首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
碎屑流与浊流的流体性质及沉积特征研究进展   总被引:5,自引:1,他引:4  
受浊流沉积模式(即鲍马序列和浊积扇模式)的驱动和浊积岩思维定势的影响,自1970s浊流与浊积岩的概念逐渐扩大,特别是通过"高密度浊流"术语的引入,以及将水下浊流与陆上河流的错误类比,使得一部分碎屑流与底流的沉积被认为是浊积岩。随着现代观测设备的应用以及详细的岩芯观察,碎屑流(特别是砂质碎屑流)和浊流被重新认识。浊流是一种具牛顿流变性质和紊乱状态的沉积物重力流,其沉积物支撑机制是湍流。碎屑流是一种具塑性流变性质和层流状态的沉积物重力流,其沉积物支撑机制主要是基质强度和颗粒间的摩擦强度。浊流沉积具特征的正粒序韵律结构,底部为突变接触而顶部为渐变接触;碎屑流沉积一般具上、下两层韵律结构,即下部发育具平行碎屑结构的层流段,上部发育具块状层理的"刚性"筏流段。但当碎屑流被周围流体整体稀释改造且改造不彻底时,强碎屑流可变为中—弱碎屑流,相应自下而上可形成逆—正粒序的沉积韵律结构,其中发育有呈漂浮状的石英颗粒和泥质撕裂屑等碎屑颗粒,明显区别于浊流沉积单一的正粒序韵律结构特征。碎屑流沉积顶、底部均为突变接触。浊流的沉积模式为简单的具平坦盆底的坡底模式,而碎屑流则为复杂的斜坡模式。  相似文献   

2.
The Lower Cretaceous Britannia Formation (North Sea) includes an assemblage of sandstone beds interpreted here to be the deposits of turbidity currents, debris flows and a spectrum of intermediate flow types termed slurry flows. The term ‘slurry flow’ is used here to refer to watery flows transitional between turbidity currents, in which particles are supported primarily by flow turbulence, and debris flows, in which particles are supported by flow strength. Thick, clean, dish‐structured sandstones and associated thin‐bedded sandstones showing Bouma Tb–e divisions were deposited by high‐ and low‐density turbidity currents respectively. Debris flow deposits are marked by deformed, intraformational mudstone and sandstone masses suspended within a sand‐rich mudstone matrix. Most Britannia slurry‐flow deposits contain 10–35% detrital mud matrix and are grain supported. Individual beds vary in thickness from a few centimetres to over 30 m. Seven sedimentary structure division types are recognized in slurry‐flow beds: (M1) current structured and massive divisions; (M2) banded units; (M3) wispy laminated sandstone; (M4) dish‐structured divisions; (M5) fine‐grained, microbanded to flat‐laminated units; (M6) foundered and mixed layers that were originally laminated to microbanded; and (M7) vertically water‐escape structured divisions. Water‐escape structures are abundant in slurry‐flow deposits, including a variety of vertical to subvertical pipe‐ and sheet‐like fluid‐escape conduits, dish structures and load structures. Structuring of Britannia slurry‐flow beds suggests that most flows began deposition as turbidity currents: fully turbulent flows characterized by turbulent grain suspension and, commonly, bed‐load transport and deposition (M1). Mud was apparently transported largely as hydrodynamically silt‐ to sand‐sized grains. As the flows waned, both mud and mineral grains settled, increasing near‐bed grain concentration and flow density. Low‐density mud grains settling into the denser near‐bed layers were trapped because of their reduced settling velocities, whereas denser quartz and feldspar continued settling to the bed. The result of this kinetic sieving was an increasing mud content and particle concentration in the near‐bed layers. Disaggregation of mud grains in the near‐bed zone as a result of intense shear and abrasion against rigid mineral grains caused a rapid increase in effective clay surface area and, hence, near‐bed cohesion, shear resistance and viscosity. Eventually, turbulence was suppressed in a layer immediately adjacent to the bed, which was transformed into a cohesion‐dominated viscous sublayer. The banding and lamination in M2 are thought to reflect the formation, evolution and deposition of such cohesion‐dominated sublayers. More rapid fallout from suspension in less muddy flows resulted in the development of thin, short‐lived viscous sublayers to form wispy laminated divisions (M3) and, in the least muddy flows with the highest suspended‐load fallout rates, direct suspension sedimentation formed dish‐structured M4 divisions. Markov chain analysis indicates that these divisions are stacked to form a range of bed types: (I) dish‐structured beds; (II) dish‐structured and wispy laminated beds; (III) banded, wispy laminated and/or dish‐structured beds; (IV) predominantly banded beds; and (V) thickly banded and mixed slurried beds. These different bed types form mainly in response to the varying mud contents of the depositing flows and the influence of mud on suspended‐load fallout rates. The Britannia sandstones provide a remarkable and perhaps unique window on the mechanics of sediment‐gravity flows transitional between turbidity currents and debris flows and the textures and structuring of their deposits.  相似文献   

3.
Subaqueous sediment density flows: Depositional processes and deposit types   总被引:7,自引:0,他引:7  
Submarine sediment density flows are one of the most important processes for moving sediment across our planet, yet they are extremely difficult to monitor directly. The speed of long run‐out submarine density flows has been measured directly in just five locations worldwide and their sediment concentration has never been measured directly. The only record of most density flows is their sediment deposit. This article summarizes the processes by which density flows deposit sediment and proposes a new single classification for the resulting types of deposit. Colloidal properties of fine cohesive mud ensure that mud deposition is complex, and large volumes of mud can sometimes pond or drain‐back for long distances into basinal lows. Deposition of ungraded mud (TE‐3) most probably finally results from en masse consolidation in relatively thin and dense flows, although initial size sorting of mud indicates earlier stages of dilute and expanded flow. Graded mud (TE‐2) and finely laminated mud (TE‐1) most probably result from floc settling at lower mud concentrations. Grain‐size breaks beneath mud intervals are commonplace, and record bypass of intermediate grain sizes due to colloidal mud behaviour. Planar‐laminated (TD) and ripple cross‐laminated (TC) non‐cohesive silt or fine sand is deposited by dilute flow, and the external deposit shape is consistent with previous models of spatial decelerating (dissipative) dilute flow. A grain‐size break beneath the ripple cross‐laminated (TC) interval is common, and records a period of sediment reworking (sometimes into dunes) or bypass. Finely planar‐laminated sand can be deposited by low‐amplitude bed waves in dilute flow (TB‐1), but it is most likely to be deposited mainly by high‐concentration near‐bed layers beneath high‐density flows (TB‐2). More widely spaced planar lamination (TB‐3) occurs beneath massive clean sand (TA), and is also formed by high‐density turbidity currents. High‐density turbidite deposits (TA, TB‐2 and TB‐3) have a tabular shape consistent with hindered settling, and are typically overlain by a more extensive drape of low‐density turbidite (TD and TC,). This core and drape shape suggests that events sometimes comprise two distinct flow components. Massive clean sand is less commonly deposited en masse by liquefied debris flow (DCS), in which case the clean sand is ungraded or has a patchy grain‐size texture. Clean‐sand debrites can extend for several tens of kilometres before pinching out abruptly. Up‐current transitions suggest that clean‐sand debris flows sometimes form via transformation from high‐density turbidity currents. Cohesive debris flows can deposit three types of ungraded muddy sand that may contain clasts. Thick cohesive debrites tend to occur in more proximal settings and extend from an initial slope failure. Thinner and highly mobile low‐strength cohesive debris flows produce extensive deposits restricted to distal areas. These low‐strength debris flows may contain clasts and travel long distances (DM‐2), or result from more local flow transformation due to turbulence damping by cohesive mud (DM‐1). Mapping of individual flow deposits (beds) emphasizes how a single event can contain several flow types, with transformations between flow types. Flow transformation may be from dilute to dense flow, as well as from dense to dilute flow. Flow state, deposit type and flow transformation are strongly dependent on the volume fraction of cohesive fine mud within a flow. Recent field observations show significant deviations from previous widely cited models, and many hypotheses linking flow type to deposit type are poorly tested. There is much still to learn about these remarkable flows.  相似文献   

4.
重力流沉积:理论研究与野外识别   总被引:10,自引:3,他引:10  
重力流沉积是(半)深海和深湖环境中一种重要的沉积现象,因此准确识别重力流沉积对恢复古代沉积环境具有重要意义。从沉积物重力流的基本理论出发,介绍四类重力流沉积的特点和野外鉴别特征。碎屑流沉积表现为颗粒大小混杂,底面平坦,板条状砾石平行层面排列;超高密度流沉积的砂岩呈厚层状或块状,砂岩内部经常出现较大砾石或泥岩碎片,泄水构...  相似文献   

5.
随着页岩油气勘探开发和相关领域研究的不断深入,细粒沉积物的搬运和沉积已成为当前沉积学研究的热点问题之一,但中国中生代湖泊环境中的泥质重力流沉积尚未引起应有的关注。通过岩心观察、薄片鉴定等手段及综合研究,分析了鄂尔多斯盆地晚三叠世湖相泥质重力流沉积特征,探讨了其形成机制与成因分类。鄂尔多斯盆地三叠系延长组湖相泥页岩结构类型多样,发育泥质块体流沉积、泥质碎屑流沉积、泥质浊流沉积和泥质异重流沉积等多种重力流沉积类型。按照泥质含量将重力流划分为砂质重力流、泥质重力流和混合重力流3种亚类,并根据成因将重力流划分为滑塌体、碎屑流、浊流及异重流等4种亚类;结合成因和泥质含量,将重力流沉积共划分为12种类型。滑塌岩、碎屑岩分布于三角洲前缘斜坡脚附近;浊积岩、异重岩广泛分布于三角洲斜坡至沉积中心。认为泥质沉积物可以在强水动力条件下搬运-沉积;重力流沉积细粒物质在湖相沉积中占据很大的比例;泥质重力流对泥页岩中的碎屑物质、黏土矿物及有机质的搬运和沉积起到重要作用,因而对于页岩油气的生烃、储集性能和压裂工艺研究具有重要意义。  相似文献   

6.
Jasper Knight   《Sedimentary Geology》2009,220(1-2):126-133
Soft-sediment clasts composed of silt and clay are contained within glacial outwash sands in the Puget Sound, Washington State, USA. The outwash was deposited during ice retreat of the Cordilleran ice sheet around 17 cal kyr BP. The soft-sediment clasts have a distinctive and consistent morphology and disposition within the sand beds. The sedimentology, sedimentary structures and presence of soft-sediment clasts suggest sand was deposited as proglacial outwash with silts and clays deposited in meltwater pools. Following drying-out of the pools and subaerial cracking, lumps of silt and clay were excavated by meltwater and transported distally as soft-sediment clasts within high-density flows. The most likely final depositional setting is as a Salisbury-type ‘delta’ in which subaqueous outwash grades distally into deeper water. This interpretation shows the power of soft-sediment clasts to inform on past processes and palaeogeography for which there is often little evidence in the geologic record.  相似文献   

7.
块状砂岩因其厚度大、储层物性较好而成为深水沉积油气勘探开发中最重要的目标。沉积构造相对简单,但变化迅速且组构特征多变。为了探索不同块状砂岩的成因及其联系,建立预测性地质模型,首先将南堡凹陷东营组深水块状砂岩分为2类8种岩相和10种岩相组合,其中单期砂层顶部常含漂浮状砾石,形态多变、内外源均有。本区块状砂岩成分成熟度差,结构成熟度不稳定,粒度累积概率曲线反映了3种搬运过程:多流体改造型、三角洲前缘继承型和混杂快速冻结型。成因分析认为,块状砂岩以砂质碎屑流搬运为主,真正碎屑流和颗粒流次之,并见部分砂质滑塌成因;常与浊流、泥流、泥质滑塌沉积伴生,发育5种相序组合,其中砂质碎屑流-浊流、砂质碎屑流-泥流组合最常见。高密度流体内沉积物浓度分层与特殊的流速剖面共同控制下塑性层流与牛顿紊流间的界面控制了漂浮状砾石搬运和沉积。最后,建立了陡坡带外源型、陡坡带内源型和缓坡地内源型深水沉积过程及块状砂岩发育模式,为断陷盆地深水沉积砂岩储层的预测提供了新思路。  相似文献   

8.
ABSTRACT It is important to understand the exact process whereby very large amounts of sediment are transported. This paper reports peculiar conglomerate beds reflecting the transition of submarine debris flows into hyperconcentrated flows, something that has been well documented only in subaerial debris-flow events until now. Voluminous debris flows generated along a Cretaceous submarine channel, southern Chile, transformed immediately into multiphase flows. Their deposits overlie fluted or grooved surfaces and comprise a lower division of clast-supported and imbricated pebble–cobble conglomerate with basal inverse grading and an upper division of clast- to matrix-supported, disorganized conglomerate with abundant intraformational clasts. The conglomerate beds suggest temporal succession of turbidity current, gravelly hyperconcentrated flow, and mud-rich debris flow phases. The multiphase flows resulted from progressive dilution of gravelly but cohesive debris flows that could hydroplane, in contrast to the flow transitions in subaerial environments, which involve mostly non-cohesive debris flows. This finding has significant implications for the definition, classification, and hazard assessment of submarine mass-movement processes and characterization of submarine reservoir rocks.  相似文献   

9.
陆相深水重力流水道的类型细分及其沉积模式是制约其油气勘探开发的重要因素,但研究程度低。通过对鄂尔多斯盆地南缘瑶曲铁路桥剖面三叠系延长组实测、水道形态参数统计及岩相、粒度等分析,开展了湖相重力流水道的沉积特征、沉积过程及沉积模式研究。结果表明:(1)研究区内可识别出4期复合水道,主要为洪水重力流成因。根据其内部单一水道及单砂体形态特征、岩相组成,将其细分为沉积型和过渡型两类。(2)剖面下部2期复合水道为沉积型,以悬浮载荷成因岩相为主,常见块状净细砂岩、薄层泥岩岩相组合和鲍马序列岩相组合;上部2期复合水道为过渡型,岩相以底床载荷与悬浮载荷共存为特征,自下而上以交错层理细砂岩或叠瓦状泥砾细砂岩与含泥砾/泥岩撕裂屑块状细砂岩、平行层理粗粉砂岩及薄层泥岩的岩相组合为特征。(3)结合单一水道规模及其相互关系,建立了区内过渡、沉积型重力流水道的半定量沉积模式。过渡型水道内部侵蚀与沉积作用共存,单一水道宽度小、宽厚比低,呈透镜状,水道间切割性强,砂体横向稳定性较低,表现出不定向叠加、侧向拼接样式;沉积型水道内部由沉积作用主导,单一水道宽度较大、宽厚比较高,呈似板状—透镜状,砂体横向稳定性较高,表现出稳定的垂向加积样式。  相似文献   

10.
火山碎屑密度流是一种危险的火山活动现象,也是一种重要的盆地物源供给方式,对其沉积机制的研究具有灾害预防和油气勘探的双重意义。松辽盆地东南隆起区九台营城煤矿地区白垩系营城组古火山机构保存良好,发育有典型的火山碎屑密度流沉积物。本文在精细刻画火山碎屑岩的岩石结构、沉积构造的基础上,运用薄片观察和沉积物粒度统计的方法,从物质来源、搬运机制和就位方式角度系统地分析了火山碎屑密度流的整个沉积过程,并结合国内外火山学、沉积学的研究进展探讨了不同浓度火山碎屑密度流的沉积机制。研究区内的火山碎屑密度流沉积物可以划分为五种微相:①块状熔结角砾凝灰岩微相;②无序含集块凝灰角砾岩微相;③逆粒序或双粒序角砾凝灰岩微相;④正粒序角砾凝灰岩微相;⑤韵律层理凝灰岩微相。第一种微相具有熔结结构,可能形成于高挥发分岩浆喷发柱的垮塌,火山碎屑密度流的就位温度较高;后四种微相具有正常火山碎屑岩结构,可能形成于火山口的侧向爆炸,火山碎屑密度流的就位温度中等。沉积块状熔结角砾凝灰岩微相的火山碎屑密度流具有黏性碎屑流的流体特征,沉积物整体冻结就位;沉积无序含集块凝灰角砾岩微相和逆粒序或双粒序角砾凝灰岩微相的火山碎屑密度流具有颗粒流的流体特征,沉积物整体冻结就位;沉积正粒序角砾凝灰岩微相和韵律层理凝灰岩微相的火山碎屑密度流具有湍流的流体特征,沉积物连续加积就位。火山碎屑密度流的颗粒浓度是一个连续变量,但流体性质可能会发生突变,稀释的火山碎屑密度流的沉积机制符合下部流动边界模型,稠密的火山碎屑密度流的沉积机制符合层流(碎屑流或颗粒流)模型。  相似文献   

11.
高含沙水流进入低含沙量河流中时,往往形成比较稳定的分层流.通过水槽试验研究了泥浆流同向分层流的深度比,界面剪力在分层流中的作用,闸门开启引起的双向分层流的速度,以及各种分层流的稳定性.  相似文献   

12.
Advances in pore-scale imaging (e.g., μ-CT scanning), increasing availability of computational resources, and recent developments in numerical algorithms have started rendering direct pore-scale numerical simulations of multi-phase flow on pore structures feasible. Quasi-static methods, where the viscous and the capillary limit are iterated sequentially, fall short in rigorously capturing crucial flow phenomena at the pore scale. Direct simulation techniques are needed that account for the full coupling between capillary and viscous flow phenomena. Consequently, there is a strong demand for robust and effective numerical methods that can deliver high-accuracy, high-resolution solutions of pore-scale flow in a computationally efficient manner. Direct simulations of pore-scale flow on imaged volumes can yield important insights about physical phenomena taking place during multi-phase, multi-component displacements. Such simulations can be utilized for optimizing various enhanced oil recovery (EOR) schemes and permit the computation of effective properties for Darcy-scale multi-phase flows.We implement a phase-field model for the direct pore-scale simulation of incompressible flow of two immiscible fluids. The model naturally lends itself to the transport of fluids with large density and viscosity ratios. In the phase-field approach, the fluid-phase interfaces are expressed in terms of thin transition regions, the so-called diffuse interfaces, for increased computational efficiency. The conservation law of mass for binary mixtures leads to the advective Cahn–Hilliard equation and the condition that the velocity field is divergence free. Momentum balance, on the other hand, leads to the Navier–Stokes equations for Newtonian fluids modified for two-phase flow and coupled to the advective Cahn–Hilliard equation. Unlike the volume of fluid (VoF) and level-set methods, which rely on regularization techniques to describe the phase interfaces, the phase-field method facilitates a thermodynamic treatment of the phase interfaces, rendering it more physically consistent for the direct simulations of two-phase pore-scale flow. A novel geometric wetting (wall) boundary condition is implemented as part of the phase-field method for the simulation of two-fluid flows with moving contact lines. The geometric boundary condition accurately replicates the prescribed equilibrium contact angle and is extended to account for dynamic (non-equilibrium) effects. The coupled advective Cahn–Hilliard and modified Navier–Stokes (phase-field) system is solved by using a robust and accurate semi-implicit finite volume method. An extension of the momentum balance equations is also implemented for Herschel–Bulkley (non-Newtonian) fluids. Non-equilibrium-induced two-phase flow problems and dynamic two-phase flows in simple two-dimensional (2-D) and three-dimensional (3-D) geometries are investigated to validate the model and its numerical implementation. Quantitative comparisons are made for cases with analytical solutions. Two-phase flow in an idealized 2-D pore-scale conduit is simulated to demonstrate the viability of the proposed direct numerical simulation approach.  相似文献   

13.
In order to identify the dominant non-Newtonian effects which occur during the injection of a new Newtonian magma through a partially crystallized magma chamber, we have performed some preliminary analogue experiments which enable us to point out several features induced by the non-Newtonian properties of the host fluid during injection processes. These experiments were performed in a three-dimensional device and involve complex non-Newtonian fluids—clay suspensions in which rheological properties such as bulk strength, yield strength and rheofluidification exponent may vary. Forced injection takes place through a slot which in the case of a Newtonian host fluid is the geometry that provides planar structures. Depending both on the density contrast and on the rheological contrast between the injected dyed water and the host fluid three kind of structures were observed: (1) permanent plumes when the injected water is lighter than the suspension exhibiting rheological properties close to Newtonian fluids; (2) pseudo-fountains and spreading at the bottom of the tank with a destabilizing density contrast and in high yield strength/more viscous suspensions; (3) fountains with a slightly stablizing density contrast. The implications for magma chamber evolution are briefly discussed. In particular it seems that homogeneous non-Newtonian media inhibit the formation of planar structures and partially crystallized magma may induce the spreading of the new magma at the bottom or at the top of the chamber regardless of the density contrast between the magmas.  相似文献   

14.
Mud volcanism is a natural phenomenon well-known for on-shore and off-shore environments. Its major driving forces are deeply seated fluid accumulations and lithology and tectonism favorable for creating overpressure within deep strata with subsequent breakthrough of solid, liquid, and gaseous products of mud volcanism towards a ground surface. The mud breccia clasts provide information about the sedimentary section (up to several kilometers thick) through which the mud volcano erupted. Geochemical investigation of mud breccia clasts with characteristics of source rocks can help in understanding the petroleum potential of entire basin prior to expensive offshore exploration drilling. This is an especially important and useful method for initial estimation of petroleum potential of deep continental margin basins. The method of geochemical investigation of organic matter in the mud breccia clasts allowed to identify the Miocene and Upper Cretaceous clayey and carbonate deposits in the sedimentary sequence in the deep part of the Gulf of Cadiz as having the highest petroleum potential.  相似文献   

15.
Sellicks Beach, located on the eastern shore of Gulf St Vincent, South Australia, is subject to wave-dominated processes and northward longshore transport. During winter, when wave energy is typically vigorous, gravel deposits are exposed across most of the beach, and three step-like berms are well developed. Sand is restricted to a narrow strip that is exposed only at low tide. In contrast, during summer, when wave energy is generally moderate to low, much of the gravel is covered by a thin veneer of sand and only the high berm, on the landward edge of the beach, remains as an obvious feature. Steeply dipping Neoproterozoic to Cambrian strata that outcrop strongly across Sellicks Hill are the original source rocks for the beach gravel; distinctive sedimentary textures, structures and fossils in the cobble-size clasts can be confidently matched with those of the provenance rocks. Much of the sediment entered the modern beach environment as a consequence of coastal erosion of transitional alluvial fan sediments. The oldest alluvial fan sediments are of late Pliocene to earliest Pleistocene age. Mount Terrible Gully provides a conduit for the input of fluvial sediment at the mouth of Cactus Canyon, where clasts as large as boulders accumulate across the beach. Sellicks Beach gravels are subject to longshore transport northwards. Relatively softer clasts, such as those derived from the Heatherdale Shale, are rare beyond Cactus Canyon. In contrast, quartzite clasts are more abundant towards the north. This lithological differentiation is attributed to preferential survivorship of clasts that are physically harder and chemically less reactive. The change in the shapes of clasts northwards, from predominately shingle-like ‘very platy’ and ‘very bladed’ at Cactus Canyon, to more ‘compact’ towards the boat ramp, is in accord with the more massive fabric of the surviving quartzite clasts. At Sellicks Beach, preservation of uplifted, coarse gravels, with entire and comminuted marine molluscan shells, of last interglacial age, provides evidence of neotectonism. At the landward margin of the beach, imbricated gravels in which pore spaces have been infilled with mud, and which show no evidence of modern coastal erosion, may provide evidence of continuing uplift during the recent Holocene. The geological setting, geomorphic framework and modern sedimentary regime at Sellicks Beach combine to provide an exceptionally useful outdoor laboratory for education in field geology.  相似文献   

16.
杨玉卿  周留记 《现代地质》1995,9(3):311-319,T001
摘要:本文首次对区内杂砾岩(又称红层)的沉积学特征进行研究。据成因之不同,把杂砾岩区分为6类:泥石流、颗粒流、泥流、冲刷砾石层、河道及片流沉积。讨论了各类沉积之特点,尤其是砾石的粒度分布特征。结果表明,不同成因的杂砾岩砾石的粒度分布曲线形态,尤其是量化粒度参数存在明显差异。  相似文献   

17.
18.
Sediment avalanche from delta ramp is one of the significant development mechanisms for a turbidite system in a lacustrine basin. To advance our understanding of deep-water sedimentary processes in a lacustrine delta ramp, delta-fed turbidites in the Eocene Dongying depression of the Bohai Bay Basin were studied using core data, 3-D seismic data and well log data. Sandy debris flows, muddy debris flows, mud flows, turbidity currents, slides, sandy slumps and muddy slumps were interpreted based on the identification of lithofacies. Data indicates that deep-water sedimentary processes in the study area were dominated by debris flows and slumps, which accounted for ~68% and 25% (in thickness) of total gravity flow deposits, respectively; turbidity-current deposits only accounted for ~5%. Mapping of turbidites showed that most were deposited after short-distance transportation (<20 km), restricted by the scale of deep-water areas and local topography. Channels, depositional lobes, debris flow tongues, muddy turbiditic sheets, slides and slumps were identified in a delta-fed ramp system. Slides and slumps were dominant at the base of slopes or at the hanging walls of growth faults with strong tectonic activity. Channels and depositional lobes developed in gentle, low-lying areas, where sediments were transported longer distances. Sand-rich sediment supply, short-distance transportation and local topography were crucial factors that controlled sedimentation of this ramp system. Channels generally lacked levees and only produced scattered sandstones because of possible hydroplaning of debris flow and unstable waterways. In addition to lobes, debris flow tongues could also be developed in front of channels. These findings have significant implications for hydrocarbon exploration of deep-water sandstone fed by deltas in a lacustrine basin.  相似文献   

19.
On 21 April 2007, a Mw 6·2 earthquake struck Aysén fjord (Chilean Patagonia) and caused onshore and offshore mass movements which triggered tsunamis and density flows in the fjord. To better understand the facies successions in, and the intercalation of, the density‐flow deposits, a study was made of the 2007 deposits in 22 short sediment cores taken in the inner Aysén fjord. By combining grain‐size analysis with X‐ray computed tomography scanning, it was possible to demonstrate that the encountered facies correspond to classical divisions of debrites and turbidites. The single‐event deposits consist of a succession of several sub‐deposits deposited under different flow directions and can be interpreted as stacked turbidites. Orientations of: (i) folds; (ii) imbricated mud clasts; (iii) backsets and foresets of climbing ripples; and (iv) asymmetrical convolute lamination were used to determine relative flow directions at the location of the cores. By assigning the basal flow of the stacked debrites and turbidites to the closest principal mass flow, the absolute flow directions of the sub‐deposits were determined which, in combination with multibeam basin‐floor morphology, allowed reconstruction of the 2007 density‐flow successions in Aysén fjord. Furthermore, alternating flow directions provide evidence for a seiche induced by the density flows. It was concluded that X‐ray computed tomography scans provide crucial information for reconstructing palaeoflows and can be a useful tool in marine and lacustrine sedimentology and palaeoseismology. The multidirectionality of sub‐deposits in turbidites is, next to differences in mineralogy, a new criterion to identify stacked turbidites. These multidirectional, stacked turbidites are an indication of simultaneous triggering of density flows and can therefore, in most cases, be attributed to earthquakes, ruling out other triggers, such as floods, storms or other sediment failures.  相似文献   

20.
深水砂质碎屑流沉积:概念、沉积过程与沉积特征   总被引:3,自引:0,他引:3  
金杰华  操应长  王健  杨田  周磊 《地质论评》2019,65(3):689-702
在总结国内外相关文献的基础上,对砂质碎屑流的相关概念、沉积动力学过程及沉积特征进行系统梳理,并对争议问题进行了讨论。砂质碎屑流是一种富砂质具塑性流变性质的宾汉塑性流体,代表一个从黏性至非黏性碎屑流连续系列,具有中—高碎屑浓度(体积浓度25%~95%)、较低的泥质含量(体积浓度可低至0. 5%)、湍流不发育。其沉积物以块状砂岩、含碎屑逆粒序砂岩沉积为代表,局部可见滑动剪切构造和液化漩涡构造。砂质碎屑流的形成多经历滑动→滑塌→砂质碎屑流→浊流的有序演化过程;滑水作用和基底剪切润湿作用是克服砂质碎屑流与基底剪切摩擦拖拽的重要机制,流体强度则是克服上覆环境水体混入稀释的重要原因;砂质碎屑流头部和边部优先固结沉积,进而控制流体整体沉降。砂质碎屑流是形成深水块状砂岩的主要原因之一,砂质碎屑流在相对低流体效率的深水重力流沉积环境广泛发育。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号