首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Two algorithms for in-situ detection and identification of vertical free convective and double-diffusive flows in groundwater monitoring wells or boreholes are proposed. With one algorithm the causes (driving forces) and with the other one the effects (convection or double-diffusion) of vertical transport processes can be detected based on geophysical borehole measurements in the water column. Five density-driven flow processes are identified: thermal, solutal, and thermosolutal convection leading to an equalization, as well as saltfingers and diffusive layering leading to an intensification of a vertical density gradient. The occurrence of density-driven transport processes could be proven in many groundwater monitoring wells and boreholes; especially shallow sections of boreholes or groundwater monitoring wells are affected dramatically by such vertical flows. Deep sections are also impaired as the critical threshold for the onset of a density-driven flow is considerably low. In monitoring wells or boreholes, several sections with different types of density-driven vertical flows may exist at the same time. Results from experimental investigations in a medium-scale testing facility with high aspect ratio (height/radius = 19) and from numerical modeling of a water column agree well with paramters of in-situ detected convection cells.  相似文献   

2.
The Tongue Creek watershed lies on the south flank of Grand Mesa in western Colorado, USA and is a site with 1.5 km of topographic relief, heat flow of 100 mW/m2, thermal conductivity of 3.3 W m–1 °C–1, hydraulic conductivity of 10-8 m/s, a water table that closely follows surface topography, and groundwater temperatures 3–15°C above mean surface temperatures. These data suggest that convective heat transport by groundwater flow has modified the thermal regime of the site. Steady state three-dimensional numerical simulations of heat flow, groundwater flow, and convective transport were used to model these thermal and hydrological data. The simulations provided estimates for the scale of hydraulic conductivity and bedrock base flow discharge within the watershed. The numerical models show that (1) complex three-dimensional flow systems develop with a range of scales from tens of meters to tens of kilometers; (2) mapped springs are frequently found at locations where contours of hydraulic head indicate strong vertical flow at the water table, and; (3) the distribution of groundwater temperatures in water wells as a function of surface elevation is predicted by the model.  相似文献   

3.
Convection of groundwater in aquifers can create areas of anomalously high temperature at shallow depths which could be exploited for geothermal energy. Temperature measurements in the Perth Basin (Western Australia) reveal thermal patterns that are consistent with convection in the Yarragadee Aquifer. This observation is supported by Rayleigh number calculations, which show that convection is possible within the range of aquifer thickness, geothermal gradient, salinity gradient and permeability encountered in the Yarragadee Aquifer, assuming that the aquifer can be treated as a homogeneous anisotropic layer. Numerical simulations of convection in a simplified model of the Yarragadee Aquifer show that: (1) the spacing of convective upwellings can be predicted from aquifer thickness and permeability anisotropy; (2) convective upwellings may be circular or elongate in plan view; (3) convective upwellings create significant temperature enhancements relative to the conductive profile; (4) convective flow rates are similar to regional groundwater flow rates; and (5) convection homogenises salinity within the aquifer. Further work is required to constrain the average horizontal and vertical permeability of the Yarragadee Aquifer, to assess the validity of treating the aquifer as a homogeneous anisotropic layer, and to determine the impact of realistic aquifer geometry and advection on convection.  相似文献   

4.
This study investigated the thermal regime of shallow groundwater in the Turin area (NW Italy), where the large energy demand has motivated a new interest for renewable sources, such as the use of ground-source heat pumps for domestic heating and cooling. The vertical variability of the groundwater temperature between the ground surface and 10–20 m was detected: deeper temperatures were higher than shallow temperatures in spring, while a decrease with depth occurred in autumn. These variations are connected with the heating and cooling cycles of the ground surface due to the seasonal temperature oscillation. Variations below the seasonal oscillation are likely to be connected with the presence of advective heat transport due to the groundwater flow, according to the hydraulic features of a shallow aquifer. Temperature values mostly ranged between 12 and 14 °C in rural areas, while the values were between 14 and 16 °C below the Turin city. This groundwater warming is attributed to a widespread urban heat island phenomenon linked to warmer land surface temperatures in Turin city. Sparse warm outliers are connected with point heat sources and site-specific conditions of land and subsurface use, which may cause the aquifer temperature to rise. A relatively stable temperature below the seasonal fluctuation zone combined with high productivity and legislated limits for deeper groundwater use represent favourable conditions for a large-scale diffusion of groundwater heat pumps within the shallow aquifer. Moreover, this heat surplus should be regarded as a resource for future geothermal installations.  相似文献   

5.
 Free thermal convection and mixed convection are considered as potential mechanisms for mass and heat transport in sedimentary basins. Mixed convection occurs when horizontal flows (forced convection) are superimposed on thermally driven flows. In cross section, mixed convection is characterized by convection cells that migrate laterally in the direction of forced convective flow. Two-dimensional finite-element simulations of variable-density groundwater flow and heat transport in a horizontal porous layer were performed to determine critical mean Rayleigh numbers for the onset of free convection, using both isothermal and semi-conductive boundaries. Additional simulations imposed a varying lateral fluid flux on the free-convection pattern. Results from these experiments indicate that forced convection becomes dominant, completely eliminating buoyancy-driven circulation, when the total forced-convection fluid flux exceeds the total flux possible due to free convection. Calculations of the thermal rock alteration index (RAI=q·∇T) delineate the patterns of potential diagenesis produced by fluid movement through temperature gradients. Free convection produces a distinct pattern of alternating positive and negative RAIs, whereas mixed convection produces a simpler layering of positive and negative values and in general less diagenetic alteration. Received, January 1999/Revised, June 1999/Accepted, July 1999  相似文献   

6.
The Laguna Lagunillas basin in the arid Andes of northern Chile exhibits a shallow aquifer and is exposed to extreme air temperature variations from 20 to ?25 °C. Between 1991 and 2012, groundwater levels in the Pampa Lagunillas aquifer fell from near-surface to ~15 m below ground level (bgl) due to severe overexploitation. In the same period, local mean monthly minimum temperatures started a declining trend, dropping by 3–8 °C relative to a nearby reference station. Meanwhile, mean monthly maximum summer temperatures shifted abruptly upwards by 2.7 °C on average in around 1996. The observed air temperature downturns and upturns are in accordance with detected anomalies in land-surface temperature imagery. Two major factors may be causing the local climate change. One is related to a water-table decline below the evaporative energy potential extinction depth of ~2 m bgl, which causes an up-heating of the bare soil surface and, in turn, influences the lower atmosphere. At the same time, the removal of near-surface groundwater reduces the thermal conductivity of the upper sedimentary layer, which consequently diminishes the heat exchange between the aquifer (constant heat source of ~10 °C) and the lower atmosphere during nights, leading to a severe dropping of minimum air temperatures. The observed critical water-level drawdown was 2–3 m bgl. Future and existing water-production projects in arid high Andean basins with shallow groundwater should avoid a decline of near-surface groundwater below 2 m bgl and take groundwater-climate interactions into account when identifying and monitoring potential environmental impacts.  相似文献   

7.
8.
Annual abstraction of 2.6?×?109 m3 of groundwater in the 53,000 km2 Konya Closed Basin of central Turkey has caused a head decline of 1 m/year over the last few decades. Therefore, understanding the hydrogeology of this large endorheic basin, in a semi-arid climate, is important to sustainable resource management. For this purpose, the groundwater’s radiocarbon age distribution has been investigated along a 150-km transect parallel to regional flow. Results show that the groundwater ranges in age from Recent at the main recharge area of the Taurus Mountains in the south, to about 40,000 years around the terminal Salt Lake located in the north. In this predominantly confined flow system, radiocarbon ages increase linearly by distance from the main recharge area and are in agreement with the hydraulic ages. The mean velocity of regional groundwater flow (3 m/year) is determined by the rate of regional groundwater discharge into the Salt Lake. Calcite dissolution, dedolomitization and geogenic carbon dioxide influx appear to be the dominant geochemical processes that determine the carbon isotope composition along the regional flow path. The groundwater’s oxygen-18 content indicates more humid and cooler paleorecharge. A maximum drop of 5°C is inferred for the past recharge temperature.  相似文献   

9.
If a mine waste pile is left open, an active chemical reaction of oxidation is often found due to the commonly high content of pyritic materials. The oxidation of pyrites is an exothermic process and the released heat will promote the flow of fresh oxygen from the surrounding atmosphere into the waste dump. As a result, oxidation reaction will accelerate and temperature within the dump can increase to as high as 60°C above the ambient temperature. The oxidation process also releases sulphuric acid and hydrogen ions into ground water to cause water contamination. Low‐permeability covers such as clay liners have been recently proposed to abate the oxidation process in mine wastes. The effectiveness of using low‐permeability materials to cover mine wastes in order to suppress the pyrite oxidation is examined. By conducting the theoretical analysis of the onset of convective air flow within waste rocks, the conditions under which soil gas flow is significant are identified. By comparing the results with previous field measurements and theoretical analysis for the uncovered conditions, it is shown that low‐permeability covers can effectively suppress soil gas flow and slow down the pyrite oxidation process in mine wastes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
The efficiency of heat recovery in high-temperature (>60 °C) aquifer thermal energy storage (HT-ATES) systems is limited due to the buoyancy of the injected hot water. This study investigates the potential to improve the efficiency through compensation of the density difference by increased salinity of the injected hot water for a single injection-recovery well scheme. The proposed method was tested through numerical modeling with SEAWATv4, considering seasonal HT-ATES with four consecutive injection-storage-recovery cycles. Recovery efficiencies for the consecutive cycles were investigated for six cases with three simulated scenarios: (a) regular HT-ATES, (b) HT-ATES with density difference compensation using saline water, and (c) theoretical regular HT-ATES without free thermal convection. For the reference case, in which 80 °C water was injected into a high-permeability aquifer, regular HT-ATES had an efficiency of 0.40 after four consecutive recovery cycles. The density difference compensation method resulted in an efficiency of 0.69, approximating the theoretical case (0.76). Sensitivity analysis showed that the net efficiency increase by using the density difference compensation method instead of regular HT-ATES is greater for higher aquifer hydraulic conductivity, larger temperature difference between injection water and ambient groundwater, smaller injection volume, and larger aquifer thickness. This means that density difference compensation allows the application of HT-ATES in thicker, more permeable aquifers and with larger temperatures than would be considered for regular HT-ATES systems.  相似文献   

11.
Hydrochemical and isotope data in conjunction with hydraulic head and spring discharge observations were used to characterize the regional groundwater flow dynamics and the role of the tectonic setting in the Gidabo River Basin, Ethiopian Rift. Both groundwater levels and hydrochemical and isotopic data indicate groundwater flow from the major recharge area in the highland and escarpment into deep rift floor aquifers, suggesting a deep regional flow system can be distinguished from the shallow local aquifers. The δ18O and δ2H values of deep thermal (≥30 °C) groundwater are depleted relative to the shallow (<60 m below ground level) groundwater in the rift floor. Based on the δ18O values, the thermal groundwater is found to be recharged in the highland around 2,600 m a.s.l. and on average mixed with a proportion of 30 % shallow groundwater. While most groundwater samples display diluted solutions, δ13C data of dissolved inorganic carbon reveal that locally the thermal groundwater near fault zones is loaded with mantle CO2, which enhances silicate weathering and leads to anomalously high total dissolved solids (2,000–2,320 mg/l) and fluoride concentrations (6–15 mg/l) exceeding the recommended guideline value. The faults are generally found to act as complex conduit leaky barrier systems favoring vertical mixing processes. Normal faults dipping to the west appear to facilitate movement of groundwater into deeper aquifers and towards the rift floor, whereas those dipping to the east tend to act as leaky barriers perpendicular to the fault but enable preferential flow parallel to the fault plane.  相似文献   

12.
Dwarka River basin in Birbhum, West Bengal (India), is an agriculture-dominated area where groundwater plays a crucial role. The basin experiences seasonal water stress conditions with a scarcity of surface water. In the presented study, delineation of groundwater potential zones (GWPZs) is carried out using a geospatial multi-influencing factor technique. Geology, geomorphology, soil type, land use/land cover, rainfall, lineament and fault density, drainage density, slope, and elevation of the study area were considered for the delineation of GWPZs in the study area. About 9.3, 71.9 and 18.8% of the study area falls within good, moderate and poor groundwater potential zones, respectively. The potential groundwater yield data corroborate the outcome of the model, with maximum yield in the older floodplain and minimum yield in the hard-rock terrains in the western and south-western regions. Validation of the GWPZs using the yield of 148 wells shows very high accuracy of the model prediction, i.e., 89.1% on superimposition and 85.1 and 81.3% on success and prediction rates, respectively. Measurement of the seasonal water-table fluctuation with a multiplicative model of time series for predicting the short-term trend of the water table, followed by chi-square analysis between the predicted and observed water-table depth, indicates a trend of falling groundwater levels, with a 5% level of significance and a p-value of 0.233. The rainfall pattern for the last 3 years of the study shows a moderately positive correlation (R 2 = 0.308) with the average water-table depth in the study area.  相似文献   

13.
As part of the International Continental Scientific Drilling Program (ICDP), the 1.5-km-deep borehole Yaxcopoil-1, located in the Chixculub meteor impact structure in Mexico, has undergone further study after drilling operations ceased. Temperature logs were repeated ten times at intervals 0.3–0.8, 15, 24 and 34 months after borehole shut-in. The logs bear a distinct signature of transient heat transfer by groundwater flow manifested by a gradual distortion of the linear temperature profile when a cold wave of 0.8–1.6°C amplitude was detected propagating downward from 145 to 312 m at a rate of 4–6 m/month. To understand the nature of this moving anomaly, a 20-day monitoring of the cold wave was carried out at a depth of 307 m that showed further cooling of 0.6°C during the first 16 days of the passage followed by temperature stabilisation. As an explanation of this unusual phenomenon, a theory is proposed, whereby the drilling mud has accumulated within the overlying and cooler highly porous and permeable karstic rocks during the drilling and migrates downward. The observed migration rate suggests a permeability higher than 10?11 m2. This indicates a high vulnerability to contamination of the only freshwater aquifer in the Yucatan region.  相似文献   

14.
Grand Mesa is an erosional remnant on the southern margin of the Piceance basin (Colorado, USA) that appears to host topographically driven groundwater flow in low permeability strata via a pervasive network of vertical extensional fractures. The vertical fractures cut more than 1 km of clay-rich lithology ranging in age from Upper Cretaceous through Eocene, and likely formed from horizontal dilation, cooling, and erosional unloading associated with 2.8 km of regional uplift and 1.5 km of incision by the Gunnison and Colorado rivers. The vertical fractures create anisotropy in which vertical permeability exceeds horizontal permeability. This enhances vertical flow and depth of penetration of groundwater, favors local flow regimes over regional flow, and results in groundwater temperatures that are elevated by up to 10°C over mean surface temperatures at the location of springs. The uplift and cooling that formed the fractures may also have produced domains of abnormally underpressured pore fluids and natural gas within blocks of low permeability bedrock bounded by the fractures. Pore pressures inside these blocks may be in disequilibrium with the groundwater flow system due to ongoing stress release, and the long time scales required for pressure equilibration in the low permeability strata.  相似文献   

15.
The use of renewable energy can be enhanced by utilising groundwater reservoirs for heating and cooling purposes. The urbanisation effect on the peak heating and peak cooling capacity of groundwater in a cold groundwater region was investigated. Groundwater temperatures were measured and energy potentials calculated from three partly urbanised aquifers situated between the latitudes of 60° 25′N and 60° 59′N in Finland. The average groundwater temperature below the zone of seasonal temperature fluctuations was 3–4 °C higher in the city centres than in the rural areas. The study demonstrated that due to warmer groundwater, approximately 50–60 % more peak heating power could be utilized from populated areas compared with rural areas. In contrast, approximately 40–50 % less peak cooling power could be utilised. Urbanisation significantly increases the possibility of utilising local heat energy from groundwater within a wider region of naturally cold groundwater. Despite the warming in urban areas, groundwater still remains attractive as a source of cooling energy. More research is needed in order to determine the long-term energy capacity of groundwater, i.e. the design power, in urbanised areas of cold regions.  相似文献   

16.
Shallow groundwater (>30 mbgl) is an essential source of drinking water to rural communities in the Ndop plain, northwest Cameroon. As a contribution to water management, the effect of seasonal variation on the groundwater chemistry, hydrochemical controls, drinking quality and recharge were investigated during the peaks of the dry (January) and rainy (September) seasons. Field measurements of physical parameters were preceded by sampling 58 groundwater samples during both seasons for major ions and stable isotope analyses. The groundwater, which was barely acidic (mean pH of 6) and less mineralised (TDS < 272 mg/l), showed no significant seasonal variation in temperature, pH and TDS during the two seasons. The order of cation abundance (meq/l) was Na+ > Ca2+ > Mg2+ > K+ and Na+ > Mg2+ > Ca2+ > K+ in the dry and rainy seasons, respectively, but that of anions ( \( {\text{HCO}}_{3}^{ - } \)  >  \( {\text{NO}}_{3}^{ - } \)  > Cl? >  \( {\text{SO}}_{4}^{2 - } \)  > F?) was similar in both seasons. This suggests a negligible effect of seasonal variations on groundwater chemistry. The groundwater, which was CaMgHCO3 and NaHCO3, is chemically evolved rainfall (CaMgSO4Cl) in the area. Silicate mineral dissolution and cation-exchange were the main controls on groundwater chemistry while there was little anthropogenic influence. The major ions and TDS concentrations classified the water as suitable for human consumption as per WHO guidelines. The narrow cluster of δ18O and δD of same groundwater from both seasons between the δ18O and δD values of May–June precipitation along the Ndop Meteoric Water Line indicates meteoric origin, rapid recharge (after precipitation) and timing of recharge between May and June rainfall. Diffuse groundwater recharge mainly occurs at low altitudes (<1,400 m asl) within the plain. Besides major ions and TDS, the similar δ18O and δD of groundwater from both seasons indicate a consistent groundwater recharge and flow pattern throughout the year and resilience to present day short-term seasonal climatic variations. However, controlled groundwater abstraction is recommended given the increasing demand.  相似文献   

17.
In cold regions, hydrologic systems possess seasonal and perennial ice-free zones (taliks) within areas of permafrost that control and are enhanced by groundwater flow. Simulation of talik development that follows lake formation in watersheds modeled after those in the Yukon Flats of interior Alaska (USA) provides insight on the coupled interaction between groundwater flow and ice distribution. The SUTRA groundwater simulator with freeze–thaw physics is used to examine the effect of climate, lake size, and lake–groundwater relations on talik formation. Considering a range of these factors, simulated times for a through-going sub-lake talik to form through 90 m of permafrost range from ~200 to >?1,000  years (vertical thaw rates <?0.1–0.5  m?yr?1). Seasonal temperature cycles along lake margins impact supra-permafrost flow and late-stage cryologic processes. Warmer climate accelerates complete permafrost thaw and enhances seasonal flow within the supra-permafrost layer. Prior to open talik formation, sub-lake permafrost thaw is dominated by heat conduction. When hydraulic conditions induce upward or downward flow between the lake and sub-permafrost aquifer, thaw rates are greatly increased. The complexity of ground-ice and water-flow interplay, together with anticipated warming in the arctic, underscores the utility of coupled groundwater-energy transport models in evaluating hydrologic systems impacted by permafrost.  相似文献   

18.
This study proposes a solution to the problem of maintaining the performance and sustainability of district-scale, cooling-dominated ground coupled heat pump (GCHP) systems. These systems tend to overheat because heat dissipates slowly in relation to the size of the borefields. To demonstrate this problem, a 2000-borehole field is considered at a district-scale GCHP system in the Upper Midwest, US. The borefield’s ground and fluid temperature responses to its design heating and cooling loads are simulated using computational fluid dynamics implemented by applying the finite volume method. The ground temperature is predicted by applying the thermal loads uniformly over the borefield and simulating heat dissipation to the surrounding geology through conduction coupled with advection due to groundwater flow. The results show that a significant energy imbalance will develop in the ground after the first few years of GCHP operation, even with high rates of groundwater flow. The model presented in this study predicts that the temperature at the center of the borefield will reach 18 °C after 5 years and approximately 50 °C after 20 years of operation in the absence of any mitigation strategies. The fluid temperature in the boreholes is then simulated using a single borehole model to estimate the heat pump coefficient of performance, which decreases as the modeled system heats up. To balance the energy inputs/outputs to the ground—thus maintaining the system’s performance—an operating scheme utilizing cold-water circulation during the winter is evaluated. Under the simulated conditions, this mitigation strategy carries the excess energy out of the borefield. Therefore, the proposed mitigation strategy may be a viable measure to sustaining the operating efficiency of cooling-dominated, district-scale borefields in climates with cold winters.  相似文献   

19.
Agua Amarga coastal aquifer in southern Spain has been the subject of chemical and physical measurements since May 2008 in order to monitor the potential effects of water withdrawal for the Alicante desalination plants on the salt marsh linked to the aquifer. Electrical conductivity contour maps and depth profiles, piezometric-head contour maps, hydrochemical analyses, isotopic characterizations and temperature depth profiles show not only the saltwater intrusion caused by water abstraction, but also the presence of a pronounced convective density-driven flow below the salt marsh; this flow was a consequence of saltwork activity in the early 1900s which generated saline groundwater contamination. The influence of a seawater recharge programme, carried out over the salt marsh in 2009–2010, on the diminishing groundwater salinity and the recovery of groundwater levels is also studied. Based on collected field data, the project provides a deeper understanding of how these successive anthropogenic interventions have modified flow and mixing processes in Agua Amarga aquifer.  相似文献   

20.
The unique natural environment of the Qinghai–Tibet Plateau has led to the development of widespread permafrost and desertification. However, the relationship between desertification and permafrost is rarely explored. Here we study the interaction between desertification and permafrost using a combination of simulations, experiments, and field observations in the Qinghai–Tibet Plateau. Results show the cohesion values of the test samples that experienced 1, 3, and 6 freeze–thaw cycle times decreased by 65.9, 46.0, and 35.5 %, respectively, and the compressive strength of the test samples decreased by 69.6, 39.6, and 34.7 %, respectively, compared to the test samples that did not experience freeze–thaw cycles. The wind erosion rate of the test block eroded by sand-bearing wind was far larger than that by clean wind under the same conditions; the maximum value was 50 times higher than that by clean wind. The wind erosion rate increased with an increasing number of freeze–thaw cycles, water content, and freeze–thaw temperature difference. The ground temperature below the sand layer was decreased, compared to the natural ground surface that without sand layer covering, the drop amplitude of yearly average temperature was roughly maintained at 0.2 °C below the thick sand layer (1.2 m), and the maximum drop of yearly average temperature was 0.7 °C below the thin sand layer (0.1 m). Therefore, with the presence of water, the destruction of surface soil structure caused by repeated and fierce freeze–thaw actions is the main cause of wind erosion desertification in the permafrost region of Qinghai–Tibet Plateau, and sand-bearing wind is the main dynamic force. The development of eolian sand deposits after the desertification emerges. As a result, the properties of the underlying surface are altered. Due to the high reflectivity and poor heat conductivity of the sand layer, the heat exchange of the land–atmosphere system is impeded, causing a drop in the ground temperature of the underlying permafrost that subsequently preserves the permafrost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号