首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Fluvio-deltaic aquifers are the primary source of drinking water for the people of Bangladesh. Such aquifers, which comprise the Ganges-Brahmaputra-Meghna Delta, are hydrogeologically heterogeneous. Because of widespread groundwater quality issues in Bangladesh, it is crucial to know the hydrostratigraphic architecture and hydrochemistry, as some aquifer units are contaminated, whereas others are safe. Geophysical methods provide a potentially effective and noninvasive method for extensive characterization of these aquifers. This study applies and investigates the limitations of using electrical resistivity imaging (ERI) for mapping the hydrostratigraphy and salinity of an aquifer-aquitard system adjacent to the Meghna River. Some electrical resistivity (ER) sections showed excellent correlation between resistivity and grain size. These suggest that ERI is a powerful tool for mapping internal aquifer architecture and their boundaries with finer-grained aquitards which clearly appear as low-ER zones. However, in parts of some ER sections, variations in electrical properties were determined by porewater resistivity. In these cases, low ER was indicative of brine and did not indicate the presence of finer-grained materials such as silt or clay. Accordingly, the following hydrostratigraphic zones with different resistivities were detected: (1) aquifers saturated with fresh groundwater, (2) a regional silt/clay aquitard, and (3) a deeper brine-saturated formation. In addition, shallow silt/clay pockets were detected close to the river and below the vadose zone. ERI is thus a promising technique for mapping aquifers versus aquitards; however, the observations are easily confounded by porewater salinity. In such cases, borehole information and groundwater salinity measurements are necessary for ground-truthing.

  相似文献   

2.
Three years after the oil spillage and pipeline explosion that claimed about 100 human lives at Ijegun Community of Lagos–Nigeria, a combination of carefully designed 2D Electrical Resistivity Profilling and Vertical Electrical Sounding methods was deployed to map and characterise the subsurface around the contaminated site. Data acquired were processed, forward modelled and tomographically inverted to obtain the multi-dimensional resistivity distribution of subsurface. The results of the study revealed high resistivity structures that indocate the presence of contaminant (oil plumes) of different sizes and shapes around the oil leakage site. These high resistivity structures are absent in the tomograms and resistivity-depth slices computed for Iyana—a linear settlement not affected by oil spillage. The five geo-electric layers and the resistivities delineated in the area are the top soil layer, 220–670 Ωm; clayey sand layer, 300–1072 Ωm; top sand layer, 120–328 Ωm; mudstone/shale layer, 25–116 Ωm and the bottom sand layer, 15–69 Ωm. The base of the first four geo-electric layers corresponds to 3.9, 8.4, 27.2 and 34.6 m respectively. The two groundwater aquifers delineated correspond to the third and fifth geo-electric layers. The top aquifer has been infiltrated by oil plumes. The depth penetrated by the oil plume decreases from 32 m to about 24 m across the survey profiles from the two ends. It was concluded that the contaminant plumes from the oil spillage are yet to be completely degraded as at the time of the study. It is recommended that the contaminated site be remediated to remove or reduce the contaminant oil in the subsurface.  相似文献   

3.
Geometry and connectivity of high-permeability zones determine groundwater flow in karst aquifers. Efficient management of karst aquifers requires regional mapping of preferential flow paths. Remote-sensing technology provides tools to efficiently map the subsurface at such scales. Multi-spectral remote sensing imagery, shuttle radar topography data and frequency-domain airborne electromagnetic (AEM) survey data were used to map karst-aquifer structure on the Yucatan Peninsula, Mexico. Anomalous AEM responses correlated with topographic features and anomalous spectral reflectance of the terrain. One known preferential flow path, the Holbox fracture zone, showed lower bulk electrical resistivity than its surroundings in the AEM surveys. Anomalous structures delineated inland were sealed above by a low-resistivity layer (resistivity: 1–5 Ωm, thickness: 5–6?m). This layer was interpreted as ejecta from the Chicxulub impact (Cretaceous/Paleogene boundary), based on similar resistivity signatures found in borehole logs. Due to limited sensitivity of the AEM survey, the subsurface configuration beneath the low-resistivity layer could not be unambiguously determined. AEM measurements combined with remote-sensing data analysis provide a potentially powerful multi-scale methodology for structural mapping in karst aquifers on the Yucatan Peninsula and beyond.  相似文献   

4.
Numerical models provide a way to evaluate groundwater systems, but determining the hydrostratigraphic units (HSUs) used in constructing these models remains subjective, nonunique, and uncertain. A three-step machine-learning approach is proposed in which fusion, estimation, and clustering operations are performed on different data sets to arrive at HSUs at different scales. In step one, data fusion is performed by training a self-organizing map (SOM) with sparse borehole hydrogeologic (lithology, hydraulic conductivity, aqueous field parameters, dissolved constituents) and geophysical (gamma, spontaneous potential, and resistivity) measurements. Estimation is handled by iterative least-squares minimization of the SOM quantization and topographical errors. Application of the Davies-Bouldin criteria to k-means clustering of SOM nodes is used to determine the number and location of discontinuous borehole HSUs with low lateral density (based on borehole spacing at 100 s m) and high vertical density (based on cm-scale logging). In step two, a scaling network is trained using the estimated borehole HSUs, airborne electromagnetic measurements, and numerically inverted resistivity profiles. In step three, independent airborne electromagnetic measurements are applied to the scaling network, and the estimation performed to arrive at a set of continuous HSUs with high lateral density (based on sounding locations at meter (m) spacing) and medium vertical density (based on m-layer modeled structure). Performance metrics are used to evaluate each step of the approach. Efficacy of the proposed approach is demonstrated to map local-to-regional scale HSUs using hydrogeophysical data collected at a heterogeneous surficial aquifer in northwestern Nebraska, USA.  相似文献   

5.
 A geophysical survey was conducted to determine the depth of the base of the water-table aquifer in the southern part of Jackson Hole, Wyoming, USA. Audio-magnetotellurics (AMT) measurements at 77 sites in the study area yielded electrical-resistivity logs of the subsurface, and these were used to infer lithologic changes with depth. A 100–600 ohm-m geoelectric layer, designated the Jackson aquifer, was used to represent surficial saturated, unconsolidated deposits of Quaternary age. The median depth of the base of the Jackson aquifer is estimated to be 200 ft (61 m), based on 62 sites that had sufficient resistivity data. AMT-measured values were kriged to predict the depth to the base of the aquifer throughout the southern part of Jackson Hole. Contour maps of the kriging predictions indicate that the depth of the base of the Jackson aquifer is shallow in the central part of the study area near the East and West Gros Ventre Buttes, deeper in the west near the Teton fault system, and shallow at the southern edge of Jackson Hole. Predicted, contoured depths range from 100 ft (30 m) in the south, near the confluences of Spring Creek and Flat Creek with the Snake River, to 700 ft (210 m) in the west, near the town of Wilson, Wyoming. Received, May 1997 · Revised, February 1998 · Accepted, April 1998  相似文献   

6.
Hydrogeophysical investigations of the Pleistocene aquifer at the Kom Hamada area, Egypt, have been conducted to determine the characteristics of groundwater. The main water-bearing formations in the study area are composed of Quaternary deposits. Water samples were taken and chemically analyzed at 29 sites. The constructed iso-salinity contour map of the study area showed an increase in salinity from 451.75 mg/l at eastern parts to 1,091.85 mg/l at western parts. The groundwater of the study area showed a hydrochemical evolution from Ca–HCO3 at the eastern side to Na–Cl at the western side. Some of groundwater constituents have high concentration values exceeding the safe limit for drinking. Eighteen vertical electrical soundings (VES) were conducted in the study area. These soundings were conducted near existing wells to obtain layer parameters of the various penetrated layers and to calculate the petrophysical characteristics of the aquifers. The resistivity of the first water-bearing layer ranges between 34 and 47 Ω m. The thickness of this layer ranges between 26 and 79 m. This layer represents the first aquifer, where it is followed by another water-bearing layer with resistivity ranges between 29 and 62 Ω m and extends downward. The two aquifers are hydraulically connected. Variation of the resistivities of these two water-bearing layers is mainly due to the lithological variation. The resistivity values along with the TDS values of the two water-bearing layers indicate fresh to brackish water types.  相似文献   

7.
A framework for estimating aquifer hydraulic properties using sinusoidal pumping is presented that (1) derives analytical solutions for confined, leaky, and partially penetrating conditions; (2) compares the analytical solutions with a finite element model; (3) establishes a field protocol for conducting sinusoidal aquifer tests; and (4) estimates aquifer parameters using the analytical solutions. The procedure is demonstrated in one surficial and two confined aquifers containing potentially contaminated water in coastal plain sediments at the Savannah River site, a federal nuclear facility. The analytical solutions compare favorably with finite-element solutions, except immediately adjacent to the pumping well where the assumption of zero borehole radius is not valid. Estimated aquifer properties are consistent with previous studies for the two confined aquifers, but are inconsistent for the surficial aquifer; conventional tests yielded estimates of the specific yield—consistent with an unconfined response—while the shorter-duration sinusoidal perturbations yielded estimates of the storativity—consistent with a confined, elastic response. The approach minimizes investigation-derived wastes, a significant concern where contaminated fluids must be disposed of in an environmentally acceptable manner. An additional advantage is the ability to introduce a signal different from background perturbations, thus easing detection.  相似文献   

8.
Water exchange between the coastal ocean and underlying aquifers provides a newly-recognized source of materials to the ocean. The flux of materials into the ocean from this process is termed submarine groundwater discharge (SGD). Both surficial and semi-confined aquifers contribute to SGD. Here we use 226Ra and 228Ra to quantify fluxes of SGD to Port Royal Sound, South Carolina, and to separate fluxes from the Upper Floridan (UFA) and surficial aquifers. Higher activity ratios of 228/226Ra in the surficial aquifer make this separation possible. We estimate total SGD fluxes of about 100 m3 s-1 with about 80% being derived from the surficial aquifer. The SGD flux provides about1.8 × 106 mol d-1 of NH4 with almost 90% from the surficial aquifer. Because of strong differences in the concentration of PO4 within the UFA, PO4 fluxes areless certain. Using the UFA wells with low PO4 concentrations yields a flux of 1.2 × 105 mol d-1; using wells with high concentrations yields a flux of 2.0 × 105 mol d-1. In the first case virtually all of the PO4 flux is from the surficial aquifer; in the second case, 40% is from the UFA.The UFA in this region has experienced dramatic changes as a result of withdrawals for human use. Prior to these withdrawals, total nutrient fluxes from the UFA may have been even larger. These changes in the UFA and similar coastal aquifers worldwide have the potential to significantly alter a major nutrient source for the coastal ocean.  相似文献   

9.
Theis模型、Dupuit模型等经典井流模型分析非均质含水层井流试验数据有一定的局限性,获取的参数不适合表征非均质含水层特性。而GRF模型可以获取含水层流动特性的数据。相比于Theis模型、Dupuit模型,GRF模型更能表征非均质含水层特性。以黄石东湖新村棋盘洲长江大桥的抽水试验数据为例,采用Theis模型和GRF模型计算含水层渗透系数,结合实际水文地质条件,对比分析不同方法计算的水文地质参数,并计算含水层水流维数和表观压力传导系数(Kf /Ssf)。结果表明:研究区含水层为细砂夹条带状黏土透镜体的非均质含水层,采用GRF模型计算结果更符合实际情况,渗透系数为 4.09×10?3cm/s;含水层水流维数为1.61,地下水为双线性流动状态,含水层对抽水试验的响应主要受黏土条带控制;观测井和抽水主井的Kf /Ssf呈非线性相关,进一步验证了含水层的非均质性。在非均质孔隙含水层中,应用多孔联合非稳定GRF井流试验方法不仅能确定水文地质参数,并且能丰富对含水层特性的认知。  相似文献   

10.
Deep Crustal Electrical Signatures of Eastern Dharwar Craton, India   总被引:1,自引:0,他引:1  
Wide band magnetotelluric (MT) investigations were carried out along a profile from Kavali in the east to Anantapur towards west across the Eastern Ghat Granulite Terrain (EGGT), Eastern Dhanvar Craton (EDC) and a Proterozoic Cuddapah Basin. This 300 km long profile was covered with 20 stations at an interval of 12–18 km. The MT data is subjected to robust processing, decomposition and static shift correction before deriving a 2-D model. The model shows a resistive crust (−10,000–30,000 ohm-m) to a depth of 8–10 km towards west of the Cuddapah basin. The mid crust is less resistive (about 500 ohm-m) and the lower crust with a slight increase in resistivity (about 1,500 ohm-m) in the depth range of 20–22 km. The resistivity picture to the east of the Cuddapah basin also showed a different deep crustal structure. The resistivity of upper crust is about 5,000 ohm-m and about 200 ohm-m for mid and lower crust. The sediment resistivity of Cuddapah basin is of the order of 15–20 ohm-m. MT model has shown good correlation with results from other geophysical studies like deep seismic sounding (DSS), gravity and magnetics. The results indicate that the lower crustal layers are of intermediate type showing hydrous composition in Eastern Dhanvar Craton.  相似文献   

11.
Recent attention to transboundary aquifers (TBAs) in Africa reflects the growing importance of these resources for development in the continent. However, relatively little research on these aquifers and their best management strategies has been published. This report recapitulates progress on mapping and management frameworks for TBAs in Africa. The world map on transboundary aquifers presented at the 6th World Water Forum in 2012 identified 71 TBA systems in Africa. This report presents an updated African TBA map including 80 shared aquifers and aquifer systems superimposed on 63 international river basins. Furthermore, it proposes a new nomenclature for the mapping based on three sub-regions, reflecting the leading regional development communities. The map shows that TBAs represent approximately 42 % of the continental area and 30 % of the population. Finally, a brief review of current international law, specific bi- or multilateral treaties, and TBA management practice in Africa reveals little documented international conflicts over TBAs. The existing or upcoming international river and lake basin organisations offer a harmonised institutional base for TBA management while alternative or supportive models involving the regional development communities are also required. The proposed map and geographical classification scheme for TBAs facilitates identification of options for joint institutional setups.  相似文献   

12.
The temporal variability of water-level fluctuations in the chalk aquifer of Upper Normandy, France is constrained by natural climate fluctuations and is closely linked to the regional geological patterns. The chalk plateaus are covered with 5–50 m thick semi-permeable surficial formations; the thickness of the underlying chalk aquifer varies from 50 to 300 m. The relationship among climate oscillations, piezometric levels, and geologic structure were investigated by correlation, Fourier spectral, and continuous wavelet analyses of selected piezometric time-series data. Analysis focused on two piezometers located on the uplifted side of a major fault and two piezometers on the downthrown side. After generalization to other piezometers in the region, it was deduced that, in the downthrown compartments, a substantial aquifer and surficial formations thickness would imply a strong attenuation of annual variability, while multi-year variability is clearly expressed. Conversely, in the uplifted compartments, a thin layer of surficial formations and small thickness of the chalk authorizes strong variations on the annual mode with respect to the contribution of long-term climatic oscillations (multi-year variability). The results then demonstrated—and proposed a spatial determination of—the differential influence of geological patterns on the filtering of climate-induced oscillations in piezometric variability.  相似文献   

13.
The estimation and mapping of realistic hydraulic head fields, hence of flow paths, is a major goal of many hydrogeological studies. The most widely used method to obtain reliable head fields is the inverse approach. This approach relies on the numerical approximation of the flow equation and requires specifying boundary conditions and the transmissivity of each grid element. Boundary conditions are often unknown or poorly known, yet they impose a strong signature on the head fields obtained by inverse analysis. A simpler alternative to the inverse approach is the direct kriging of the head field using the measurements obtained at observation wells. The kriging must be modified to incorporate the available information. Use of the dual kriging formalism enables simultaneously estimating the head field, the aquifer mean transmissivity, and the regional hydraulic gradient from head data in steady or transient state conditions. In transient state conditions, an estimate of the storage coefficient can be obtained. We test the approach on simple analytical cases, on synthetic cases with solutions obtained numerically using a finite element flow simulator, and on a real aquifer. For homogeneous aquifers, infinite or bounded, the kriging estimate retrieves the exact solution of the head field, the exact hydrogeological parameters and the flow net. With heterogeneous aquifers, kriging accurately estimates the head field with prediction errors of the same magnitude as typical head measurement errors. The transmissivities are also accurately estimated by kriging. Moreover, if inversion is required, the kriged head along boundaries can be used as realistic boundary conditions for flow simulation.  相似文献   

14.
A point count index method using a well drillers log and field measurements has been developed following the DRASTIC and SINTACS procedures to map and evaluate the vulnerability of a coastal plain aquifer to surface and near surface contamination. The input parameters with the acronym CALOD include clay layer thickness (C), aquifer media character (A), lateritic layer thickness (L), overlying layer character (O) and the depth to groundwater level (D). The CALOD vulnerability potential index (CALOD index) is computed as the sum of the products of weights and ratings assigned to each of the input parameters. The CALOD index, varying between 15 and 75, is divided into four classes: high (>60), high-medium, (40–60), low-medium (20–40) and low (<20). The CALOD index is then used to produce a vulnerability potential map for the area. From the map, areas of high, high-medium and medium-low are consistent with the upper gravelly aquiferous zone while areas of medium-low and low are restricted to the deeper lower sandy aquiferous layer. The most important parameters affecting groundwater vulnerability to pollution in coastal areas include saturated thickness of the aquifer, depth to groundwater level, lateritic layer thickness and the aquifer media character. The concentration of some chemical pollution indicators (electrical conductivity, K, NO3, Cl and metal load) are relatively higher for the highly vulnerable shallower upper gravelly unit in comparison to the less vulnerable deeper sandy unit. This method is very suitable for coastal plain sand aquifers especially, where data is scare.  相似文献   

15.
A geoelectrical resistivity survey using vertical electrical sounding (VES) was conducted at Chaj Doab (land between rivers Jhelum and Chenab, Pakistan) and Rachna Doab (land between rivers Chenab and Ravi, Pakistan), with the objective of investigating groundwater conditions. A total of 90 sites were selected with 43 sites in Chaj and 47 sites in Rachna Doabs. The resistivity meter (ABEM Terrameter SAS 4000, Sweden) was used to collect the VES data by employing a Schlumberger electrode configuration, with half current electrode spacings (AB/2) ranging from 2 to 180 m and the potential electrode (MN) from 1 to 40 m. The field data were interpreted using the Interpex IX1D computer software and the resistivity versus depth models for each location was estimated. The outputs of subsurface layers with resistivities and thickness presented in contour maps and 3-D views by using SURFER software were created. A total of 102 groundwater samples from nearby hydrowells at different depths were collected to develop a correlation between the aquifer resistivity of VES and the electrical conductivity (EC) of the groundwater and to confirm the resulted geophysical resistivity models. From the correlation developed, it was observed that the groundwater salinity in the aquifer may be considered low and so safe for irrigation if resistivity >45 Ω m, and marginally fit for irrigation having resistivity between 25 and 45 Ω m. The study area has resistivities from 3.9 to 2,222 Ω m at the top of the unsaturated layer, between 1.21 and 171 Ω m, in the shallow aquifers, and 0.14–152 Ω m in the deep aquifers of the study area. The results indicate that the quality of groundwater is better near the rivers and in the shallow layers compared to the deep layers.  相似文献   

16.
以贵州省安龙县1∶50 000水文地质图幅为例,采用含水层探采井的水质、水量监测数据,分析不同含水层水资源赋存特征及其与水化学的相关性。研究结果表明:(1)研究区含水层可分为纯碳酸盐岩管道含水层、非纯碳酸盐岩裂隙含水层、碎屑岩裂隙含水层、松散岩类孔隙含水层4种类型,各含水层中地下水水化学类型均以HCO-Ca?Mg型为主;(2)除非纯碳酸盐岩含水层探采井的降深与水体中Mg2+、HCO-3浓度呈现出显著的负相关性(R2=-0.77/-0.74)外,其余离子浓度与钻井单位涌水量、降深的相关性均不显著,相关系数(R2)均小于0.3;(3)非纯碳酸盐岩含水层和松散岩类含水层的总矿化度(TDS)、总硬度(TH)含量均比纯碳酸盐岩含水层低5 mg?L-1以上,TDS、TH的高值区均集中于纯碳酸盐岩含水层中,而低值区则分布于松散岩类含水层。   相似文献   

17.
Investigation for high yielding water wells in the khondalitic terrain (graneti ferrous silliminite gnesiss) is mostly faced with the problem of identification of the extent of the depth of kaolinisation of the aquifer. The traditional Vertical Electrical Sounding survey, Seismic Refraction survey and Very Low Frequency Electromagnetic survey could not identify the kaolinisation of the aquifer in the present investigations. The Two Dimensional (2D) Resistivity and Induced Polarization (IP) Imaging surveys are attempted for the identification of kaolinised layer and depth of kaolinisation. Number of 2D Resistivity and IP Imaging profiles were conducted near Chipurupally in Vizianagaram district of Andhra Pradesh, India along successful and failed wells located within short distances. Resistivity and IP measurements were carried out using an ABEM SAS 4000 Terrameter. The resistivity and I.P. images have provided a clear view of the thickness of the highly weathered zone (kaolinised zone) at both successful and failed wells. The highly weathered zone is identified with the resistivity values below 25 ohm.m. The depth of highly weathered material at failed well is extended about 8–10 m more deeper than the successful wells at some places to as much as 20 m more deep at some other places. This extended deeper kaolinisation of the aquifer is responsible for failure of wells. Layers having resistivities between 25–65 Ohm.m are identified as aquifer layers which are composed of moderately weathered and fractured khondalitic suit of rocks (Garnti ferrous sillimanite/biotite gneiss). Layers with resistivities greater than 65 Ohm.m are interpreted to have basement characteristics belonging to the granite gneiss. Interestingly IP imaging has not provided any greater insights in delineating the kaolinistion of the aquifer when compared to resistivity Imaging, in fact resitivity imaging has shown greater depths of kaolinisation than IP Imaging.  相似文献   

18.
Published information on the correlation and field-testing of the technique of stack-unit/aquifer sensitivity mapping with documented subsurface contaminant plumes is rare. The inherent characteristic of stack-unit mapping, which makes it a superior technique to other analyses that amalgamate data, is the ability to deconstruct the sensitivity analysis on a unit-by-unit basis. An aquifer sensitivity map, delineating the relative sensitivity of the Crouch Branch aquifer of the Administrative/Manufacturing Area (A/M) at the Savannah River Site (SRS) in South Carolina, USA, incorporates six hydrostratigraphic units, surface soil units, and relevant hydrologic data. When this sensitivity map is compared with the distribution of the contaminant tetrachloroethylene (PCE), PCE is present within the Crouch Branch aquifer within an area classified as highly sensitive, even though the PCE was primarily released on the ground surface within areas classified with low aquifer sensitivity. This phenomenon is explained through analysis of the aquifer sensitivity map, the groundwater potentiometric surface maps, and the plume distributions within the area on a unit-by- unit basis. The results of this correlation show how the paths of the PCE plume are influenced by both the geology and the groundwater flow.  相似文献   

19.
Recently, the deterioration of water quality in the coastal zones of Lekki Peninsula area of Lagos due to saltwater infiltration into the freshwater aquifer has become a major concern. With the aim of providing valuable information on the hydrogeologic system of the aquifers, the subsurface lithology and delineating the groundwater salinity, vertical electrical resistivity (VES) sounding survey was carried out utilizing surface Schlumberger electrode arrays, and electrode spacing varying between 1 and 150 m. The DC resistivity surveys revealed significant variations in subsurface resistivity. Also, the VES resistivity curves showed a dominant trend of decreasing resistivity with depth (thus increasing salinity). In general, the presence of four distinct resistivity zones were delineated viz.: the unconsolidated dry sand (A) having resistivity values ranging between 125 and 1,028 Ωm represent the first layer; the fresh water-saturated soil (zone B) having resistivity values which correspond to 32–256 Ωm is the second layer; the third layer (zone C) is interpreted as the mixing (transition) zone of fresh with brackish groundwater. The resistivity of this layer ranges from 4 to 32 Ωm; while layer four (zone D) is characterized with resistivities values generally below 4 Ωm reflecting an aquifer possibly containing brine. The rock matrix, salinity and water saturation are the major factors controlling the resistivity of the formation. Moreover, this investigation shows that saline water intrusion into the aquifers can be accurately mapped using surface DC resistivity method.  相似文献   

20.
The hybrid finite-discrete element method (FDEM) is widely used for engineering applications, which, however, is computationally expensive and needs further development, especially when rock fracture process is modeled. This study aims to further develop a sequential hybrid FDEM code formerly proposed by the authors and parallelize it using compute unified device architecture (CUDA) C/C++ on the basis of a general-purpose graphics processing unit (GPGPU) for rock engineering applications. Because the contact detection algorithm in the sequential code is not suitable for GPGPU parallelization, a different contact detection algorithm is implemented in the GPGPU-parallelized hybrid FDEM. Moreover, a number of new features are implemented in the hybrid FDEM code, including the local damping technique for efficient geostatic stress analysis, contact damping, contact friction, and the absorbing boundary. Then, a number of simulations with both quasi-static and dynamic loading conditions are conducted using the GPGPU-parallelized hybrid FDEM, and the obtained results are compared both quantitatively and qualitatively with those from either theoretical analysis or the literature to calibrate the implementations. Finally, the speed-up performance of the hybrid FDEM is discussed in terms of its performance on various GPGPU accelerators and a comparison with the sequential code, which reveals that the GPGPU-parallelized hybrid FDEM can run more than 128 times faster than the sequential code if it is run on appropriate GPGPU accelerators, such as the Quadro GP100. It is concluded that the GPGPU-parallelized hybrid FDEM developed in this study is a valuable and powerful numerical tool for rock engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号