首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
ABSTRACT

The east–central part of Jilin Province, NE China, hosts an important polymetallic metallogenic district that contains more than 10 recently discovered large-, medium-, and small-scale Mo deposits. The Mo deposits in this area include porphyry-, skarn-, and quartz vein-type mineralization, of which the porphyry-type deposits dominate. Few studies of these mineralization-related granitoids have been undertaken. Here, we present the results of a systematic regional survey of the geochemistry and geochronology of Mo mineralization-related granites in this area. Zircon U–Pb dating of the Fuanpu, Jidetun, Shuangshan, and Jiapigou granites, all of which are associated with Mo mineralization, yielded weighted mean 206Pb/238U ages of 167.05 ± 0.81, 170.91 ± 0.83, 183.8 ± 1.1, and 182.3 ± 2.2 Ma, respectively, indicating that these plutons were emplaced during the Early–Middle Jurassic. They have SiO2 = 62.59–73.5 wt.%, Al2O3 = 13.74–16.19 wt.%, and K2O/Na2O = 0.8–2.18. Chemically, they are metaluminous to peraluminous and belong to the high-K calc-alkaline to shoshonitic series. Moreover, they are enriched in large ion lithophile elements and light rare earth elements, and are depleted in high field strength elements, which are characteristics of I type granite. Whole rock Sr–Nd–Pb isotopic compositions of these granitoids are similar (initial 87Sr/86Sr = 0.70404 to 0.70554; εNd(t) = –0.9 to 2.4; (206Pb/204Pb)t = 15.549–15.567, (207Pb/204Pb)t = 18.035–18.530, (208Pb/204Pb)t = 37.966–38.229) and altogether suggest that the magmas from which the Mo deposits were generated originated from the mantle or juvenile crust. Combining our results with regional Jurassic tectonic setting, we conclude that the mineralization of these granitoids reflected Pacific plate subduction which induced magma underplating and promoted the remelting of the juvenile crust, resulting in voluminous granitic magma.  相似文献   

2.
《International Geology Review》2012,54(14):1763-1785
Central Jilin Province lies along the eastern edge of the Xing–Meng orogenic belt of northeast China. At least 10 Mo deposits have been discovered in this area, making it the second-richest concentration of Mo resources in China. To better understand the formation and distribution of porphyry Mo deposits in the area, we investigated the geological characteristics of the deposits and applied zircon UPb and molybdenite Re–Os isotope dating to constrain the age of mineralization. Our new geochronological data show the following: the Jidetun Mo deposit yields molybdenite Re–Os model ages of 164.6–167.1 Ma, an isochron age of 168 ± 2.5 Ma, and a weighted mean model age of 165.9 ± 1.2 Ma; the Houdaomu Mo deposit yields molybdenite Re–Os model ages of 167.4–167.7 Ma, an isochron age of 168 ± 13 Ma, and a weighted mean model age of 167.5 ± 1.2 Ma; and the Chang’anpu Mo deposit yields a zircon U–Pb age for granodiorite porphyry of 166.9 ± 1.5 Ma (N = 16). These new age data, combined with existing molybdenite Re–Os dates, show that intense porphyry Mo mineralization was coeval with magmatism during the Middle Jurassic (167.8 ± 0.4 Ma, r > 0.999). The geotectonic mechanisms responsible for Mo mineralization were probably related to subduction of the Palaeo-Pacific plate beneath the Eurasian continent. Combining published molybdenite Re–Os and zircon U–Pb ages for northeast China, the Mo deposits are shown to have been formed during multiple events coinciding with periods of magmatic activity. We identified three phases of mineralization, two of which had several stages: the Caledonian (485–480 Ma); the Indosinian comprising the Early–Middle Triassic (248–236 Ma) and Late Triassic (226–208 Ma) stages; and the Yanshanian phase comprising the Early–Middle Jurassic (202–165 Ma), Late Jurassic–early Early Cretaceous (154–129 Ma), and Early Cretaceous (114–111 Ma) stages. Although Mo deposits formed during each phase/stage, most of the mineralization occurred during the Early–Middle Jurassic.  相似文献   

3.
The Luming porphyry Mo deposit and the Xulaojiugou skarn Pb–Zn deposit are located in the southeast Lesser Xing’an Range, NE China. They are about 15 km apart, and are both related to monzogranite. Mo orebodies in the Luming deposit are hosted within the medium- to fine-grained monzogranite, while Pb–Zn orebodies in the Xulaojiugou deposit are hosted by the contact zone between the medium-grained monzogranite and the marbles of the early Cambrian Qianshan Formation.LA-ICP-MS zircon U–Pb dating of the ore-related monzogranite in the Luming deposit yields crystallization age of 180.7 ± 1.6 Ma, and the medium-grained and porphyritic monzogranites from the Xulaojiugou deposit yield crystallization ages of 181.2 ± 1.1 Ma and 179.9 ± 1.0 Ma, respectively. Analyses of seven molybdenite samples from the Luming deposit display Re–Os isochron age of 177.9 ± 2.6 Ma. These results indicate that the mineralization in the Luming and Xulaojiugou deposits occurred at about 181–178 Ma. These two deposits are genetically linked and belong to a porphyry-skarn metallogenic system. Combined with the previously reported geochronological data for ore deposits in adjacent areas, we consider that the early Jurassic is an important epoch for Mo and Pb–Zn mineralization in the Lesser Xing’an Range.The monzogranites from the Luming and Xulaojiugou deposits are enriched in and Rb, Th, U, Pb and light rare earth elements (LREEs), and are depleted in Ba, Nb, Ta, P, Ti and Eu. They have positive εHf(t) values of 1.0–4.0 with two-stage Hf model ages (TDM2) of 868–1033 Ma. Whole-rock Sr and Nd isotopes show restricted ranges of initial compositions, with (87Sr/86Sr)i between 0.706346 and 0.707384 and εNd(t) between −3.5 and −1.8. These data indicate that their primary magmas originated from the partial melting of a depleted lithospheric mantle which had been metasomatized by subducted slab-derived fluids/melts. The early Jurassic magmatic–metallogenic events in the Lesser Xing’an Range are interpreted as a response to the subduction of the Paleo-Pacific Plate.  相似文献   

4.
The east-central part of Jilin Province, located on the eastern continental margin of northeast China along the eastern Xing–Meng orogenic belt, hosts more than 10 large- and medium-scale Mo deposits. The major types of mineralization include porphyry, skarn, and quartz vein. To better understand the formation and distribution of porphyry Mo deposits in this area, we investigated the geological characteristics of the deposits and applied molybdenite Re–Os isotope dating to constrain the age and source of mineralization. The results, combined with existing data, show that: (a) the Daheishan Mo deposit yields an isochron age of 168.7 ± 3.1 Ma; (b) the Shuangshan Mo deposit yields an isochron age of 171.6 ± 1.6 Ma; (c) the Liushengdian Mo deposit yields a weighted mean model age of 168.7 ± 1.4 Ma; (d) the Jiapigou Mo deposit yields a weighted mean model age of 196 ± 4 Ma; and (e) the Sancha Mo deposit yields a weighted mean model age of 183.1 ± 1.8 Ma. Therefore, the Mo mineralization occurred in the Early–Middle Jurassic (196–167 Ma), during the late stages of magmatism or during the late evolution of magma chambers. The geodynamic setting at this time was dominated by subduction of the paleo-Pacific Plate beneath the Eurasian continent. The rhenium content of molybdenite varies from 0.2 to 99.7 ppm, suggesting that the ore-forming materials may come from a crustal source or a mixed crustal and mantle source.  相似文献   

5.
The Carris orebody consists of two partially exploited W–Mo–Sn quartz veins formed during successive shear stages and multipulse fluid fillings. They cut the Variscan post-D3 Gerês I-type granite. The most important ore minerals are wolframite, scheelite, molybdenite and cassiterite. There are two generations of wolframite. The earlier generation of wolframite is rare and has the highest WO4Mn content (91 mol%) and the most common wolframite contains 26–57 mol% WO4Mn. Re–Os dating of molybdenite from the ore quartz veins and surrounding granite yields ages of 279 ± 1.2 Ma and 280.3 ± 1.2 Ma, respectively which are in very good agreement with the previous ID-TIMS U–Pb zircon age for the Carris granite (280 ± 5 Ma).3He/4He ratio of pyrite ranging between 0.73 and 2.71 Ra (1 Ra = 1.39 × 10 6) and high 3He/36Ar (0.8–5 × 10 3) indicate a mixture of a crustal radiogenic helium fluid with a mantle derived-fluid.The fluid inclusion studies on quartz intergrown with wolframite and scheelite, beryl and fluorite reveal that two distinct fluid types were involved in the genesis of this deposit. The first was a low to medium salinity aqueous carbonic fluid (CO2 between 4 and 14 mol%) with less than 1.95 mol% N2, which was only found in quartz associated with wolframite. The other was a low salinity aqueous fluid found in all the four minerals. The homogenization temperatures indicate minimum entrapment temperatures of 226–310 °C (average 280 °C) for the H2O–CO2–N2–NaCl fluid and average temperatures of 266 °C for scheelite and 242 °C, 190 °C and 160 °C for the last generations of beryl, fluorite and quartz, respectively. It was estimated that wolframite was deposited ~ 7 km depth, assuming a lithostatic pressure, probably due to strong pressure fluctuation caused by seismic events triggered by brittle tectonics during the exhumation event. Precipitation of scheelite and sulphides took place later, at the same depth, but under a hydrostatic or suprahydrostatic pressure regime, and probably caused by mixing between the magmatic–hydrothermal fluid and meteoric waters that deeply penetrated the basement during post-Variscan decompression.  相似文献   

6.
The Changjiang uranium ore field, which contains >10,000 tonnes of recoverable U with a grade of 0.1–0.5%, is hosted by Triassic two-mica and Jurassic biotite granites, and is one of the most important uranium ore fields in South China. The minerals associated with alteration and mineralization can be divided into two stages, namely syn-ore and post-ore. The syn-ore minerals are primarily quartz, pitchblende, hematite, hydromica, chlorite, fluorite, and pyrite; the post-ore minerals include quartz, calcite, fluorite, pyrite, and hematite. The fluid inclusions of the early syn-ore stage characteristically contain O2, and those of the late syn-ore and post-ore stage contain H2 and CH4. The fluid inclusions in quartz of the syn-ore stage include H2O, H2O–CO2, and CO2 types, and they occur in clusters or along trails. Homogenization temperatures (Th) for the H2O–CO2 and two-phase H2O inclusions range from 106 °C to >350 °C and cluster in two distinct groups for each type; salinities are lower than 10 wt% NaCl equiv. The ore-forming fluids underwent CO2 effervescence or phase separation at ∼250 °C under a pressure of 1000–1100 bar. The U/Th values of the altered granites are lowest close to the ore, increase outwards, but subsequently decrease close to unaltered granites. From the unaltered granites to the ore, the lowest Fe2O3/FeO values become lower and the highest values higher. The REE patterns of the altered granites and the ores are similar to each other. The U contents of the ores show a positive correlation with total REE contents but a negative correlation with LREE/HREE ratios, indicating the pitchblende is REE-bearing and selectively HREE-rich. The δEu values of the ore show a positive correlation with U contents, indicating the early syn-ore fluids were oxidizing. The δCe values show a negative correlation, indicating the later mineralization environment became reducing. The water–rock interactions of the early syn-ore stage resulted in oxidization of altered granites and reduction of the ore-forming fluids, and it was this reduction that led to the uranium mineralization. During alteration in the early syn-ore stage, the oxidizing fluids leached uranium from granites close to faults, and Fe2O3/FeO ratios increased in the alteration zones. The late syn-ore and post-ore alteration decreased the Fe2O3/FeO ratios in the alteration zones. The δ18OW–SMOW values of the ore-forming fluids range from −1.8‰ to 5.4‰, and the δDW–SMOW values range from −104.4‰ to −51.6‰, suggesting meteoric water. The meteoric water underwent at least two stages of water–rock interaction: the first caused the fluids to become uranium-bearing, and the second stage, which was primarily associated with ore-bearing faults, led to uranium deposition as pitchblende, accompanied by CO2 effervescence.  相似文献   

7.
The Sar-Cheshmeh porphyry Cu–Mo deposit is located in Southwestern Iran (∼65 km southwest of Kerman City) and is associated with a composite Miocene stock, ranging in composition from diorite through granodiorite to quartz-monzonite. Field observations and petrographic studies demonstrate that the emplacement of the Sar-Cheshmeh stock took place in several pulses, each with associated hydrothermal activity. Molybdenum was concentrated at a very early stage in the evolution of the hydrothermal system and copper was concentrated later. Four main vein Groups have been identified: (I) quartz+molybdenite+anhydrite±K-feldspar with minor pyrite, chalcopyrite and bornite; (II) quartz+chalcopyrite+pyrite±molybdenite±calcite; (III) quartz+pyrite+calcite±chalcopyrite±anhydrite (gypsum)±molybdenite; (IV) quartz±calcite±gypsum±pyrite±dolomite. Early hydrothermal alteration produced a potassic assemblage (orthoclase-biotite) in the central part of the stock, propylitic alteration occurred in the peripheral parts of the stock, contemporaneously with potassic alteration, and phyllic alteration occurred later, overprinting earlier alteration. The early hydrothermal fluids are represented by high temperature (350–520 °C), high salinity (up to 61 wt% NaCl equivalent) liquid-rich fluid inclusions, and high temperature (340–570 °C), low-salinity, vapor-rich inclusions. These fluids are interpreted to represent an orthomagmatic fluid, which cooled episodically; the brines are interpreted to have caused potassic alteration and deposition of Group I and II quartz veins containing molybdenite and chalcopyrite. Propylitic alteration is attributed to a liquid-rich, lower temperature (220–310 °C), Ca-rich, evolved meteoric fluid. Influx of meteoric water into the central part of the system and mixing with magmatic fluid produced albitization at depth and shallow phyllic alteration. This influx also caused the dissolution of early-formed copper sulphides and the remobilization of Cu into the sericitic zone, the main zone of the copper deposition in Sar-Cheshmeh, where it was redeposited in response to a decrease in temperature.  相似文献   

8.
The southern Great Xing'an Range is one of the most important metallogenic belts in northern China, and contains numerous Pb–Zn–Ag–Cu–Sn–Fe–Mo deposits. The Huanggang iron–tin polymetallic skarn deposit is located in the Sn-polymetallic metallogenic sub-belt. Skarns and iron orebodies occur as lenses along the contact between granite plutons and the Lower Permian Huanggangliang Formation marble or Dashizhai Formation andesite. Field evidence and petrographic observations indicate that the three stages of hydrothermal activity, i.e., skarn, oxide and sulfide stages, all contributed to the formation of the Huanggang deposit.The skarn stage is characterized by the formation of garnet and pyroxene, and high-temperature, hypersaline hydrothermal fluids with isotopic compositions that are similar to those of typical magmatic fluids. These fluids most likely were generated by the separation of brine from a silicate melt instead of being a product of aqueous fluid immiscibility. The iron oxide stage coincides with the replacement of garnet and pyroxene by amphibole, chlorite, quartz and magnetite. The hydrothermal fluids of this stage are represented by L-type fluid inclusions that coexist with V-type inclusions with anomalously low δD values (approximately − 100 to − 116‰). The decrease in ore fluid δ18OH2O values with time coincides with marked decreases in the fluid salinity and temperature. Based on the fluid inclusion and stable isotopic data, the ore fluid evolved by boiling of the magmatic brine. The sulfide stage is characterized by the development of sphalerite, chalcopyrite, fluorite, and calcite veins, and these veins cut across the skarns and orebodies. The fluids during this stage are represented by inclusions with a variable but continuous sequence of salinities, mainly low-salinity inclusions. These fluids yield the lowest δ18OH2O values and moderate δD values ( − 1.6 to − 2.8‰ and − 101 to − 104‰, respectively). The data indicate that the sulfide stage fluids originated from the mixing of residual oxide-stage fluids with various amounts of meteoric water. Boiling occurred during this stage at low temperatures.The sulfur isotope (δ34S) values of the sulfides are in a narrow range of − 6.70 to 4.50‰ (mean =  1.01‰), and the oxygen isotope (δ18O) values of the magnetite are in a narrow range of 0.1 to 3.4‰. Both of these sets of values suggest that the ore-forming fluid is of magmatic origin. The lead isotope compositions of the ore (206Pb/204Pb = 18.252–18.345, 207Pb/204Pb = 15.511–15.607, and 208Pb/204Pb = 38.071–38.388) are consistent with those of K-feldspar granites (206Pb/204Pb = 18.183–18.495, 207Pb/204Pb = 15.448–15.602, 208Pb/204Pb = 37.877–38.325), but significantly differ from those of Permian marble (206Pb/204Pb = 18.367–18.449, 207Pb/204Pb = 15.676–15.695, 208Pb/204Pb = 38.469–38.465), which also suggests that the ore-forming fluid is of magmatic origin.  相似文献   

9.
The large-scale Duobaoshan porphyry Cu–Mo–(Au) deposit is located at the north segment of the Da Hinggan Mountains, northeast China. Six molybdenite samples from the Duobaoshan deposit were selected for Re–Os isotope measurement to define the mineralization age of the deposit, yieldings a Re–Os isochron age of 475.9 ± 7.9 Ma (2σ), which is accordant with the Re–Os model ages of 476.6 ± 6.9–480.2 ± 6.9 Ma. This age is consistent with the age of the related granodiorite porphyry, which was dated as 477.2 ± 4 Ma by zircon U–Pb analysis using LA-ICP-MS. These ages disagree with the previous K–Ar age determinations that suggest a correlation of intrusive rocks of the Duobaoshan area with the Hercynian intrusive rocks of Carboniferous–Permian age. These ages demonstrate that the Duobaoshan granodiorite porphyry and related Cu–Mo deposit occurred in the Early Ordovician. The rhenium content of molybdenite varies from 290.9 to 728.2 μg/g, with an average content of 634.8 μg/g. The high rhenium content in molybdenite of the Duobaoshan deposit suggests that the ore-forming materials may be mainly of mantle source.  相似文献   

10.
The Nanyangtian skarn-type scheelite deposit is an important part of the Laojunshan W–Sn polymetallic metallogenic region in southeastern Yunnan Province, China. The deposit comprises multiple scheelite ore bodies; multilayer skarn-type scheelite ore bodies are dominant, with a small amount of quartz vein-type ore bodies. Skarn minerals include diopside, hedenbergite, grossular, and epidote. Three mineralization stages exist: skarn, quartz–scheelite, and calcite. The homogenization temperatures of fluid inclusions in hydrothermal minerals that formed in different paragenetic phases were measured as follows: 221–423 °C (early skarn stage), 177–260 °C (quartz–scheelite stage), and 173–227 °C (late calcite stage). The measured salinity of fluid inclusions ranged from 0.18% to 16.34% NaCleqv (skarn stage), 0.35%–7.17% NaCleqv (quartz–scheelite stage), and 0.35%–2.24% NaCleqv (late calcite vein stage). Laser Raman spectroscopic studies on fluid inclusions in the three stages showed H2O as the main component, with N2 present in minor amounts. Minor amounts of CH4 were found in the quartz–scheelite stage. It was observed that the homogenization temperature gradually reduced from the early to the late mineralization stages; moreover, δ13CPDB values for ore-bearing skarn in the mineralization period ranged from ? 5.7‰ to ? 6.9‰ and the corresponding δ18OSMOW values ranged from 5.8‰ to 9.1‰, implying that the ore-forming fluid was mainly sourced from magmatic water with a minor amount of meteoric water. Collectively, the evidence indicates that the formation of the Nanyangtian deposit is related to Laojunshan granitic magmatism.  相似文献   

11.
Porphyry copper deposits (PCDs) in Iran are dominantly distributed in Arasbaran (NW Iran), the middle segment of the Urumieh–Dokhtar Magmatic Arc (UDMA), and Kerman (central SE Iran), with minor occurrences in eastern Iran and the Makran arc. This paper provides a temporal–spatial and geodynamic framework of the Iranian porphyry Cu (Mo–Au) systems, based on geochronologic data obtained from zircon U–Pb and molybdenite Re–Os dating of host porphyritic rocks and molybdenites in 15 major PCDs. The dating results define a long metallogenic duration (39–6 Ma), and suggest a long history of tectonic evolution from the accretionary orogeny related to early Cenozoic closure of the Neo-Tethys Ocean to subsequent collisional orogeny for the Iranian porphyry copper systems.The oldest porphyry mineralization occurred in the eastern part of Iran after the closure of a branch of the Neo-Tethyan (Sistan) Ocean between the Lut and Afghan blocks in the late Eocene (39–37 Ma). This was followed by mineralization in the Kerman porphyry copper belt over a time interval of about 20 m.y., where two metallogenic epochs have been recognized, including late Oligocene (29–27 Ma) and Miocene (18–6 Ma). The Bondar-e-Hanza deposit formed in the late Oligocene, while and the remaining dated deposits belong to Miocene epoch. According to the deposits' characteristics and their ages, the Miocene epoch can be divided into early, middle, and late stages. The Darreh Zar, Bakh Khoshk, Chah Firouzeh and Sar Kuh deposits formed during the early–middle Miocene. The largest porphyry deposits occur in the middle stage during the middle Miocene (14–11 Ma) and include the Sar Cheshmeh, Meiduk, Dar Alu and Now Chun deposits. These deposits were formed during crustal thickening, uplift, and rapid exhumation of the belt. The final stage of porphyry mineralization occurred during the late Miocene (9–6 Ma), and formed the Iju, Kerver, Kuh Panj and Abdar deposits.There were two porphyry mineralization stages in the Arasbaran porphyry copper belt in NW Iran, including an older late Oligocene (29–27 Ma) and a younger early Miocene (22–20 Ma) events. The Haft Cheshmeh deposit belongs to the older stage, and the world-class Sungun and Masjed Daghi deposits formed during the early Miocene.In the middle segment of the UDMA (Saveh–Yazd porphyry copper belt), PCDs formed during middle Miocene time (17–15 Ma). The geochronological results reveal that the porphyry mineralization moved from the northwest to southeast of UDMA over the time.Our dating results, combined with the possible late Eocene–Oligocene timing for collision between the Arabian and Iranian plates, support a model for Iranian PCD formation by partial melting of previously subduction-modified lithosphere in a post-subduction and post-collisional tectonic setting.  相似文献   

12.
The Tuwu–Yandong porphyry Cu belt is located in the Eastern Tianshan mountains in the eastern Central Asian Orogenic Belt. Petrochemical and geochronological data for intrusive and volcanic rocks from the Tuwu and Yandong deposits are combined with previous studies to provide constraints on their petrogenesis and tectonic affinity. New LA–ICP–MS zircon U–Pb ages of 348.3 ± 6.0 Ma, 339.3 ± 2.2 Ma, 323.6 ± 2.5 Ma and 324.1 ± 2.3 Ma have been attained from intrusive units associated with the deposits, including diorite, plagiogranite porphyry, quartz albite porphyry and quartz porphyry, respectively. The basalt and andesite, which host part of the Cu mineralization, are tholeiitic with high Al2O3, Cr, Ni and low TiO2 contents, enriched LREEs and negative HFSE (Nb, Ta, Zr, Ti) anomalies consistent with arc magmas. Diorites are characterized by low SiO2 content but high MgO, Cr and Ni contents, similar to those of high-Mg andesites. The parental magma of the basalt, andesite and diorite is interpreted to have been derived from partial melting of mantle-wedge peridotite that was previously metasomatized by slab melts. The ore-bearing plagiogranite porphyry is characterized by high Na2O, Sr, Cr and Ni contents, low Y and Yb contents, low Na2O/K2O ratios and high Sr/Y ratios and high Mg#, suggesting an adakitic affinity. The high εNd(t) (5.02–9.16), low ISr (0.703219–0.704281) and high εHf(t) (8.55–12.99) of the plagiogranite porphyry suggest they were derived by a partial melting of the subducted oceanic crust followed by adakitic melt-mantle peridotite interaction. The quartz albite porphyry and quartz porphyry are characterized by similar Sr–Nd–Hf isotope but lower Mg# and whole-rock (La/Yb)N ratios to the plagiogranite porphyry, suggesting they were derived from juvenile lower crust, and negative Eu anomalies suggest fractionation of plagioclase. We propose that a flat subduction that started ca. 340 Ma and resulted in formation of the adakitic plagiogranite porphyry after a period of “steady” subduction, and experienced slab rollback at around 323 Ma.  相似文献   

13.
《International Geology Review》2012,54(12):1481-1491
ABSTRACT

Liaoning Province in China is an area known for the occurrence of numerous copper and/or molybdenum deposits of variable size. However, the age of mineralization and tectonic setting in this region are still a subject of debate. In this study we describe the geology of these deposits and apply zircon U–Pb and molybdenite Re–Os isotopic dating to constrain their ages and define the metallogenic epochs of this province. The Huatong Cu–Mo deposit yields molybdenite Re–Os model ages of 127.6–126.3 Ma and an isochron age of 127.4 ± 0.7 Ma. The Dongbeigou Mo deposit yields molybdenite Re–Os model ages of 132.6–127.1 Ma, an isochron age of 128.1 ± 5.1 Ma, and a zircon U–Pb age of 129.4 ± 0.3 Ma for the associated monzogranite. The granodiorite associated with the Wanbaoyuan Cu–Mo deposit yields a zircon U–Pb age of 128.4 ± 1.1 Ma; the plagiogranite associated with the Yaojiagou Mo deposit yields an age of 167.5 ± 0.9 Ma; and the biotite–plagioclase gneiss from the Shujigou Cu deposit yields an age of 2549.4 ± 5.6 Ma. These results, together with previous geochronology data, show that intense Cu–Mo porphyry and skarn mineralization were coeval with Early–Middle Jurassic and Early Cretaceous granitic magmatism. The former was associated with the orogeny that followed the collision of the Siberian and North China plates and the resulting closure of the palaeo-Asian Ocean, and the latter with rifting that followed the subduction of the palaeo-Pacific Plate and associated lithospheric thinning. Volcanogenic massive sulfide Cu deposit. mineralization took place much earlier, in the late Archaean, and was related to continent–continent collision, palaeo-ocean closure, the formation of a united continental landmass, bimodal volcanism, magma emplacement, and subsequent metamorphism and deformation of syn-collisional granites.  相似文献   

14.
The Central Asian metallogenic domain (CAMD) is a multi-core metallogenic system controlled by boundary strike-slip fault systems. The Balkhash metallogenic belt in Kazakhstan, in which occur many large and super-large porphyritic Cu–Mo deposits and some quartz vein- and greisen-type W–Mo deposits, is a well-known porphyritic Cu–Mo metallogenic belt in the CAMD. In this paper 11 molybdenite samples from the western segment of the Balkhash metallogenic belt are selected for Re–Os compositional analyses and Re–Os isotopic dating. Molybdenites from the Borly porphyry Cu deposit and the three quartz vein-greisen W–Mo deposits—East Kounrad, Akshatau and Zhanet—all have relatively high Re contents (2712–2772 μg/g for Borly and 2.267–31.50 μg/g for the other three W–Mo deposits), and lower common Os contents (0.670–2.696 ng/g for Borly and 0.0051–0.056 ng/g for the other three). The molybdenites from the Borly porphyry Cu–Mo deposit and the East Kounrad, Zhanet, and Akshatau quartz vein- and greisen-type W–Mo deposits give average model Re–Os ages of 315.9 Ma, 298.0 Ma, 295.0 Ma, and 289.3 Ma respectively. Meanwhile, molybdenites from the East Kounrad, Zhanet, and Akshatau W–Mo deposits give a Re–Os isochron age of 297.9 Ma, with an MSWD value of 0.97. Re–Os dating of the molybdenites indicates that Cu–W–Mo metallogenesis in the western Balkhash metallogenic belt occurred during Late Carboniferous to Early Permian (315.9–289.3 Ma), while the porphyry Cu–Mo deposits formed at 316 Ma, and the quartz vein-greisen W–Mo deposits formed at 298 Ma. The Re–Os model and isochron ages thus suggest that Late Carboniferous porphyry granitoid and pegmatite magmatism took place during the late Hercynian movement. Compared to the Junggar-East Tianshan porphyry Cu metallogenic belt in northwestern China, the formation of the Cu–Mo metallogenesis in the Balkhash metallogenic belt occurred between that of the Tuwu-Yandong in East Tianshan and the Baogutu porphyry Cu deposits in West Junggar. Collectively, the large-scale Late Carboniferous porphyry Cu–Mo metallogenesis in the Central Asian metallogenic domain is related to Hercynian tectono-magmatic activities.  相似文献   

15.
16.
《International Geology Review》2012,54(10):1145-1160
Lanjiagou is a porphyry Mo deposit in terms of its alteration zonation and mineralization associated with granitic intrusions and predominance of quartz vein-hosted molybdenum mineralization. It is the largest Mo deposit in North China Craton (404,000 t). There is an intimate spatial/temporal association between all stages of mineralization and Early Jurassic granitic intrusions at Lanjiagou. Most of the molybdenum was emplaced during the principal hydrothermal (PH) stage (184.6 ± 1.3 – 185.6 ± 1.4 Ma), contemporaneously with intrusion of fine-grained porphyritic granite (188.9 ± 1.2 Ma) into a granite batholith (193 ± 3 Ma). The PH mineralization stage is mainly hosted by a quartz-dominated stockwork associated with phyllic alteration in the fine-grained porphyritic granite. This stage was followed by the late hydrothermal (LH) activity. Thick Mo-rich quartz veins were emplaced during the LH stage and cut the porphyry ore bodies. A ring breccia zone formed during the last hydrothermal stage and apparently cuts both the porphyry and the quartz vein ore bodies. The main hydrothermal vein stages have predominantly concentric and radial vein orientations centred on the ring breccia zone. Most of the concentric veins have shallow dips, whereas the radial veins are subvertical. The LH veins have predominantly NEE and NW orientations in the deposit and are moderately inclined. We surmise that the veining was controlled by the local stress regime generated by the intrusion of a large, deep pluton that we interpreted to be the source of the granites, the breccia zone, and the molybdenum mineralization. Resurgence within the magma chamber reactivated the steep concentric structures in a reverse sense, and accumulation of magmatic and/or fluid pressure resulted in explosive brecciation, producing the ring breccia zone. A predominantly late set of NW-trending, post-ore felsic dikes, associated with the regional structures, are a consequence of far-field stresses exceeding local stresses in the deposit.  相似文献   

17.
This study presents new zircon U–Pb geochronology, geochemistry, and zircon Hf isotopic data of volcanic and subvolcanic rocks that crop out in the Bayanhushuo area of the southern Great Xing’an Range (GXR) of NE China. These data provide insights into the tectonic evolution of this area during the late Mesozoic and constrain the evolution of the Mongol–Okhotsk Ocean. Combining these new ages with previously published data suggests that the late Mesozoic volcanism occurred in two distinct episodes: Early–Middle Jurassic (176–173 Ma) and Late Jurassic–Early Cretaceous (151–138 Ma). The Early–Middle Jurassic dacite porphyry belongs to high-K calc-alkaline series, showing the features of I-type igneous rock. This unit has zircon εHf(t) values from +4.06 to +11.62 that yield two-stage model ages (TDM2) from 959 to 481 Ma. The geochemistry of the dacite porphyry is indicative of formation in a volcanic arc tectonic setting, and it is derived from a primary magma generated by the partial melting of juvenile mafic crustal material. The Late Jurassic–Early Cretaceous volcanic rocks belong to high-K calc-alkaline or shoshonite series and have A2-type affinities. These volcanics have εHf(t) and TDM2 values from +5.00 to +8.93 and from 879 to 627 Ma, respectively. The geochemistry of these Late Jurassic–Early Cretaceous volcanic rocks is indicative of formation in a post-collisional extensional environment, and they formed from primary magmas generated by the partial melting of juvenile mafic lower crust. The discovery of late Mesozoic volcanic and subvolcanic rocks within the southern GXR indicates that this region was in volcanic arc and extensional tectonic settings during the Early–Middle Jurassic and the Late Jurassic–Early Cretaceous, respectively. This indicates that the Mongol–Okhotsk oceanic plate was undergoing subduction during the Early–Middle Jurassic, and this ocean adjacent to the GXR may have closed by the Late Middle Jurassic–Early Late Jurassic.  相似文献   

18.
19.
《International Geology Review》2012,54(15):1897-1913
ABSTRACT

Serpentinites from Junan (JN), Rizhao (RZ), and Rongcheng (RC) in the Sulu ultra-high-pressure (UHP) terrane, China, were analysed for U–Pb zircon geochronology, mineral chemistry, whole-rock major and trace element chemistry (including rare-earth elements (REEs) and platinum-group elements (PGEs)), and Re–Os isotopes, in order to better constrain their petrogenesis and geodynamic process. The serpentinite zircons yield two age groups: 731 ± 10 to 780 ± 10 Ma for relic magmatic zircon cores, which may indicate early crystallization and emplacement of the peridotite in the Yangtze crust, and 209 ± 2 to 218 ± 3 Ma for metamorphic zircon, which coincides with Triassic UHP metamorphism. The spinels in the serpentinites exhibit significant Cr# variation (0.6–0.91) and have undergone multi-stage metamorphism. The serpentinites are characterized by enrichment in incompatible trace elements, low Ni and IPGE concentrations, and high Pd/Ir ratios, and the bulk-rock major elements plot in the ultramafic cumulate region. Their Re and Os concentrations are similar to those of typical orogenic peridotite, but they have high 187Os/188Os ratios (0.12433–0.14423). We believe that the serpentinite’s protolith consisted of cumulates from an asthenosphere-derived melt that intruded into the continental crust of the Yangtze craton in the Neoproterozoic. These cumulates were later subducted and metamorphosed during the subduction of the Yangtze craton in the Triassic. The serpentinites underwent melt–rock interactions and fluid enrichment, both prior to and during serpentinization.  相似文献   

20.
The Middle–Lower Yangtze River Valley is one of the most important metallogenic belts in China, hosting numerous Cu–Fe–Au–Mo deposits. The Taochong deposit is located in the northern part of the Fanchang iron ore district of the Middle–Lower Yangtze River metallogenic belt. The Fe-orebody is hosted by Middle Carboniferous to Lower Permian limestones. Skarns and Fe-orebodies occur as tabular bodies along interlayer-gliding faults, at some distance from the inferred granitic intrusions. Field evidence and petrographic observations indicate that the three stages of hydrothermal activity—the skarn, iron oxide (main mineralization stage), and carbonate stages—all contributed to the formation of the Taochong iron deposit. The skarn stage is characterized by the formation of garnet and pyroxene, with high-temperature, hypersaline hydrothermal fluids with isotopic compositions similar to those of typical magmatic fluids. These fluids were probably generated by the separation of brine from a silicate melt instead of the product of aqueous fluid immiscibility. The iron oxide stage coincides with the replacement of garnet and pyroxene by actinolite, chlorite, quartz, calcite and hematite. The hydrothermal fluids at this stage are represented by saline fluid inclusions that coexist with vapor-rich inclusions with anomalously low δD values (− 66‰ to − 94‰). The decrease in ore fluid δ18Owater with time and decreasing depth is consistent with the decreases in fluid salinity and temperature. The fluid δD values also show a decreasing trend with decreasing depth. Both fluid inclusion and stable isotopic data suggest that the ore fluid during the main period of mineralization was evolved by the boiling of various mixtures of magmatic brine and meteoric water. This process was probably induced by a drop in pressure from lithostatic to hydrostatic. The carbonate stage is represented by calcite veins that cut across the skarn and orebody, locally producing a dense stockwork. This observation indicates the veins formed during the waning stages of hydrothermal activity. The fluids from this stage are mainly represented by a variety of low-salinity fluid inclusions, as well as fewer high-salinity inclusions. These particular fluids have the lowest δ18Owater values (− 2.2‰ to 0.4‰) and a wide of range of δD values (− 40‰ to − 81‰), which indicate that they were originated from a mixture of residual fluids from the oxide stage, various amounts of meteoric water, and possibly condensed vapor. Low-temperature boiling probably occurred during this stage.We also discuss the reasons behind the anomalously low δD values in fluid inclusion water extracted by thermal decrepitation from quartz at high temperatures, and suggest that calcite data provide a possible benchmark for adjusting low δD values found in quartz intergrown with calcite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号