首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A detailed characterization of the site is crucial to designing an efficient method of managing the risks associated with tailings from abandoned mines. Therefore, samples collected from various depths within tailings in Guryong mine, Korea, were analyzed for their chemical, physical and mineralogical characteristics. All samples of the Guryong tailings had acid-generating potential. However, in the oxidation zone, the net acid generation (NAG) was low (30 kg H2SO4 t−1) although the acid neutralization potential (ANP) was less than zero. The ANP values in the unoxidation zone were higher (> −56.0 kg CaCO3 t−1) than in the other zones. As a result, the amount of alkali ions that are needed to neutralize the acid needs to be considered. In this experiment G3, G4 and G6 drill cores containing fine tailings particles near the unoxidation zone were observed to contain calcite (CaCO3) with acid-neutralizing capacity. A low pH (2−4) in the oxidation zone of the tailings changed to a neutral pH in the unoxidation zone of the tailings. These results suggest that the acid-neutralizing capacity of the tailings was controlled by particle and mineral composition of tailings.  相似文献   

2.
Thirty-two groundwater samples collected from the Merguellil Wadi basin (central Tunisia) complemented by the Haouareb dam reservoir water samples have been isotopically analysed in order to investigate the implication of the reservoir water to recharging the aquifer, and also to infer the sources, relative ages and mixing processes in the aquifer system. Plots of the stable isotopes data against the local meteoric lines of Tunis-Carthage and Sfax indicate a strong implication of the dam water noticeable up to a distance of 6–7 km. A contribution as much as 80% of the pumped water has been evidenced using isotopic mass balance. In addition, poorly distinguished water clusters in the stable isotope plots, but clearly identified in the diagrams δ18O versus 3H and 3H versus 14C, indicate various water types related to sources and timing of recharge. The isotopic signatures of the dam accounting water, the “old” and “native” recharged waters, have been evidenced in relation to their geographical distribution and also to their radiogenic isotopes (3H and 14C) contents. In the south-western part of the aquifer, mixing process occurs between the dam reservoir water and both the “old” and “native” water components.  相似文献   

3.
 The purpose of this study is to investigate the rates and mechanisms of recharge and evaporation in soils of a desert environment using two environmental tracers (chloride and oxygen-18). The profiles of chloride concentration and oxygen-18 enrichment in soil-water, together with the depth distribution of water content in soil, reveal information about long-term recharge and instantaneous evaporation processes without needing to know the physical properties of the soil. Three holes were hand-augured, in different desert settings in southeastern New Mexico. The chloride concentration profiles were used, with the chloride mass balance method, to estimate long-term recharge rates in these three holes as 0.5, 0.8, and 2.4 mm yr–1. Analysis using a bimodal flow and transport model shows that possibly 85% of the recharge occurs via movement of water through preferred pathways in the root zone. Preferential flow was evident in all three sampling sites. Clay layers have a noticeable effect on the development of water content distribution and thus on oxygen-18 enrichment and chloride concentration profiles. The spatial variation in clay layering partly explains the variation in recharge rate estimates. Received: 13 October 1995 · Accepted: 15 November 1995  相似文献   

4.
Hydrogeology Journal - In the High Plains (HP) region of northeastern New Mexico (NE NM), USA, underlying bedrock aquifers are utilized where the High Plains Aquifer is thin, absent, or...  相似文献   

5.
The recharge sources and groundwater age in the Songnen Plain, Northeast China, were confirmed using environmental isotopes. The isotopic signatures of the unconfined aquifers in the southeast elevated plain and the north and west piedmont, cluster along local meteoric water lines (LMWLs) with a slope of about 5. The signature of source water was obtained by the intersection of these LMWLs with the regional meteoric water line (RMWL). This finding provides evidence that the recharge water for these areas originate from the Changbai Mountains and the Low and High Hingan Mountains, respectively. Groundwater in the unconfined aquifer in the low plain yields a LMWL with a slope of 4.4; its nitrate concentration indicates the admixture of irrigation return flow. The δ-values of the unconfined aquifer in the east elevated plain plot along the RMWL, reflecting recharge by local precipitation. The mean residence time of groundwater in these aquifers is less than 50?years. However, the 14C age of the groundwater in the confined Quaternary aquifer ranges from modern to 19,500?years, and in the Tertiary confined aquifer from 3,100 to 24,900?years. Modern groundwater is mainly recharged to the Quaternary confined aquifer on the piedmont by local precipitation and lateral subsurface flow.  相似文献   

6.
A study in eastern Taiwan evaluated the importance of montane water contribution (MC) to adjacent valley-plain groundwater (VPG) in a tectonic suture zone. The evaluation used a ternary natural-tracer-based end-member mixing analysis (EMMA). With this purpose, VPG and three end-member water samples of plain precipitation (PP), mountain-front recharge (MFR), and mountain-block recharge (MBR) were collected and analyzed for stable isotopic compositions (δ2H and δ18O) and chemical concentrations (electrical conductivity (EC) and Cl?). After evaluation, Cl? is deemed unsuitable for EMMA in this study, and the contribution fractions of respective end members derived by the δ18O–EC pair are similar to those derived by the δ2H–EC pair. EMMA results indicate that the MC, including MFR and MBR, contributes at least 70% (679?×?106 m3 water volume) of the VPG, significantly greater than the approximately 30% of PP contribution, and greater than the 2050% in equivalent humid regions worldwide. The large MC is attributable to highly fractured strata and the steep topography of studied catchments caused by active tectonism. Furthermore, the contribution fractions derived by EMMA reflect the unique hydrogeological conditions in the respective study sub-regions. A region with a large MBR fraction is indicative of active lateral groundwater flow as a result of highly fractured strata in montane catchments. On the other hand, a region characterized by a large MFR fraction may possess high-permeability stream beds or high stream gradients. Those hydrogeological implications are helpful for water resource management and protection authorities of the studied regions.  相似文献   

7.
Interactions between river water and groundwater have been used to help understand the movement of water and to evaluate water quality in the semi-arid area of the North China Plain (NCP). Stable isotopes, chlorofluorocarbons (CFCs) and hydrochemistry were used to study the influence of surface water from the Xiao River on regional groundwater. Using a mass balance approach based on chloride concentrations, hydrogen and oxygen isotope ratios, the average fraction of surface water recharging to groundwater was 50–60 %. CFC results indicated that the groundwater recharge age varied from 22.5 to 39.5 years. The vertical flow velocity of groundwater was estimated at about 1.8–3.5 m year?1. Nitrate concentrations in groundwater varied from 9.42 to 156.62 mg L?1, and exceeded 50 mg L?1 in most aquifers shallower than 80 m bordering the Xiao River. The δ 15N-NO3 data indicate that the major sources of nitrogen in groundwater are human sewage and animal excreta. Because groundwater is the main source of drinking water, there should be concern about public health related to the elevated nitrate concentrations in the NCP.  相似文献   

8.
基于包气带剖面研究黄土地下水补给   总被引:1,自引:0,他引:1  
王雨山  潘建永 《地质论评》2019,65(Z1):15-16
正地下水补给是含水层从外界获得水量的过程,是地下水系统形成演化的基础和水文地质学科研究的核心问题(庞忠和等,2018)。在黄土高原地区,地下水是生产生活的重要水源,查明黄土高原地下水补给来源和补给量对合理开发利用地下水资源意义重大。前人对此开展了较多研究并取得丰富成果,但由于黄土高原包气带厚度较大,地下水补给受多因素影响,其时空变化较为复杂(赵文智等,2017)。本次选择小型黄土残塬,通过两组包气带剖  相似文献   

9.
10.
The study highlights the dangers of limiting recharge calculations in humid climates to meteorological and soil considerations. It highlights the importance of developing a conceptual understanding of the influence of geology on recharge mechanisms and recharge rates. Uncertainties in recharge estimates through tills are examined by a study of the available literature, combined with sensitivity analyses of soil moisture budget parameters and of hypothetical scenarios of till properties and hydraulic gradients that are realistic for Irish conditions. The sensitivity analyses demonstrate that till properties have a greater influence over recharge than the soil moisture budgeting parameters. Results are considered in terms of recharge coefficients, representing the proportion of effective precipitation that becomes actual recharge to the aquifer. The literature review identifies a range in recharge coefficients from 4% to 90% in selected field and catchment scale studies from bedrock aquifers in Ireland and the U.K. The sensitivity analyses are able to simulate a similar range in recharge coefficient of 2% to 80% by varying only till permeability, thickness and vertical hydraulic gradients. In the scenarios examined, the greatest sensitivity to vertical till permeability lies between 0.001 m/day and 0.01 m/day. The sensitivity to soil moisture budgeting parameters is much less apparent. It is concluded that this is due to the dominance of grassland in Ireland and the relatively wet summers, resulting in the limited development of soil moisture deficits by comparison with some parts of the U.K.
Résumé Cette étude met en lumière les dangers résultants de la pratique consultant à limiter les calculs de recharge aux données météorologiques ainsi qu’aux considérations liées au sol. Elle met en lumière l’importance de développer des modèles conceptuels comprenant l’influence de la géologie sur les mécanismes de la recharge et les taux de recharge. Les incertitudes sur les estimations de la recharge à travers les argiles sont examinées à travers les données disponibles dans la littérature, combinées avec une analyse de sensibilité des paramètres du bilan hydrique et des scénarios hypothétiques reprenant les propriétés des argiles et les gradients hydrauliques qui sont réalistes dans le contexte irlandais de l’étude. Les analyses de sensibilité démontrent que les propriétés des argiles ont une plus grande influence sur la recharge que les paramètres du bilan hydrique des sols. Les résultats sont considérés en terme de coefficients de recharge, représentant la proportion de précipitation effective qui devient la recharge réelle de l’aquifère. La littérature identifie des coefficients de recharge allant de 4 à 90% sur des terrains sélectionnés à l’échelle de bassins-versants, sur les aquifères de socle en Irlande et au Royaume-Uni. Les analyses de sensibilité sont capables de simuler une variation aussi large de coefficients de recharge, en ne changeant rien que la perméabilité des argiles, leur épaisseur et les gradients hydrauliques verticaux. Dans les scénarios étudiés, la meilleure sensibilité à la perméabilité verticale se situe entre 0.001 et 0.01 m/jour. La sensibilité au bilan hydrique est beaucoup moins apparente. On en conclut que ceci est du à la dominance des prairies en Ireland et aux étés relativement humides, résultant des déficits en eau des sols relativement modérés en comparaison avec certaines zones du Royaume-uni.

Resumen El estudio resalta los peligros de limitar los cálculos de recarga en climas húmedos a las consideraciones meteorológicas y del suelo. Se destaca la importancia de desarrollar un entendimiento conceptual de la influencia de la geología en los mecanismos de recarga y los ritmos de recarga. Se examinan las incertidumbres en los estimados de recarga a través de tills mediante un estudio de la literatura disponible combinado con análisis de sensibilidad de parámetros de balance de humedad del suelo y de escenarios hipotéticos de las propiedades del till y gradientes hidráulicos que son realistas para condiciones típicas de Irlanda. Los análisis de sensibilidad demuestran que las propiedades del till tienen una influencia más grande en la recarga que los parámetros del balance de humedad del suelo. Se consideran los resultados en términos de coeficientes de recarga, representando la proporción de precipitación efectiva que se convierte en recarga real al acuífero. La revisión de literatura identifica un rango de coeficientes de recarga que varía de 4% a 90% en estudios seleccionados de cuencas y escala de campo realizados en acuíferos de macizo rocoso en Irlanda y el Reino Unido. Los análisis de sensibilidad pueden simular un rango similar en los coeficientes de recarga de 2% a 80% al variar únicamente la permeabilidad del till, el espesor y los gradientes verticales hidráulicos. En los escenarios examinados, la relación de sensibilidad más grande con la permeabilidad vertical del till se encuentra entre 0.001 m/día y 0.01 m/día. La sensibilidad en relación a los parámetros del balance de humedad del suelo es mucho menos aparente. Se concluye que esto se debe a la predominancia de tierras con hierba en Irlanda y los veranos relativamente húmedos, lo que resulta en el desarrollo limitado de déficit de humedad de suelo en comparación con algunas partes del Reino Unido.
  相似文献   

11.
12.
13.
14.
15.
16.
Irrigation in semi-arid agricultural regions can have profound effects on recharge rates and the quality of shallow groundwater. This study coupled stable isotopes (2??, 18O), age-tracers (3H, CFCs, 14C), 87Sr/86Sr ratios, and elemental chemistry to determine the sources, residence times, and flowpaths of groundwater and agricultural contaminants (e.g. NO 3 ?C ) in the Saddle Mountains Basalt Aquifer in central Washington, USA, where over 80% of the population depend on groundwater for domestic use. Results demonstrate the presence of two distinct types of water: contaminated irrigation water and pristine regional groundwater. Contaminated irrigation water has high NO 3 ?C concentrations (11?C116? mg/l), 87Sr/86Sr ratios (0.70659?C0.71078) within range of nitrogen-based fertilizers, detectable tritium (2.8?C13.4 TU), CFC ages 20?C40?years, high ??18O values (?16.9 to ?13.5??), and ??100 percent modern 14C. Pristine regional groundwater has low NO 3 ?C concentrations (1?C5? mg/l), no detectable tritium (??0.8 TU), low ??18O values (?18.9 to ?17.3??) and 14C ages from ??15 to 33?ky BP. Nitrogen and oxygen isotopes of NO 3 ?C , combined with high dissolved oxygen values, show that denitrification is not an important process in the organic-poor basalt aquifers resulting in transport of high NO 3 ?C irrigation water to depths greater than 40?m in less than 30? years.  相似文献   

17.
Epigenic karst systems exhibit strong connectivity to surface recharge. In land use dominated by extensive agriculture and farming, epigenic karst aquifers are highly vulnerable to surface contaminants from point and nonpoint sources. Currently, the karstic landscapes of the southeastern Kentucky platform (USA) are impacted by agriculture and the rapid proliferation of concentrated-animal-feeding operations. Analysis of karst aquifer responses to storm events provides qualitative information regarding aquifer–recharge flow paths and groundwater residence time, and knowledge of spatial and temporal variations in recharge and flow is crucial to the understanding of the fate of surface contaminants. Time-series correlation analyses on long-term physicochemical data recorded at the outlet of Grayson Gunnar Cave, an epigenic karst system located along the Cumberland escarpment in southeastern Kentucky, revealed the existence of two separate conduit branches responding 4–8 h apart from each other. Recorded storm response times range from 4 h for flushing and dilution to 7 h for recovery. An estimated 6 million L of stored groundwater is discharged from both branches during major storms, and the fastest responding branch accounts for the majority (80%) of the groundwater reserve being discharged through the spring. As evidenced by groundwater residence time (7 days), recharge is likely characterized by localized infiltration of rain water from subsurface sinkholes to the conduit branches with no contribution of regional or lateral groundwater flow.  相似文献   

18.
Sustainable groundwater management requires knowledge of recharge. Recharge is also an important parameter in groundwater flow and transport models. Spatial variation in recharge due to distributed land-us.e, soil texture, topography, groundwater level, and hydrometeorological conditions should be accounted for in recharge estimation. However, conventional point-estimates of recharge are not easily extrapolated or regionalized. In this study, a spatially distributed water balance model WetSpass was used to simulate long-term average recharge using land-use, soil texture, topography, and hydrometeorological parameters in Dire Dawa, a semiarid region of Ethiopia. WetSpass is a physically based methodology for estimation of the long-term average spatial distribution of surface runoff, actual evapotranspiration, and groundwater recharge. The long-term temporal and spatial average annual rainfall of 626 mm was distributed as: surface runoff of 126 mm (20%), evapotranspiration of 468 mm (75%), and recharge of 28 mm (5%). This recharge corresponds to 817 l/s for the 920.12 km2 study area, which is less than the often-assumed 1,000 l/s recharge for the Dire Dawa groundwater catchment.  相似文献   

19.
Performances of conventional and improved soil moisture balance as well as locally calibrated empirical models were evaluated in simulating potential recharge (R) and soil moisture content for a semi-arid foothill region. Models comparison with observed values using lysimeter data during [(2011–2012), (2012–2013)] reveal poor performance of conventional soil moisture balance model, underestimating annual R values. Improved soil moisture balance model provided acceptable estimation of annual R for 2011–2012 by considering the wetting of the near surface soil storage. However, it produced the worst simulation for daily soil moisture content once rainy season was over. Sensitivity analysis revealed that the precision degree of initial soil moisture deficit value would strongly influence estimation of R by improved soil moisture balance model, which can be viewed as a limiting factor. Additionally, locally calibrated model produced the best estimation of annual R and daily soil moisture content, which is suggested for the study region.  相似文献   

20.
Based on satellite observations of Earth’s time variable gravity field from the Gravity Recovery and Climate Experiment (GRACE), it is possible to derive variations in terrestrial water storage, which includes groundwater, soil moisture, and snow. Given auxiliary information on the latter two, one can estimate groundwater storage variations. GRACE may be the only hope for groundwater depletion assessments in data-poor regions of the world. In this study, soil moisture and snow were simulated by the Global Land Data Assimilation System (GLDAS) and used to isolate groundwater storage anomalies from GRACE water storage data for the Mississippi River basin and its four major sub-basins. Results were evaluated using water level records from 58 wells set in the unconfined aquifers of the basin. Uncertainty in the technique was also assessed. The GRACE-GLDAS estimates compared favorably with the well based time series for the Mississippi River basin and the two sub-basins that are larger than 900,000 km2. The technique performed poorly for the two sub-basins that have areas of approximately 500,000 km2. Continuing enhancement of the GRACE processing methods is likely to improve the skill of the technique in the future, while also increasing the temporal resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号