of subdued mantle-derived magmatism. In contrast, the younger episode is coincident with a global rise in magmatic activity in the early Neoarchean. The geochemical and geochronological data suggest that the 3.01 Ga juvenile crust was likely generated in an island-arc subduction system, whereas the 2.75 Ga crustal rocks were probably formed during magmatic underplating and subsequent partial melting of lower crustal mafic rocks. Consequently, a tectonic transition is suggested from a compressive to an extensional setting along the southeastern margin of the NCC between 3.01 and 2.75 Ga. This sequence of events heralds a shift, from a mixture of net crustal growth and crustal reworking during multiple short-lived magmatic pulses, to fragmentation and dispersal of the early continental nucleus within 260 Ma.  相似文献   

20.
The large scale Mesozoic magmatism and related metallogeny in the Taihang Mountains (TM) provide important clues for the lithospheric thinning of the North China Craton (NCC). Among the ore deposits, the vein gold mineralization of Shihu in the Fuping region and the skarn ore deposit of Xishimen in the Wu'an region represent typical Mesozoic metallogeny in the TM. In the Shihu gold mine, the Mapeng batholith is dominantly composed of monzogranite and granodiorite, whereas, the Wu'an pluton in the Xishimen iron mine mainly comprises monzonite and diorite. Here we present zircon LA–ICP-MS U–Pb data from 8 samples which reveal the timing of magmatism in the TM as ca. 130 Ma, which is contemporaneous with the large-scale metallogeny in the margins of the NCC. The δ34S values recorded in the sulfide minerals from the Shihu gold deposit and the Xishimen skarn iron deposit show a range of 2.2‰–5.0‰, and 11.6‰–18.7‰, respectively. Helium isotopic compositions of fluid inclusions in pyrite from the Shihu gold deposit vary from 0.12 to 1.98 Ra (where Ra is the 3He/4He ratio of air = 1.39 × 10? 6), with calculated mantle helium values of 1.4%–25%, whereas, those of the Xishimen skarn iron deposit range from 0.06 to 0.19 Ra, with calculated mantle helium of 0.7%–2.2%. The S–He–Ar isotopic data suggest a lower crustal origin for the ore-forming components, with variable inputs of mantle source. The large population of inherited zircons in our samples, with 207Pb/206Pb ages ranging between 2500 Ma and 1800 Ma, also supports crustal participation. Our data reveal that the Shihu gold deposit witnessed greater mantle input than the Xishimen skarn iron deposit, suggesting that the continental lithosphere is markedly thinner under the Fuping region than that under the Wu'an region. Our interpretation is also supported by published data from two ultra-broadband high-precision magnetotelluric sounding profiles across the TM region showing a variation in the lithosphere thickness from 155 km to 70 km while moving from the south (Wu'an region) to the north (Fuping region). Our study suggests that inhomogeneous lithospheric thinning in the central NCC occurred at least as early as ca. 130 Ma ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号