首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mafic dikes, which transect the Mesoarchaean Singhbhum Granitoid Complex, are the most abundant members of the Newer Dolerite dikes of the Singhbhum Orissa craton. These dikes are subalkaline and exhibit a tholeiitic differentiation trend. Studied dikes underwent fractional crystallization of clinopyroxene and plagioclase. They show enriched patterns for the light rare earth elements (LREE) and large ion lithophile elements (LILE). On primitive mantle-normalized multi-element patterns, they possess Ba, Nb, Sr, P, and Ti depletions similar to subduction-related basaltic rocks. The high (La/Yb) n and (Gd/Yb) n ratios suggest that the studied mafic dikes were derived by low degrees of partial melting of a garnet-bearing source. Judging by trace elemental ratios (e.g. Ba/Y, Nb/Y, Ba/Th and Th/Nb), the studied dikes were derived from a mantle source metasomatized by a subduction component (e.g. fluids derived by dehydration of the subducting slab). We conclude that interaction between these fluids and the overlying mantle was the main cause of (LREE and LILE) enrichment and Nb (high field strength elements) depletion in the mafic dikes.  相似文献   

2.
Post-orogenic mafic rocks from Northeast China consist of swarms of dolerite dikes. We report a new U–Pb zircon age, as well as whole-rock geochemical and Sr–Nd–Hf isotopic data. Laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) U–Pb zircon analysis yielded an age of 210.3 ± 1.5 million years (i.e. Triassic) for these mafic dikes. Most Dalian mafic rocks exhibit low K2O + Na2O contents, and span the border between alkaline and calc-alkaline rock associations in the total alkali–silica diagram. The investigated dikes are also characterized by relatively high (87Sr/86Sr)i ratios (0.7061–0.7067) and negative ?Nd (t) (?4.7 to??4.3) and ?Hf (t) values (?4.1 to??1.1), implying that they were derived from an enriched lithospheric mantle source. The mafic dikes are characterized by relatively low MgO (4.65–5.44 wt.%), Mg# (41–44), and compatible element content [such as Cr (89.9–125 ppm) and Ni (56.7–72.2 ppm)], which are the features of an evolved mafic magma. No evidence supports the idea that the mafic rocks were affected by significant assimilation or crustal contamination during emplacement. We conclude that the dolerites formed in a post-orogenic extensional setting, related to lithospheric delamination or ‘collapse’ of the Central Asian Orogenic Belt (CAOB), also termed the Xingmeng Orogenic Belt in China.  相似文献   

3.
东南沿海分布大面积的白垩纪晚期侵入岩。这些岩石可分为两期:其中115~100Ma以钙碱性系列岩石为主,岩石组合为辉长岩-闪长岩-花岗闪长岩-二长花岗岩-碱性长石花岗岩;而100~86Ma的岩石为碱性系列,岩石组合为石英二长斑岩-正长斑岩-碱性长石花岗岩。115~100Ma的辉长岩以角闪辉长岩为主,具有极高的CaO、MgO和Al_(2)O_(3)含量,具有极低的SiO_(2)(42.9%~53.8%)、全碱(K_(2)O+Na_(2)O:0.86%~5.28%)、Ba、Nb、Th、Rb和Zr含量,也具有极低的FeO^(T)/MgO、La/Yb和Zr/Hf比值,较高的Eu/Eu^(*)、Sr/Y比值和Sr含量,为基性-超基性堆晶岩。与辉长岩同期的闪长岩和细粒暗色包体具有较高的SiO_(2)(50.34%~63.68%),较低的CaO、P_(2)O_(5)、MgO、Al_(2)O_(3)含量,相对低的Eu/Eu^(*)和Sr/Y比值,变化较大的La/Yb和Zr/Hf比值,代表了从基性岩浆储库中抽取的富硅熔体。115~100Ma的花岗闪长岩和二长花岗岩类岩石为准铝质岩石,SiO_(2)含量变化较大(61.7%~75.3%),具有较低的FeO^(T)/MgO、Ga/Al比值和Nb、Zr及Nb+Zr+Ce+Y元素含量,显示出典型I型花岗岩的特征。这些花岗岩具有相对高的La/Yb、Eu/Eu^(*)和Zr/Hf比值和高的Sr、Ba和Zr含量。结合岩相学特征,这些花岗岩为堆晶花岗岩。而115~100Ma的碱性长石花岗岩具有极高的SiO_(2)含量(大于75%),低的Eu/Eu^(*)、La/Yb、Zr/Hf和Sr/Y比值,具有低的Ba、Sr和Zr含量和高的Rb、Nb、Y和Th含量和Rb/Sr比值,表明这些花岗岩是由富硅岩浆储库中抽离的高硅熔体侵入地壳形成。100~86Ma期间形成的二长斑岩和正长斑岩具有极高的全碱含量,可以达到8%~12%,其SiO_(2)主要集中在60%~70%,具有极高的Zr、Sr和Ba含量和Eu/Eu^(*)、La/Yb和Sr/Y比值,显示出堆晶花岗岩的特征。而100~86Ma期间形成的大部分碱性长石花岗岩具有极高的SiO_(2)含量(大于75%),并显示出A型花岗岩的特征,具有高的Rb/Sr比值和高的Rb、Y和Th和低的Ba、Sr含量和低的Zr/Hf、La/Yb、Eu/Eu^(*)和Sr/Y比值,表明它们是由富硅岩浆储库抽离的高硅熔体侵入浅部地壳形成。东南沿海高硅花岗岩的形成和穿地壳岩浆系统密切相关,高硅花岗岩是由浅部地壳内晶体-熔体分异产生的熔体侵入地壳所形成,而高硅花岗岩的地球化学特征与岩浆储库的水及挥发份含量密切相关。115~100Ma期间,从富水的岩浆储库抽离的熔体形成具有低高场强元素含量和低Rb/Sr比值的高硅花岗岩,这一过程与古太平洋板块俯冲有关;100~86Ma期间,从富挥发份的岩浆储库抽离的熔体形成碱性特征、富含高场强元素和具有高的Rb/Sr比值的高硅花岗岩,这一过程和古太平洋板块回撤软流圈上涌有关。  相似文献   

4.
ABSTRACT

The adakitic dikes with zircon ages of ~120–118 Ma are identified in the Xiejiagou gold deposit, Jiaobei terrain. The Early Cretaceous intermediate-acidic dikes include monzonite, quartz monzonite, and monzogranite, which have SiO2, Al2O3, K2O, Na2O contents ranging from 61.01 to 74.72 wt. %, 14.42 to 17.28 wt.%, 2.55 to 4.45 wt.%, and 3.09 to 4.64 wt.%, respectively. The dikes are enriched in large ion lithophile elements (LILEs) (e.g., Rb, Sr, and Ba) and light rare earth elements (LREEs), but are depleted in high field strength elements (HFSEs) (e.g., Nb, Ta) and heavy rare earth elements (HREEs). They are also characterized by continental crust-like isotopic compositions: whole-rock δ18O = 7.6–9.9‰, (87Sr/86Sr)i = 0.70893–0.71036, and εNd(t) = ?13.16 to ?17.06. Assimilation and fractional crystallization are limited, and partial melting of source rock is the main mechanism in controlling the compositional variation. The high Sr/Y (41.51–93.25) and (La/Yb)N (22.9–44.7) ratios imply that the dikes have affinities similar to adakitic rocks. The regional geological setting, coupled with the geochemical and isotopic data, indicate that the adakitic dikes were unlikely produced by partial melting of a subducted oceanic slab or a thickened/delaminated lower crust, or AFC processes of mantle-derived magmas. We conclude that the adakitic dikes are generated by partial melting of lower crust which was triggered and modified by underplating of the lithospheric mantle. We also propose that the eastern part of the North China Craton experienced severe thinning in the Early Cretaceous (~135–120 Ma), and the lithospheric thinning is related to delamination of the lower crust.  相似文献   

5.
《International Geology Review》2012,54(16):1885-1905
Late Mesozoic granitoid plutons of four distinct ages intrude the lower plate of the Hohhot metamorphic core complex along the northern margin of the North China craton. The plutons belong to two main groups: (1) Group I, deformed granitoids (148 and 140 Ma subgroups) with high Sr, LREE, and Na2O, low Y and Yb contents, high Sr/Y and La/Yb ratios, weak or no Eu anomalies, low Rb/Ba ratios, similar initial 87Sr/86Sr values (0.7064–0.7071) and low Mg# (<37 mostly, 100?×?molar MgO/MgO + FeO t ); (2) Group II, non-deformed granitoids (132 and 114 Ma subgroups) with low Sr, relatively low Na2O, high Y and Yb contents, pronounced negative Eu anomalies, high Rb/Ba ratios, and initial 87Sr/86Sr values (0.7098–0.7161). The two groups share geochemical similarities in ?Nd(t) (–11.3 to –15.4) and T DM2 ages (1.85–2.18 thousand million years) as well as Hf isotopic ratios in zircons. Geochemical modelling (using the MELTS code) suggests that similar sources but different depths of magma generation produced the early, high-pressure low-Mg adakitic granitoids and late, low-pressure granitoids with A-type characteristics. The early granitoids likely represent a partially melted, deep-seated, thickened lower continental crust that involved a minor contribution from young materials, whereas the later group partially melted at shallower depths. This granitic magmatic evolution coincided with the tectonic transition from crustal contraction to extension.  相似文献   

6.
The western Kunlun orogen in the northwest Tibet Plateau is related to subduction and collision of Proto-and Paleo-Tethys from early Paleozoic to early Mesozoic. This paper presents new LA-ICPMS zircon U-Pb ages and Lu-Hf isotopes, whole-rock major and trace elements, and Sr–Nd isotopes of two Ordovician granitoid plutons(466–455 Ma) and their Silurian mafic dikes(~436 Ma) in the western Kunlun orogen. These granitoids show peraluminous high-K calcalkaline characteristics, with(87Sr/86Sr)_i value of 0.7129–0.7224, εNd(t) values of -9.3 to -7.0 and zircon εHf(t) values of -17.3 to -0.2, indicating that they were formed by partial melting of ancient lower-crust(metaigneous rocks mixed with metasedimentary rocks) with some mantle materials in response to subduction of the Proto-Tethyan Ocean and following collision. The Silurian mafic dikes were considered to have been derived from a low degree of partial melting of primary mafic magma. These mafic dikes show initial 87Sr/86Sr ratios of 0.7101–0.7152 and εNd(t) values of -3.8 to -3.4 and zircon εHf(t) values of -8.8 to -4.9, indicating that they were derived from enriched mantle in response to post-collisional slab break-off. Combined with regional geology, our new data provide valuable insight into late evolution of the Proto-Tethys.  相似文献   

7.
Chen  Xiaoqing  Liu  Shen  Feng  Caixia  Coulson  Ian M.  Fan  Yan  Tai  Kairui  Gao  Tianjing  Zhang  Siyuan 《中国地球化学学报》2020,39(3):307-325

The mafic dykes (dolerites) during the Early Paleozoic are widely spread in Langao-Ziyang, southern Qiling Block, and the investigation on these dykes are very important. Previous studies have mainly focused on the Silurian mafic dykes; however, research on the Earlier Paleozoic mafic dykes is relatively weak at present. Therefore, the overall understanding of the mantle source and genetic dynamic setting during the Early Paleozoic in this area is lacking. To study the accurate age and origin of the Early Paleozoic mafic dykes in Ziyang, southern Shaanxi Province, the mafic dykes from dabacunand Qinmingzhai were selected and the petrology, zircon U–Pb chronology, geochemistry, and Sr–Nd–Hf isotopes were studied. Analysis indicates that the mafic dykes studied are mainly composed of dolerite, and they are the products of the Early Ordovician (475.8–480.7 Ma). Furthermore, the dolerites belong to alkaline rock series, and they are characterized by enrichment in LREE, Rb, Ba, Sr, Nb, (87Sr/86Sr)i = 0.7020–0.7050, εNd(t) = 3.0–4.0), εHf (t) = 4.5–12.1,176Hf/177Hf = 0.282681–0.282844. This suggests that the mafic dyke were derived from the partial melting of a depleted lithospheric mantle, and the genetic process is mainly controlled by the mantle plume based on the discussion of the genetic model. Furthermore, the genetic process experienced the separation and crystallization of olivine and clinopyroxene at the same time, with little crustal contamination.

  相似文献   

8.
The time of final closure of the Palaeo-Tethys and the Sibumasu-Indochina collision in Southeast Asia represents a major unresolved geologic problem. Here, we present zircon chronology, whole-rock elemental, Sr–Nd, and zircon Hf isotopic geochemistry for newly discovered mafic dikes from the northern segment of the Sibumasu terrane, to provide constraints on this issue. Zircon U–Pb data indicate that the dikes were emplaced at 240 ± 3 Ma. These are the earliest Mesozoic magmatic rocks reported so far in the Sibumasu terrane, the late Palaeozoic passive margin of the Palaeo-Tethys. They are subalkaline tholeiites, showing geochemical characteristics similar to those of enriched mid-ocean ridge basalts (E-MORBs). They have 87Sr/86Sr(t) ratios of 0.703161–0.703826, ?Nd(t) of +4.8 to +7.5, and zircon ?Hf(t) of +9.2 to +13.3, implying strong mantle depletion. They were derived by partial melting of asthenospheric mantle and underwent subsequent fractional crystallization and lithospheric assimilation. The geologic–petrologic evidence suggests that the mafic dikes were generated in a collisional setting, when suturing of the Baoshan and Simao subterranes (the two subterranes are part of the Sibumasu and Indochina terranes, respectively) occurred. These early Middle Triassic mafic dikes provide an upper limit for Sibumasu–Indochina collision. In conjunction with previous work, we conclude that the final closure of the Palaeo-Tethys and collision of the Sibumasu and Indochina terranes took place during the late Permian to Early Triassic.  相似文献   

9.
The Parashi granitoid of northeasternmost Colombia intrudes the Upper Cretaceous to Lower Paleocene accretionary complex formed by the collision of the Caribbean arc and the continental margin of South America. This granitoid presently separated of the continental margin includes a major quartzdiorite body with andesite to dacite dikes and mafic enclaves. Zircon U–Pb LA-MC-ICP-MS and K–Ar geochronology on the quartzdiorite and the dikes suggest that crystallization extended from ca. 47 to 51 Ma. Major and trace elements are characterized by a medium-K, immature continental arc signature and high Al2O3, Na2O and Ba–Sr contents. Initial 87Sr/86Sr isotopic values range between 0.7050 and 0.7054, with 143Nd/144Nd = 0.51235–0.51253, εNd and εHf values from −0.81 to −4.40 and −4.4 and −5.2. Major and trace element ratios and isotopic modeling suggest that sedimentary and/or quartzofeldspathic crustal sources were mixed with a mafic melt input. The petrotectonic and geological constraints derived from this granitoid suggest that Parashi plutonism records an immature, oblique subduction-zone setting in which the presence of a high-temperature mantle realm and strong plate coupling associated to upper crust subduction caused the partial fusion of a previously tectonically underplated mafic crust and associated metasediments exposed in the continental margin. The limited temporal expression of this magmatism and the transition to a regional magmatic hiatus are related to a subsequent change to strongly and slow oblique tectonics in the Caribbean–South America plate interactions and the underflow of a relatively thick slab of Caribbean oceanic crust.  相似文献   

10.
The relationship among magmatism, large-scale metallogenesis of Southeast China, and subduction of the Pacific plate has long been debated. The lower Yangtze River belt (LYRB) in the northeastern edge of Southeast China is characterized by intense late Mesozoic magmatism and associated polymetallic mineralization such as copper, gold, iron, tungsten, molybdenum, etc. The copper-related adakitic rocks (148–130 Ma) in this belt are the oldest episode of magmatism and intruded as small intermediate-acid intrusive bodies. The Huayuangong granitoids (HYG), located in the southern part of this belt, however, are copper-barren. Three granitoid samples from this pluton give zircon U–Pb ages of 126.4 ± 1.6 Ma, 125.9 ± 1.9 Ma, and 126.2 ± 1.2 Ma, respectively. The HYG has A-type affinity with metaluminous to weakly peraluminous, high FeOT/(FeOT+MgO) ratios, and high Zr+Nb+Ce+Yb contents. Meanwhile, 10 late Mesozoic mafic samples from the LYRB exhibit similar trace element characteristics to those of ‘continental arc andesite’ (CAA) and suggest an enriched lithospheric mantle source with depletion in high field strength elements (e.g. Nb, Ta, Zr, Hf, and Ti) and enrichment of large ion lithophile elements (e.g. Rb, Th, U, and Pb). Although the HYG exhibits similar Sr–Nd isotope composition with the mafic dikes, distinct whole-rock Pb isotope ratios imply that the granitoids and mafic magmas originated from heterogeneous mantle sources. Compared with coeval Baijuhuajian A-type rocks that are exposed along the Jiang–Shao fault of Southeast China, the HYG shows enriched Hf isotope ratios of zircon with εHf(t) values ranging from ?4.8 to ?11.1. In the Yb/Ta versus Y/Nb diagram, being different from the major asthenospheric mantle-origin Baijuhuajian pluton, a large range of and high Y/Nb ratios as well as high Zr contents of the HYG pluton suggest a magmatic source of mixing between the asthenospheric and enriched crustal component in the LYRB. Compared with early-stage copper-related adakitic rocks (148–130 Ma) with subduction-related affinities and high oxygen fugacity, the copper-barren HYG has with-plate A-type affinities and lower oxygen fugacity. Summarizing, the production of early-stage (i.e. subduction related) adakitic rocks followed by late-stage A-type granitoids in the LYRB is ascribed to the rollback of the Palaeo-Pacific plate beneath Southeast China and associated with asthenospheric upwelling and lithospheric thinning during the late Mesozoic era.  相似文献   

11.
The Weihai migmatite in the Sulu ultra-high-pressure (UHP) metamorphic terrane, eastern China, underwent partial melting in the Late Triassic during its exhumation. The primary partial melts experienced a decompressional fractional crystallization (DFC) process to produce plagioclase (Pl)-rich leucosome crystallized under eclogite to granulite facies conditions and K-feldspar (Kfs)-rich pegmatitic veins crystallized under amphibolite-facies conditions. In this study, our results demonstrate that the DFC process can cause decoupling between whole-rock Sr and Nd isotopes. The Pl-rich leucosome has εNd(t) values (–10.4 to ?15.0) and initial (87Sr/86Sr) ratios (0.708173–0.712476) very similar to those of the melanosome, but the Kfs-rich pegmatitic veins have homogeneous εNd(t) values (?14.8 to ?15.2) and significantly high initial (87Sr/86Sr) ratios (0.713882–0.716284). Our results also suggest that the DFC process can change zircon 176Yb/177Hf and 176Lu/177Hf isotopic ratios, with no effect on 176Hf/177Hf ratios or εHf (t) values. Zircon 176Yb/177Hf and 176Lu/177Hf ratios increase dramatically from the Pl-rich leucosome to the Kfs-rich pegmatitic veins, but zircon 176Hf/177Hf ratios (Pl-rich leucosomes = 0.282330 ± 0.000017; Kfs-rich pegmatitic veins = 0.282321 ± 0.000026) and εHf (t) values (Pl-rich leucosomes = ?10.9 ± 0.6; Kfs-rich pegmatitic veins = ?11.6 ± 0.8) remain almost unchanged. We propose that the isotopic decoupling between the Pl-rich leucosome and Kfs-rich pegmatitic vein might be caused by melt fractional crystallization occurring too rapidly to allow complete equilibrium between them.  相似文献   

12.
This paper presents detailed mineral chemical, element geochemical and Sr–Nd–Hf isotopic data for the Late Jurassic (155?±?4 Ma) lamprophyre dikes in the Liaodong Peninsula, NE China. The lamprophyres are shoshonitic and geochemically fall into three groups: Group I has relatively high SiO2 (52.5–57.0 wt.%), low MgO (5.5–8.3 wt.%) and compatible trace element (e.g. Cr?=?128–470 ppm) contents, high initial 87Sr/86Sr ratios (0.7093–0.7117), and low εNd (T) values (?9.6 to ?12.1); Group II has relatively low SiO2 (44.8–50.0 wt.%), high MgO (10.8–14.2 wt.%) and compatible trace element (e.g. Cr?=?456–1,041 ppm) contents, low initial 87Sr/86Sr ratios (0.7073–0.7087), and high εNd (T) values (?1.4 to ?2.9); Group III is transitional between the two in all elemental and isotopic compositions. Interpretation of the elemental and isotopic data suggests that the lamprophyric melts were derived by partial melting of subcontinental lithospheric mantle (SCLM) at a depth of 60–80 km (group I), decompression melting of upwelling asthenosphere at 60–100 km (group II), and mixing between the SCLM-derived and asthenosphere-derived melts (group III). It is assumed that the local SCLM was detached at a depth of 60–80 km by the 155 Ma ago. A continental arc-rifting related to the Palaeo-Pacific plate subduction is favored as a geodynamic force for such a cratonic lithosphere detachment.  相似文献   

13.
《International Geology Review》2012,54(13):1668-1690
The western Junggar Basin is located on the southeastern margin of the West Junggar terrane, Northwest China. Its sedimentary fill, magma petrogenesis, tectonic setting, and formation ages are important for understanding the Carboniferous tectonic evolution and continental growth of the Junggar terrane and the Central Asian Orogenic Belt. This paper documents a set of new zircon secondary ion mass spectrometry U–Pb geochronological and Hf isotopic data and whole-rock elemental and Sr–Nd isotopic analytical results for the Carboniferous strata and associated intrusions obtained from boreholes in the western Junggar Basin. The Carboniferous strata comprise basaltic andesite, andesite, and dacite with minor pyroclastic rocks, intruded by granitic intrusions with zircon secondary ion mass spectrometry U–Pb ages of 327–324 Ma. The volcanic rocks are calc-alkaline and show low high εNd(t) values (5.3–5.6) and initial 87Sr/86Sr (0.703561–0.703931), strong enrichment in LREEs, and some LILEs and depletion in Nb, Ta, and Ti. Furthermore, they also display high (La/Sm)N (1.36–1.63), Zr/Nb, and La/Yb, variable Ba/La and Ba/Th and constant Th/Yb ratios. These geochemical data, together with low Sm/Yb (1.18–1.38) and La/Sm (2.11–2.53) ratios, suggest that these volcanic rocks were derived from a 5–8% partial melting of a mainly spinel Iherzolite-depleted mantle metasomatized by slab-derived fluids and melts of some sediments in an island-arc setting. In contrast, the granitic intrusions represent typical adakite geochemical features of high Sr and low Y and Yb contents, with no significant Eu anomalies, high Mg#, and depleted εNd(t) (5.6–6.4) and εHf(t) (13.7–16.2) isotopic compositions, suggesting their derivation from partial melting of hot subducted oceanic crust. In combination with the previous work, the West Junggar terrane and adjacent western Junggar Basin are interpreted as a Mariana-type arc system driven by northwestward subduction of the Junggar Ocean, possibly with a tectonic transition from normal to ridge subduction commencing ca. at 331–327 Ma.  相似文献   

14.
《International Geology Review》2012,54(12):1389-1400
Post-orogenic mafic dikes are widespread across eastern Shandong Province, North China Craton, eastern China. We here report new U–Pb zircon ages and bulk-rock geochemical and Sr–Nd–Pb isotopic data for representative samples of these rocks. LA-ICP-MS U–Pb zircon analysis of two mafic dike samples yields consistent ages of 118.7 ± 0.25 million years and 122.4 ± 0.21 million years. These Mesozoic mafic dikes are characterized by high (87Sr/86Sr) i ranging from 0.7082 to 0.7087, low ?Nd(t) values from??17.0 to??17.5, 206Pb/204Pb from 17.14 to 17.18, 207Pb/204Pb from 15.44 to 15.55, and 208Pb/204Pb from 37.47 to 38.20. Our results suggest that the parental magmas of these dikes were derived from an ancient, enriched lithospheric mantle source that was metasomatized by foundered lower crustal eclogitic materials prior to magma generation. The mafic dikes underwent minor fractionation during ascent and negligible crustal contamination. Combined with previous studies, these findings provide additional evidence that intense lithospheric thinning beneath eastern Shandong occurred at ~120 Ma, and that this condition was caused by the removal/foundering of the lithospheric mantle and lower crust.  相似文献   

15.
The Roshtkhar area is located in the Khaf-Kashmar-Bardaskan volcano-plutonic belt to the northeastern Iran along the regional E–W trending Dorouneh Fault, northeastern of the Lut Block. There are several outcrops of subvolcanic rocks occurring mainly as dikes in the area, which intruded into Cenozoic intrusive rocks. We present U–Pb dating of zircons from a diabase dike and syenite rock using LA-ICP-MS that yielded an age of 1778 ± 10 Ma for the dike, indicating this Cenozoic dike has zircon xenocrysts inherited from deeper sources; and 38.0 ± 0.5 Ma, indicating an Late Eocene crystallization age for the syenite. Geochemically, the dikes typical of high-K calc-alkaline to shoshonitic magmas. Petrographic observations and major and trace element variations suggest that diabase melts underwent variable fractionation of clinopyroxene, olivine, and Fe-Ti oxides and minor crustal contamination during the differentiation process. Primitive mantle-normalized multi-element diagrams display enrichment in LILE, such as Rb, Ba, Th, U, and Sr compared to HFSE, as well as negative anomalies of Nb, Ta, P, and Ti, suggesting derivation from subduction-modified mantle. Chondrite-normalized REE plots show moderately LREE enriched patterns (<3.83 LaN/YbN <8.27), and no significant Eu anomalies. Geochemical modelling using Sm/Yb versus La/Yb and La/Sm ratios suggests a low-degree of batch melting (~1–3%) of a phlogopite-spinel peridotite source to generate the mafic dikes. The geochemical signatures suggest that the Roshtkhar mafic dikes cannot be related directly to subduction and likely resulted from melting of upper mantle in an extensional setting where the heat flow was provided from deeper levels. These dikes presumably derived the zircon xenocrysts from the assimilation of upper crust of Gondwanian basement. Processes responsible for partial melting of metasomatized lithospheric mantle and post-collision magmatism in NE Iran was triggered by heating due to asthenospheric upwelling in an extensional setting.  相似文献   

16.
《International Geology Review》2012,54(15):1746-1764
The Nantianwan mafic–ultramafic complex is situated in the northwest part of the Panxi district, southwest China. It consists predominantly of gabbros, gabbronorites, and lherzolites. LA–ICP–MS U–Pb zircon dating of the gabbronorites yields an age of 259.7 ± 0.6 million years, consistent with the ages of other mafic–ultramafic intrusions in the Emeishan large igneous province (ELIP). Gabbronorites and lherzolites host Cu–Ni sulphide ores. Cumulus texture is pronounced in these rocks, containing magnesium-rich olivine (up to 81.4% forsterite). SiO2 contents of the lherzolites range from 42.93 to 44.18 wt.%, whereas those of the gabbronorites vary between 44.89 and 52.76 wt.%. Analysed samples have low rare earth element (REE) contents (23.22–30.16 ppm for lherzolites and 25.21–61.05 ppm for gabbronorites). Both lherzolites and gabbronorites have similar chondrite-normalized REE patterns, suggesting that they are comagmatic. All samples are slightly enriched in large ion lithophile elements (LILEs, e.g. Rb, Ba, and Sr) relative to high field strength elements (HFSEs, e.g. Nb, Ta, and Ti), very similar to those of ocean island basalts (OIBs). The presence of cumulus textures and geochemical signatures indicates that fractional crystallization played an important role in the petrogenesis of these rocks. Initial (87Sr/86Sr) t (t?=?260 Ma) ratios and ?Nd(t) values of the mafic–ultramafic suite vary from 0.70542 to 0.70763, and??0.4 to 1.7, respectively. Compared to the Cu–Ni-bearing Baimazhai and Limahe intrusions in the ELIP, which were considerably contaminated by variable crustal materials, the Nantianwan complex exhibits much lower (87Sr/86Sr) t . Their ?Nd(t) versus (Th/Nb)PM ratios also indicate that the ore-bearing magmas did not undergo significant crustal contamination. In combination with (Tb/Yb)PM versus (Yb/Sm)PM modelling, we infer that the magmas originated from an incompatible elements-enriched spinel-facies lherzolite that itself formed by interaction between the Emeishan plume and the lithospheric mantle. Most plots of NiO versus Fo contents of olivine suggest that sulphides are separated from the parental magma by liquid immiscibility, which is also supported by bulk-rock Cu/Zr ratios of the lherzolites (7.04–102.67) and gabbronorites (0.88–5.56). We suggest that the gabbronorites and lherzolites experienced undersaturation to oversaturation of sulphur; the latter may be due to fractional crystallization in a high-level magma chamber, accounting for the sulphide segregation.  相似文献   

17.
The North Qilian orogenic belt (NQOB) has been defined as a subduction-collision zone between the Alxa Block and the Qilian Block during the Early Paleozoic. To constrain the post-collisional tectonic evolution of the NQOB, analyses of zircon U-Pb-Hf isotopes, whole-rock major, trace element and Sr-Nd-Pb isotope compositions of the newly discovered Early Devonian lamprophyres and diorites dikes from the Longshoushan area in southwestern margin of the Alxa Block were conducted. Zircon U-Pb dating yields emplacement ages of 400 ± 4 Ma and 403 ± 6 Ma for two lamprophyre dikes and 391 ± 3 Ma for two diorite dikes. The lamprophyres dikes are shoshonitic-high-K (calc-alkaline) in nature, and are characterized by SiO2 contents of 53.6–56.3 wt %, (87Sr/86Sr)i ratios of 0.7064 to 0.7072, εNd(t) values of 0.1–1.0, and zircon εHf(t) values of −8.0 to −2.9. The diorite dikes are high-K (calc-alkaline), and are characterized by MgO contents of 6.32–6.98 wt %, (87Sr/86Sr)i ratios of 0.7089–0.7137, εNd(t) values of −3.8 to −3.5, and zircon εHf(t) values of −9.9–0.4. Both the lamprophyre and diorite dikes show parallel enrichments in LREEs and LILEs and depletions in HREEs and HFSEs and have similar ratios of (206Pb/204Pb)i (17.587–18.133), (207Pb/204Pb)i (15.518–15.584) and (208Pb/204Pb)i (37.676–38.058). Geochemical and isotopic data suggest that the lamprophyre and diorite dikes were derived from low-degrees melts of amphibole- and phlogopite-bearing lherzolite and phlogopite-bearing lherzolite, respectively, in the spinel-garnet transition facies. Their parental magmas both experienced extensive fractional crystallization in a deep magma chamber and negligible crustal contamination during their ascent. Regarding the Palaeozoic tectonic development of the North Qilian orogenic belt, we propose that the Early Devonian lamprophyres and diorites possibly are related to North Qilian orogen unrooting and collapse and marking the end of the North Qilian orogenic events.  相似文献   

18.
下庄矿田“交点”型铀矿床成矿机理研究及勘查思路探讨   总被引:1,自引:0,他引:1  
冯志军  赖中信  莫济海  胡飞  阳卫 《矿床地质》2016,35(5):1047-1061
文章通过岩石学、主微量地球化学、岩脉定年和实际勘查成果的对比研究,表明下庄矿田的中基性岩脉对铀成矿的控制作用在岩性上没有专属性。通过对中基性岩脉进行U_Pb锆石同位素测年,发现"交点"型铀矿床成矿时代与中基性岩脉成岩时代存在着巨大的矿岩时差,岩脉成岩过程中不能为铀成矿提供热源及矿化剂CO_2。对流体作用敏感的U/Th、Pb/Ce、Ba/La、Cs/Rb比值和对流体作用不敏感元素Ce/Yb比值研究为"交点"型铀成矿存在地幔流体作用提供了佐证;通过Fe~(3+)、Fe~(2+)、K_2O、Na_2O和Al_2O_3等与SiO_2线性关系的研究表明,矿化与硅化和碱交代关系密切,与其他常量元素的关系不明显。研究结果显示,中基性岩脉对铀成矿的控制作用通过对构造裂隙的控制实现,所谓的"交点"控矿本质是硅化带型铀矿化通过"界面效应"控矿的特殊表现形式,其本质是由于不同岩浆岩的产状和机械强度有所不同所致。  相似文献   

19.
Mesozoic mafic dikes in the Gan-Hang tectonic belt (GHTB) provide an opportunity to explore both the nature of their mantle source(s) and the secular evolution of the underlying Mesozoic lithospheric mantle in the region. The geochronology and primary geochemical and Sr–Nd–Pb isotopic compositions of Group 1 (middle section of GHTB) and Group 2 (the rest of the section) dolerite dikes spanning the GHTB were investigated. K–Ar ages indicate that dikes of both groups were emplaced during the Cretaceous (131–69 Ma). The dikes are doleritic in composition and are enriched in both large ion lithophile elements (LILEs; e.g. Rb, Ba, and Pb) and light rare earth elements (LREEs), with a wide range of Eu anomalies, but are depleted in high field strength elements (HFSEs; e.g. Nb, Ta, and Ti) and heavy rare earth elements (HREEs). Dikes sampled in the middle section of the GHTB (Group 1) show more pronounced REE differentiation and a greater contribution from crustal material than those from the east and west sections (Group 2) and are similar to GHTB volcanic rocks in exhibiting a slight enrichment in LREEs. The dolerites are further characterized by a wide range in 87Sr/86Sr i ?=?0.7041–0.7110, 143Nd/144Nd i ?=?0.511951–0.512758, ?Nd t ?=?–10.4 to?+5.6, and Pb isotopic ratios (206Pb/204Pb i ?=?18.1–18.3, 207Pb/204Pb i ≈ 15.6, and 208Pb/204Pb i ?=?38.2–38.7). The dikes have undergone fractional crystallization of olivine, clinopyroxene, plagioclase, and Ti-bearing phases, except for dikes from the Anding area, which possibly experienced fractionation of plagioclase. Geochemically, all the dike samples originated from mantle sources ranging in composition from depleted to enriched that contained a component of foundered lower crust; crustal contamination during the ascent of these magmas was negligible. In the context of the late Mesozoic lithospheric extension across South China, mafic dike magmatism was likely triggered by the reactivation of deep faults, which promoted foundering of the lower crust and subsequent mantle upwelling in the GHTB.  相似文献   

20.
The Late Triassic igneous rocks in the Yidun terrane can provide vital insights into the evolution of Plaeo-Tethys in western China. We present new zircon U-Pb, whole-rock geochemistry, and Sr-Nd-Pb-Hf isotopic data for the Litang biotite monzogranites, Yidun terrane. The biotite monzogranites have a zircon U-Pb age of 206.1±1.0 Ma(MSWD=1.9,n=30), which indicates Late Triassic magmatism. The biotite monzogranites display I-type affinity, high Na_2O(3.38-3.60 wt%) contente,medii SiO_2(67.12-69.13 wt%), and low P_2 O_5 contents(0.10~0.12 wt%). They enriched in Rb,and Ba and depleted in Nb and Ta, with negative Eu anomalies(Eu/Eu*=0.74—0.81). They have evolved Sr-Nd-Pb-Hf isotopic composition, i.e.,(~(87) Sr/~(86 )Sr)i=0.714225 to 0.714763, negative ?_(Nd(t)) values of -2.0 to-2.6 with two-stage Nd model ages ranging from 1.01 to 1.05 Ga, negative ?_(Ht)(t)) values o f-3.4 to-4.1 with two-stage Hf model ages of 1.85 to1.88 Ga, suggesting a matured crustal sources. Their low Al_2O_3/TiO_2 ratios and medium Cao/Na_2O ratios, medium Mg~# and SiO_2 contents, low [molar Al_2O_3/(MgO+FeO~T)] values, and high [molar Cao/(MgO+FeO~T)] values indicate that the Litang biotite monzogranite was formed by partial melting of metabasaltic rocks. Based on the previous studies, we propose that the Litang biotite monzogranite derived from the westward subduction and closure of the Ganzi-Litang ocean during the Late Triassic-The mantle wedge-derived mafic melts provided sufficient heat for partial melting of ancient metabasalt protolith within the middle-lower crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号