首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the data of the topside ionosphere sounding from the Intercosmos-19 satellite, longitudinal variations in foF2 at low latitudes at the daytime hours are considered. It is obtained that these variations in particular days in the majority of cases have a regular wave-like character with periods of about 75°–100° in longitude and amplitudes on the average of 2–4 MHz. In other words, along the valley and crests of the equatorial anomaly, a structure with four maximums and four minimums which have a tendency to be located near certain longitudes (the same in all seasons) is observed. The variations in foF2 along the crests of the equatorial anomaly are usually in anti-phase to variations along its valley. Comparing the characteristics of this wavelike structure at the daytime and nighttime hours, we obtained that the average positions of its extremes at the nighttime hours are shifted eastwards by 10°–50° relative to the daytime extremes. As a cause of formation of such a structure, high harmonics of atmospheric tides are assumed which, uplifting from below to heights of the E region, via the electric currents in this region influence the longitudinal structure of the electrodynamic plasma drift over the equator and by that impact the structure of the entire daytime low-latitude ionosphere.  相似文献   

2.
The data of the DMSP F7 spacecraft are used for studying the influence of the geomagnetic dipole tilt angle on the latitudinal position of auroral precipitation boundaries in the nighttime (2100–2400 MLT) and daytime (0900–1200 MLT) sectors. It is shown that, in the nighttime sector, the high-latitude zone of soft diffuse precipitation (SDP) and the boundary of the polar cap (PC) at all levels of geomagnetic activity are located at higher and lower latitudes relative to the equinox period in winter and summer, respectively. The position of boundaries of the diffuse auroral precipitation zone (DAZ) located equatorward from the auroral oval does not depend on the season. In the daytime sector, the inverse picture is observed: the SDP precipitation zone takes the most low-latitude and high-latitude positions in the winter and summer periods, respectively. The total value of the displacements from winter to summer of both the nighttime and daytime boundaries of the PC is ∼2.5°. A diurnal wave in the latitudinal position of the nighttime precipitation boundaries is detected. The wave is most pronounced in the periods of the winter and fall seasons, is much weaker in the spring period, and is almost absent in summer. The diurnal variations of the position of the boundaries are quasi-sinusoidal oscillations with the latitude maximum and minimum at 0300–0500 and 1700–2100 UT, respectively. The total value of the diurnal displacement of the boundaries is ∼2.5° of latitude. The results obtained show that, undergoing seasonal and diurnal variations, the polar cap is shifted as a whole in the direction opposite to the changes in the tilt angle of the geomagnetic dipole. The seasonal displacements of the polar cap and its diurnal variations in the winter period occur without any substantial changes in its area.  相似文献   

3.
The occurrence probabilities of the first and second anomalous nighttime local maximums in the diurnal variations in the electron density at a maximum of the ionospheric F 2 layer (NmF2) in the region where the crest (hump) of the equatorial anomaly originates in the northern geographic hemisphere have been studied using the data of the stations for vertical sounding of the ionosphere (Paramaribo, Dakar, Quagadougou, Ahmedabad, Delhi, Calcutta, Chongoing, Guangzhou, Taipei, Chung-Li, Okinawa, Yamagawa, Panama, and Bogota) from 1957 to 2004. It has been demonstrated that the anomalous nighttime NmF2 maximums are least frequently formed at ~53° geomagnetic longitude. The calculations have indicated that the studied probabilities are independent of solar activity. Geomagnetic activity weakly affects the rate of occurrence of the first nighttime NmF2 maximum at geomagnetic longitudes of approximately 140° to 358°. At geomagnetic longitudes of approximately 16° to 70° (i.e., in the longitudinal zone of a decreased occurrence frequency of anomalous nighttime maximums), the occurrence probability of the first anomalous nighttime NmF2 maximum under geomagnetically quiet conditions is pronouncedly lower than under geomagnetically disturbed conditions. The dependence of the occurrence probabilities of the first and second anomalous nighttime NmF2 maximums on the month number in a year has been studied.  相似文献   

4.
Results of statistical analysis of the properties of variability of F2-layer maximum parameters (critical frequency foF2 and the height hmF2) in quiet midlatitude ionosphere under low solar activity in the daytime (1000–1500 LT) and nighttime (2200–0300 LT) hours are presented on the basis of Irkutsk station data for 2007–2008. It is found that the distribution density of δfoF2 could be presented as consisting of two distinctly different normal laws of this distribution, one of which corresponds to weak (|δfoF2| < 10%) fluctuations in foF2 and the other corresponds to strong (30% > |δfoF2| > 10%) fluctuations. Weak fluctuations in foF2 to a substantial degree are related to ionospheric variability at times less of than 1–3 h and determine the δfoF2 variability in the daytime hours. Strong fluctuations in foF2 are mainly related to day-to-day variability of the ionosphere at a fixed local time, the variability increasing by approximately a factor of 3 during the transition from day to night and determining the δfoF2 variability in the nighttime hours. The distribution density of ΔhmF2 is close to the normal distribution law. An interpretation of the different character of the distribution densities of δfoF2 and ΔhmF2 is given.  相似文献   

5.
Using data from ground-based ionospheric sounding stations, we studied the morphologic features of the disturbance pattern of the electron concentration at the midlatitude F2-layer maximum (NmF2) in the period of a magnetic superstorm, which began on July 15, 2000. In the Southern (winter) Hemisphere in the latitudinal sector, where the main storm phase began after sunrise, negative NmF disturbances were observed at quite high midlatitudes both day and night; whereas large positive NmF disturbances took place at lower midlatitudes in nighttime hours. In the Northern (summer) Hemisphere at latitudes where the main storm phase occurred in the local evening, only long-term negative disturbances were observed in daytime and nighttime hours; whereas at latitudes where the main storm phase began in the afternoon, NmF2 experienced both negative and positive disturbances. Based on analysis of data of KOMPSAT-l, ROCSAT-1, DMSP F13, F14, and F15 satellites, we present clear arguments for the viewpoint of many authors that it is just the enhancement of the eastward electric field in the evening sector that led to formation of the large-scale trough in the nighttime low-latitude upper ionosphere. This field enhancement was due to penetration of the magnetospheric electric field to low latitudes, not to the dynamo action of the disturbed neutral wind. It is also shown that, due to equatorward expansion of the magnetospheric convection system during the main storm phase, the plasmapause and the main ionospheric trough were shifted to a magnetic latitude of 40° (L ∼ 1.7).  相似文献   

6.
Changes in the critical frequencies of the F2 layer at several midlatitude stations of ionospheric vertical sounding during a sharp depletion in atmospheric pressure under quiet solar and geomagnetic conditions are analyzed. It is shown that in such periods, the observed foF2 values differ from the mean values by approximately 10–15% and the deviations from the mean could be both negative (in the daytime hours) and positive (at night). Such variations in foF2 could be referred to the known class of ionospheric disturbances observed under a quiet geomagnetic situation, that is, to the so-called “Q-disturbances.” Analysis of wavelet spectra of foF2 variations shows the presence in the F region of oscillations of various periods (from 0.5 to 10 days). The decrease in the amplitude of daily variations during pressure depletion is found. Presumably, the observed effect is caused by the dynamic impact of waves formed in the lower atmosphere on the ionospheric F2 layer.  相似文献   

7.
We present a study of peculiarities of the winter nighttime maximum in the critical frequencies f 0 F2 at mid-latitudes of the Asian region. The data of stations located at different longitudes and close latitudes have been used in the analysis: Novosibirsk (54.8°N, 83.2°E), Irkutsk (52.5°N, 104.0°E), and Khabarovsk (48.5°N, 135.1°E). It has been found that the nighttime maximum in f 0 F2 is observed after midnight (∼0200–0400 LT) and is a stable feature of the quiet ionosphere from the middle of October to the middle of March at low solar activity (SA) at all analyzed stations. This interval decreases with increasing SA. The difference between the maximal and minimal f 0 F2 values in nighttime hours is the largest in December–January, and its amplitude is almost independent of SA. Variations in the critical frequency of the h m F2 layer are inversely related to those in the height of the maximum. We have studied periods when the difference between the daytime and nighttime values of f 0 F2 is less than 2 MHz. The intervals of observations of such events at different longitudes do not coincide. No dependence of the winter nighttime maximum amplitude on magnetic activity has been found.  相似文献   

8.
The morphology of averaged diurnal variations of total electron content (TEC) under quiet helio-geomagnetic conditions for all latitudinal bands and various longitudes has been studied using Global Ionospheric Maps (GIMs) datasets. The diurnal TEC variation maximum is generally registered at 14–15 LT. The maximum is 38±5, 14±2, 10±2 TECU (TECU is generally accepted TEC unit) at the equatorial, middle and high latitudes. The nighttime TEC minimum is within 5–7 TECU regardless of a season, latitude and longitude. At the equatorial latitudes TEC exhibits the most significant daily/season variations and the asymmetry of its behavior in the hemispheres near the equinox. Abnormal diurnal TEC variations (evening maximum, near-noon minimum) are observed at middle and high latitudes in summer due to atmospheric wind effects. The comparison of the averaged diurnal TEC variations with the behavior of the ionospheric F2-layer critical frequency indicated that GIMs describe daily/annual TEC variations reasonably well.  相似文献   

9.
The maximal R ratios of the winter-to-summer NmF2 values of each ionosonde are calculated for a specified UT under daytime quiet geomagnetic conditions and at approximately equal levels of solar activity, based on foF2 measurement data of 98 ionosondes at mid- and low geomagnetic latitudes of the Northern and Southern hemispheres for 1957–2009. The P(R > 1) conditional probability of NmF2 winter anomaly observations, as well as the most probable RMP and average <R> of R values are calculated for low, moderate, and high solar activity on the base of foF2 measurements during the periods December 22 ± 30 days and June 21 ± 30 days. Variations in P(R > 1), RMP, and 〈R〉 with latitude and solar activity are analyzed.  相似文献   

10.
The relationship between the critical frequency of the F 2 layer and the atmospheric characteristics has been obtained in a general form. It has been shown that this relation makes it possible to sufficiently accurately describe the daytime values of foF2 while comparing them with the observed monthly median values. Such comparisons were performed, first, for the data of measurements in Irkutsk using the DPS-4 digital ionosonde in 2003–2006 and, second, based on the annual variations in the noon foF2 values at 24 stations of the Northern Hemisphere in 1984. The calculations were performed using the MSIS-86 thermospheric model [Hedin, 1987].  相似文献   

11.
Variations of the total electron content according to the index IONEX IGS in the period of preparation of the earthquake in Haiti (M7.9) on January 12, 2010, are considered. The situation is exceptional owing to the unique position of the island of Haiti relative to the structure of the ionosphere over the Caribbean Sea: the ionospheric region over Haiti is in the trough formed by the northern slope of the equatorial anomaly and additional maximum formed at latitudes of approximately 30° N within this longitudinal interval. Distortion of the shape of the equatorial anomaly, total decrease in the electron content in the equatorial anomaly a few days prior to the earthquake, increase in the electron concentration directly over the earthquake epicenter a few days prior to the earthquake, increase in the additional maximum at latitudes of ∼30° N, and formation of an additional maximum in the Southern Hemisphere in the region conjugated to the additional maximum in the Northern Hemisphere in the periods of its intensification are observed. The configuration of the equatorial anomaly is restored after the earthquake.  相似文献   

12.
Morphological analysis of variations of the critical frequency foF2 in the midlatitude ionosphere at various sectors of local time is carried out on the basis of data from ground-based stations of vertical sounding of the ionosphere in the period when during use of the incoherent scatter radar at Saint-Santin an anomalously strong increase in the electric field was observed at heights of the ionospheric F region in the period of enhanced geomagnetic activity (4+ < Kp < 6−). The obtained picture of the space-time distribution of disturbances in foF2 makes it possible to assume that they could be caused by penetration to middle latitudes of the large-scale electric field of the magnetospheric convection directed westward in the nighttime and morning hours and eastward in the noon and evening sectors.  相似文献   

13.
It is shown in a joint analysis of ionospheric vertical sounding data at the arctic Heiss Island and antarctic Vostok stations and the geomagnetic PC index, which characterizes the geoefficient component of the interplanetary magnetic field, that, during a disturbed geomagnetic period when PC > 2 in years of solar activity (SA) maxima in the winter season, positive phases of ionospheric disturbances are predominantly observed. In the nighttime hours, an increase in the critical foF2 frequencies by a factor of 2–3 can occur. In a disturbed geomagnetic period at the PC > 1.5 level in the summer season, negative phases of ionospheric disturbances are mainly observed. In years of maximum and moderate SA, the decrease in foF2, as compared to their median values, happens at night (∼30%). In years of low SA, the decrease value is much lower. At a substantial decrease in the PC index level, in the region of the geomagnetic pole at the Vostok station, in some cases, a substantial increase in the electron density level in the F region occurs with a delay of 0.5 h. At the same time, a significant correlation (r = −0.57) is observed between variations in the PC index and foF2.  相似文献   

14.
With the use of data from topside sounding on board the Interkosmos-19 (IK-19) satellite, the region of permanent generation of large-scale irregularities in the daytime winter ionosphere of the Southern Hemisphere is differentiated. This region is characterized by low values of foF2 and hmF2 and occupies a rather large latitudinal band, from the equatorial anomaly ridge to ~70° S within the longitudinal range from 180° to 360°. Irregularities with a dimension of hundreds kilometers are regularly observed in the period from 0700–0800 to 1800–1900 LT, i.e., mainly in the daytime. In the IK-19 ionograms, they normally appear in the form of an extra trace with a critical frequency higher than that of the main trace reflected from the ionosphere with lower density. The electron density in the irregularity maximum sometimes exceeds the density of the background ionosphere by nearly a factor of 3. A model of the ionosphere with allowance for its irregular structure was created, and it was shown on the basis of trajectory calculations how the IK-19 ionograms related to these irregularities are formed. A possible mechanism of the generation of large-scale irregularities of the ionospheric plasma is discussed.  相似文献   

15.
This study analyzes the TEC data during 1998–2007, observed by the AREQ (16.5°S, 71.5°W) GPS station to investigate the equatorial ionospheric variations under geomagnetic quiet-conditions. The diurnal TEC values generally have a maximum value between 1330 and 1500 LT and a minimum around 0500 LT. For the seasonal variation, the semi-annual variation apparently exists in the daytime TEC with two peaks in equinoctial months. In contrast, this semi-annual variation is not found in the nighttime. Furthermore, the results of the annual variation show that the correlation between the daytime TEC value and the solar activity factor is highly positive.  相似文献   

16.
Global electron content (GEC) as a new ionospheric parameter was first proposed by Afraimovich et al. [2006]. GEC is equal to the total number of electrons in the near-Earth space. GEC better than local parameters reflects the global response to a change in solar activity. It has been indicated that, during solar cycle 23, the GEC dynamics followed similar variations in the solar UV irradiance and F 10.7 index, including the 11-year cycle and 27-day variations. The dynamics of the regional electron content (REC) has been considered for three belts: the equatorial belt and two midlatitude belts in the Northern and Southern hemispheres (±30° and 30°–65° geomagnetic latitudes, respectively). In contrast to GEC, the annual REC component is clearly defined for the northern and southern midlatitude belts; the REC amplitude is comparable with the amplitude of the seasonal variations in the Northern Hemisphere and exceeds this amplitude in the Southern Hemisphere by a factor of ~1.7. The dayside to nightside REC ratio, R(t), at the equator is a factor of 1.5 as low as such a GEC ratio, which indicates that the degree of nighttime ionization is higher, especially during the solar activity maximum. The pronounced annual cycle with the maximal R(t) value near 8.0 for the winter Southern Hemisphere and summer Northern Hemisphere is typical of midlatitudes.  相似文献   

17.
The ratio of daytime and nighttime values of the foF2 critical frequency is analyzed on the basis of the data of 28 ionospheric stations in the Eastern Hemisphere. It is found that three types of time variations in this ratio are observed after 1980: an increase with time (a positive trend), a decrease with time (a negative trend), and the absence of pronounced changes (a zero trend). The sign of this trend is shown to be governed by the signs of the magnetic declination D and magnetic inclination I at the given ionospheric station. This fact makes it possible to assume that the above trend is caused by long-term variations in the zonal component V ny of the horizontal wind in the thermosphere, the latter component contributing into the vertical drift velocity W. The causes of the systematic changes in the thermospheric circulation regime after 1980 are still unknown; however, it is quite probable that they are related to anthropogenic changes in the atmosphere.  相似文献   

18.
The consideration of the relation between the daytime and nighttime values of the critical frequency F2, foF2 of the ionospheric F2 layer, started in the previous publication of the authors, is continued. The main regularities in variations in the correlation coefficient R(foF2) characterizing this relation are confirmed using larger statistical material (more ionospheric stations and longer observational series). Long-term trends in the R(foF2) value are found: at all stations the negative value of R(foF2) increases with time after 1980.  相似文献   

19.
We have analyzed variations in the near-surface atmospheric electric field (Ez) normalized to their daily averages that were simultaneously observed in different high-latitude regions at moderate geomagnetic activity (Kp ∼ 3). The Ez data were measured under fair weather conditions at the Vostok Antarctic research station (Φ′ = −83.5°) in the southern polar cap and at the Hornsund Arctic observatory (Φ′ = 74.0°) on Svalbard close to the polar boundary of the auroral oval in the Northern Hemisphere. It is established that variations in the atmospheric electric field in the polar cap region at the Vostok station are controlled (the correlation coefficient R ∼ 0.7–0.9) by variations in the overhead ionospheric potential. The situation at the Hornsund observatory is more complicated. During intervals when Hornsund occurred below the westward electrojet, the correlation was typically positive with R ∼ 0.60–0.85; however, while this observatory was in the region of the eastern electrojet, the correlation could be negative with R ∼ 0.7–0.8. Normally, during such periods, the westward electrojet was detected polarwards of Hornsund while, according to the SuperDARN radar data, the observatory was located below the negative vortex of the polar ionospheric convection.  相似文献   

20.
In this paper the analysis of the ionospheric total electron content (TEC) variations obtained with using GPS measurements before the Hokkaido earthquake (M = 8.3) is presented. Anomalous behavior of TEC was detected within several days before the main event. Anomaly appeared as the local TEC enhancement situated in the vicinity of the forthcoming earthquake epicenter. These structures occurred during 5 days prior to the shock at the same interval of local time. At the process of the earthquake approach the amplitude of modification was increased, and it has reached the 85–90% level relative to the non-disturbed conditions 18 hours before the earthquake. The area of strong positive disturbance has extended over 1500 km in latitudes and 4000 km in longitudes. The analysis have shown that according to the series of characteristics (its locality, affinity with the epicenter, dome-shaped zone of manifestation, characteristic time of existence) the detected ionospheric anomaly may be associated to the precursors of seismic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号