首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Subsurface geophysical surveys were carried out using a large range of methods in an unconfined sandstone aquifer in semiarid south-western Niger for improving both the conceptual model of water flow through the unsaturated zone and the parameterization of numerical a groundwater model of the aquifer. Methods included: electromagnetic mapping, electrical resistivity tomography (ERT), resistivity logging, time domain electromagnetic sounding (TDEM), and magnetic resonance sounding (MRS). Analyses of electrical conductivities, complemented by geochemical measurements, allowed us to identify preferential pathways for infiltration and drainage beneath gullies and alluvial fans. The mean water content estimated by MRS (13%) was used for computing the regional groundwater recharge from long-term change in the water table. The ranges in permeability and water content obtained with MRS allowed a reduction of the degree of freedom of aquifer parameters used in groundwater modelling.  相似文献   

2.
The western sector of the Tagliamento River basin (Friuli Venezia-Giulia Region; northern Italy) is characterized by important water resources, both superficial and underground. In particular, in the Quaternary deposits of the plain, up to a depth of 500 m, six artesian aquifer systems exist. A large amount of lithological, geomorphological, and hydrogeological data is presented, allowing for definition of (a) the principal aquifer system of the area to a depth of about 500 m; (b) geometrical characteristics of the aquifers (thickness, lateral extension, etc); (c) the hydraulic parameters (hydraulic conductivity, transmissivity); (d) chemico-physical characteristics of the water; and (e) vulnerability to pollution of the aquifer systems. In a test area, where many boreholes were drilled for fresh water supply, the conceptual hydrogeological model was integrated by a detailed and repeated three-dimensional (3D) resistivity survey using combined electrical resistivity tomography (ERT) and time-domain electromagnetic (TDEM) soundings. ERT investigation was mainly used to get detailed information about geometry and porosity of the overburden and to calibrate the shallowest TDEM information.  相似文献   

3.
The Quaternary deposits in Shanghai primarily consists of a phreatic aquifer group (Aq0) and five artesian aquifers (AqI–AqV) that are separated by six aquitards (AdI–AdVI). In the basin of the Huangpu River, the first artesian aquifer (AqI) is connected to the second artesian aquifer (AqII), forming a 50-m-thick artesian aquifer with a very high groundwater level. The highway tunnels under the Huangpu River of Shanghai are constructed at a maximum depth up to 45 m, within the artesian aquifer. These tunnels are lined with precast reinforced concrete segments without a second lining. Under high water pressure, it is difficult for the single shell linings to achieve water tightness. Different degrees of groundwater leakage have been observed in road tunnels under the Huangpu River. The tunnels constructed before the 1990s have had very serious groundwater leakage (e.g., >1 L/m2/day), and the recently constructed tunnels have leaked less than 0.1 L/m2/day. The factors influencing groundwater leakage include depth below groundwater level, differential settlement of the tunnel, and applied waterproof technologies. The increase in depth leads to a significant increase in groundwater leakage. The differential settlement causes gaps to open and offset between segments, as well as cracking of segments, which can also induce groundwater leakage. According to the analysis of recorded data, the number of leaking points tends to increase with the curvature of the settlement curve. In addition, inappropriate waterproofing materials and poor waterproofing design will also lead to groundwater leakage. Groundwater leakage causes deterioration of the structure, aging of the installations in the tunnels (e.g., facilities and pavements), as well as discomfort for users of the tunnels and adverse environmental impacts. Furthermore, groundwater leakage also causes structural deformation of the tunnel itself, leading to further leakage and hazards.  相似文献   

4.
The Barwon Downs Graben lies on the northern flanks of the Otway Ranges and is situated approximately 70 km southwest of Geelong, Victoria, Australia. The major lower Tertiary Barwon Downs Graben aquifer comprises highly permeable sands and gravels interbedded with clays and silts of the hydraulically interconnected Pebble Point, Dilwyn and Mepunga Formations. Groundwater flows east into the Barwon Downs Graben from the Barongarook High, and yields 14C ages up to ~20 ka implying that recharge rates are low and, consequently, that the resource could be impacted by overabstraction. The presence of three different lithological units has led to the development of localized flow systems that has resulted in a lack of regular spatial variations in groundwater chemistry. Stable isotopic data suggests that groundwater was recharged under similar climatic conditions as of today. The major ion chemistry of the freshest groundwater is dominated by Na and HCO3 while higher TDS groundwater, from the confining Narrawaturk Marl, is dominated by Na and Cl. Cl/Br ratios are close to rainfall suggesting that halite dissolution is not the principle source of salts. An excess of Na relative to Cl in fresher groundwater suggests that feldspar dissolution has occurred, however, water–rock interaction is limited. The concentrations of Ca, Mg, and SO4 are controlled by silicate dissolution and ion-exchange reactions with clays.  相似文献   

5.
A groundwater flow model of the Alpine valley aquifer in the Aosta Plain (NW Italy) showed that well pumping can induce river streamflow depletions as a function of well location. Analysis of the water budget showed that ~80% of the water pumped during 2 years by a selected well in the downstream area comes from the baseflow of the main river discharge. Alluvial aquifers hosted in Alpine valleys fall within a particular hydrogeological context where groundwater/surface-water relationships change from upstream to downstream as well as seasonally. A transient groundwater model using MODFLOW2005 and the Streamflow-Routing (SFR2) Package is here presented, aimed at investigating water exchanges between the main regional river (Dora Baltea River, a left-hand tributary of the Po River), its tributaries and the underlying shallow aquifer, which is affected by seasonal oscillations. The three-dimensional distribution of the hydraulic conductivity of the aquifer was obtained by means of a specific coding system within the database TANGRAM. Both head and flux targets were used to perform the model calibration using PEST. Results showed that the fluctuations of the water table play an important role in groundwater/surface-water interconnections. In upstream areas, groundwater is recharged by water leaking through the riverbed and the well abstraction component of the water budget changes as a function of the hydraulic conditions of the aquifer. In downstream areas, groundwater is drained by the river and most of the water pumped by wells comes from the base flow component of the river discharge.  相似文献   

6.
The study area is a part of central Ganga Plain which lies within the interfluve of Hindon and Yamuna rivers and covers an area of approximately 1,345 km2. Hydrogeologically, Quaternary alluvium hosts the major aquifers. A fence diagram reveals the occurrence of a single aquifer to a depth of 126 m below ground level which is intercalated by sub-regional clay beds. The depth to water level ranges from 9.55 to 28.96 m below ground level. The general groundwater flow direction is northwest to southeast. Groundwater is the major source of water supply for agricultural, domestic, and industrial uses. The overuse of groundwater has resulted in the depletion of water and also quality deterioration in certain parts of the area. This has become the basis for the preparation of a groundwater vulnerability map in relation to contamination. The vulnerability of groundwater to contamination was assessed using the modified DRASTIC-LU model. The parameters like depth to water, net recharge, aquifer media, soil media, topography, impact of vadose zone, hydraulic conductivity of the aquifer, and land use pattern were considered for the preparation of a groundwater vulnerability map. The DRASTIC-LU index is computed as the sum of the products of weights and rating assigned to each of the inputs considered. The DRASTIC-LU index ranges from 158 to 190, and is classified into four categories, i.e., <160, 160–170, 170–180, and >180, corresponding to low, medium, high, and very high vulnerability zones, respectively. Using this classification, a groundwater vulnerability potential map was generated which shows that 2 % of the area falls in the low vulnerable zone, 38 % falls in the medium vulnerable zone, and 49 % of the area falls in the high vulnerable zone. About 11 % of the study area falls in the very high vulnerability zone. The groundwater vulnerability map can be used as an effective preliminary tool for the planning, policy, and operational levels of the decision-making process concerning groundwater management and protection.  相似文献   

7.
The Central Godavari delta is located along the Bay of Bengal Coast, Andhra Pradesh, India, and is drained by Pikaleru, Kunavaram and Vasalatippa drains. There is no groundwater pumping for agriculture as wells as for domestic purpose due to the brackish nature of the groundwater at shallow depths. The groundwater table depths vary from 0.8 to 3.4 m and in the Ravva Onshore wells, 4.5 to 13.3 m. Electrical Resistivity Tomography (ERT) surveys were carried out at several locations in the delta to delineate the aquifer geometry and to identify saline water aquifer zones. Groundwater samples collected and analyzed for major ions for assessing the saline water intrusion and to identify the salinity origin in the delta region. The results derived from ERT indicated low resistivity values in the area, which can be attributed to the existence of thick marine clays from ground surface to 12–15 m below ground level near the coast and high resistivity values are due to the presence of coarse sand with freshwater away from the coast. The resistivity values similar to saline water <0.01 Ω m is attributed to the mixing of the saline water along surface water drains. In the Ravva Onshore Terminal low resistivity values indicated up coning of saline water and mixing of saline water from Pikaleru drain. The SO 4 ?2 /Cl?and Na+2/Cl?ratios did not indicate saline water intrusion and the salinity is due to marine palaeosalinity, dilution of marine clays and dissolution of evaporites.  相似文献   

8.
Groundwater is a major source of supply for domestic and agricultural purposes, especially in arid and semi-arid regions. In this study, we followed the variations in water levels in the Souf oasis in the Algerian Sahara by measuring depths to groundwater across 65 points during the period from 2010 to 2015. Additionally, electrical conductivity (EC) was measured for assessing variations in groundwater salinity in the same groundwater monitoring network over the same time interval. The results from these investigations indicated that there are significant and continuous declines in the groundwater level across all study areas throughout the period of investigation. This is especially the case in the northern part of the study area where the water table declined by up to 18.2 m in Ghamra in 2015. Additionally, this study has indicated that the rate of decline of groundwater levels has increased from 0.29 m/year as an average in 2011 to 2.37 m/year in 2015, where the situation has become alarming. As a consequence of this, the depth to groundwater now exceeds 2 m over more than 77% of the study area, and only about 17% of the study area now has a water table depth that lies within the optimal depth interval for extractive uses (between 1 and 2 m). This decline in groundwater levels has been accompanied by a significant increase in the electrical conductivity values (salinity) of this water, and there is a strong correlation between these variables (R > 0.99). This alarming situation has been caused by the continuous over-exploitation and unsustainable management of this limited resource, especially by the agricultural sector. For a long time, this critical situation led to the demise of the agricultural world heritage cultivation system (Ghout) due to the increasing salinity of groundwater. Two solutions are proposed to manage the effects of groundwater depletion in the area: firstly, rationalizing groundwater use through effective groundwater allocation management measures, and secondly by implementing the reuse of treated wastewater as an alternative water source for agricultural use. This latter measure could be in two ways: either by direct use in irrigation to relieve pressure on the phreatic aquifer, or by artificial recharge of the phreatic aquifer.  相似文献   

9.
The present study indicates that the factors controlling the hydraulic relation between surface water and groundwater at the western lake shoreline change from one locality to another. This depends upon the lithological characteristics and the major structures. In the southern sectors, sedimentation at the bottom and sides of the lake prevents the water movement to the Nubian sandstone aquifer. The potentiometric map reveals that the water level altitudes range between 170 m in the vicinity of the lakeshore line and 110 m west of the lake. The groundwater flow lines show that the main recharge to the aquifer comes from the southwest direction, as well as from the lake inland to variable distances (about 30 Km). During the present study, Darcy’s law was applied to calculate the recharge from the western shoreline of Lake Nasser to the adjacent Nubian aquifer. The maximum value of seepage was at Garf Hussein (27.71?×?106 m³/year), which may be related to high permeability and hydraulic gradient. Also, it may be related to the N–S strike faults that cut the area on both sides of the Lake, and the groundwater is expected to have free circulation through the faults of this trend. The minimum value was recorded in Adindan section (0.61?×?106 m³/year). This may be related to the limited recharge from the lake to the aquifer, due to the sedimentation that dislocates this recharge.  相似文献   

10.
The current research has been conducted to evaluate groundwater aquifers qualitatively in the area located in the Western side of Qena city. The Quaternary aquifer represents the main groundwater source in the study area. It exists under unconfined to semiconfined conditions at depths varying between 4 m due North and 80 m in the South. The chemical analyses of the groundwater samples indicate that 77% of the total samples are fresh and 20% are brackish, while only 3% are saline. In addition, the iso-salinity contour map indicates that the salinity increases towards the central and northern parts of the study area. The total and permanent hardness increase as water salinity increases and vice versa in case of temporary hardness in the groundwater samples. The chemical water types and the ion ratios indicate meteoric origin of groundwater as well as the dissolution of terrestrial and marine salts. The contribution of recent recharge from the River Nile to a few groundwater wells in the study area varies from low to high. In addition, the most recharge sources are from the precipitation. Nitrate concentrations in groundwater increase towards the central and Northern areas significantly elevated in response to increasing anthropogenic land uses. Much of the solutes and physicochemical parameters in these waters are under the undesirable limits of World Health Organization (WHO) for drinking purpose, and a plot of sodium adsorption ratio versus EC shows that about 23% of the groundwater samples are good water quality, about 45% of groundwater samples are moderate quality, and 23% of the groundwater samples are intermediate water class, while the rest of samples (9%) are out of the range.  相似文献   

11.
The characterization of river–aquifer connectivity in karst environments is difficult due to the presence of conduits and caves. This work demonstrates how geophysical imaging combined with hydrogeological data can improve the conceptualization of surface-water and groundwater interactions in karst terrains. The objective of this study is to understand the association between the Bell River and karst-alluvial aquifer at Wellington, Australia. River and groundwater levels were continuously monitored, and electrical resistivity imaging and water quality surveys conducted. Two-dimensional resistivity imaging mapped the transition between the alluvium and karst. This is important for highlighting the proximity of the saturated alluvial sediments to the water-filled caves and conduits. In the unsaturated zone the resistivity imaging differentiated between air- and sediment-filled karst features, and in the saturated zone it mapped the location of possible water- and sediment-filled caves. Groundwater levels are dynamic and respond quickly to changes in the river stage, implying that there is a strong hydraulic connection, and that the river is losing and recharging the adjacent aquifer. Groundwater extractions (1,370 ML, megalitres, annually) from the alluvial aquifer can cause the groundwater level to fall by as much as 1.5 m in a year. However, when the Bell River flows after significant rainfall in the upper catchment, river-leakage rapidly recharges the alluvial and karst aquifers. This work demonstrates that in complex hydrogeological settings, the combined use of geophysical imaging, hydrograph analysis and geochemical measurements provide insights on the local karst hydrology and groundwater processes, which will enable better water-resource and karst management.  相似文献   

12.
Groundwater is a treasured earth’s resource and plays an important role in addressing water and environmental sustainability. However, its overexploitation and wide spatial variability within a basin and/or across regions are posing a serious challenge for groundwater sustainability. Some parts of southern West Bengal of India are problematic for groundwater occurrence despite of high rainfall in this region. Characterization of an aquifer in this area is very important for sustainable development of water supply and artificial recharge. Electrical resistivity surveys using 1-D and 2-D arrays were performed at a regular interval from Subarnarekha River at Bhasraghat (south) to Kharagpur (north) to map the lithological variations in this area. Resistivity sounding surveys were carried out at an interval of 2–3 km. Subsurface resistivity variation has been interpreted using very fast simulated annealing (VFSA) global optimization technique. The analysis of the field data indicated that the resistivity variation with depth is suitable in the southern part of the area and corresponds to clayey sand. Interpreted resistivity in the northern part of the area is relatively high and reveals impervious laterite layer. In the southern part of the area resistivity varies between 15 and 40 Ωm at a depth below 30 m. A 2-D resistivity imaging conducted at the most important location in the area is correlated well with the 1-D results. Based on the interpreted resistivity variation with depth at different locations different types of geologic units (laterite, clay, sand, etc.) are classified, and the zone of interests for aquifer has been demarcated. Study reveals that southern part of the area is better for artificial recharge than the northern part. The presence of laterite cover in the northern part of the area restricts the percolation of rainwater to recharge the aquifer at depth. To recharge the aquifer at depth in the northern part of the area, rainwater must be sent artificially at depth by puncturing laterite layers on the top. Such studies in challenging areas will help in understanding the problems and finding its solution.  相似文献   

13.
Dera Ismail Khan (DIK) is situated in the Lower Indus Basin of Pakistan. The land use has been changed in the canal command area due to irrigation activities near the Indus River. To check the current status and predict the groundwater levels in the area, the unconfined aquifer has been simulated in Visual MODFLOW for a period of 35 years, i.e., from 1985 to 2020. The 2900-km2 area has been modeled with a grid of 500 by 500 m and the depth set to 100 m. The aquifer in the study area has been divided vertically and laterally into three and ten zones, respectively, for the characterization. Water wells and streams were used as the sinks and hydrologic boundaries, respectively. The model was successfully calibrated in steady and the non-steady state. The simulation revealed that the whole simulation can be divided into two phases, i.e., before and after the construction of the Chashma Right Bank Canal (CRBC), whereas the results were summarized in the form of water table depth maps and groundwater budget calculations. To determine the groundwater sustainability, a conjunctive use scenario has been employed to simulate the aquifer dynamics till 2020. The simulation revealed incremental drawdowns till the end.  相似文献   

14.
The lithology of the studied aquifers has an important effect on their hydrogeologic setting. Moreover, the structural patterns have their imprint on the geologic setting and consequently the hydrogeologic conditions of the area. Lake Nasser recharges the groundwater in the study area by large amount of water increasing the groundwater level. A comparison of the depth to water in the same wells at two different periods (1998 and 2014 ) shows that the depth to water increases with average rise 11.1 m during 16 years. The constructed water table map shows that the groundwater flow is mainly towards the northwest direction reflecting recharge from Lake Nasser. The hydraulic parameters of the Abu Aggag and Sabaya sandstone aquifers are determined in the present work from pumping tests. The transmissivity of the studied aquifers reflects the moderate to high potentiality. The groundwater salinity of the studied aquifers is fresh water and varies from 353 to 983 ppm (part per million) and suitable for all purposes. It increases due to the west direction coinciding with groundwater flow direction. The main result of the present study shows that the seepage water from Lake Nasser attains 17 mcm/year.  相似文献   

15.
The southwestern Chad basin is a semi-arid region with annual rainfall that is generally less than 500 mm and over 2,000 mm of evapotranspiration. Surface water in rivers is seasonal, and therefore groundwater is the perennial source of water supply for domestic and other purposes. Stable isotope has been measured for rainwater, surface water and groundwater samples in this region. The stable isotope data have been used to understand the inter-relationships between the rainwater, surface water, shallow and deep groundwater of this region. This is being used in a qualitative sense to demonstrate present day recharge to the groundwater. Stable isotope in rainwater for the region has an average value of –4‰ δ18O and –20‰ δ2H. Surface water samples from rivers and Lake Chad fall on the evaporation line of this average value. The Upper Zone aquifer water samples show stable isotope signal with a wide range of values indicating the complex character of the aquifer Zone with three distinguishable units. The wide range of values is attributable to waters from individual unit and/or mixture of waters of different units. The Middle and Lower aquifers Zones’ waters show similar stable isotopes values, probably indicating similarity in timing and/or mechanism of recharge. These are palaeowaters probably recharged under a climate that is different from today. The Upper Zone aquifer is presently being recharged as some of its waters show stable isotope compositions similar to those of average rainfall waters of the region.  相似文献   

16.
This paper deals with the analysis of groundwater condition in an alluvial aquifer system underlying Kushabhadra-Bhargavi River basin of Odisha, India. The rainfall data and river-stage data of the Kushabhadra River were analyzed for the periods of 1995–2009 and 1991–2010, respectively. Using the available lithologic data, geologic profiles along North-South and East-West sections were prepared and stratigraphy analysis was performed to characterize aquifers and confining layers present in the river basin. The results of stratigraphic analyses indicated that a two-layered aquifer system consisting of an unconfined aquifer and a confined aquifer exists in the study area. The thickness of unconfined aquifer varies from 3.4 to 46.5 m, whereas that of confined aquifer varies from 3.1 to 80.3 m over the basin with an interconnecting confining layer of thickness ranging from 2.1 to 60.0 m. The rainfall-groundwater dynamics and hydraulic connectivity were also investigated for gaining insights into groundwater characteristics. The analysis of groundwater levels indicated that the correlation among the 14 sites is better for most pairs of the sites (r = 0.50 to 0.96) in case of pre-monsoon season’s data and annual data as compared to monsoon and post-monsoon season’s data. This indicates good hydraulic connectivity among the observed sites in the study area. The significant seasonal groundwater fluctuations in the study area indicate appreciable recharge to the aquifer during the monsoon season. The findings obtained and insights gained from this study can be helpful for the water managers and decision makers to understand groundwater dynamics for the efficient planning and management of vital groundwater resources in the region. It is recommended that groundwater monitoring should be continued at more sites to understand long-term spatio-temporal characteristics of groundwater in the study area.  相似文献   

17.
金戈  邓娅敏  杜尧  陶艳秋  范红晨 《地球科学》2022,47(11):4161-4175
高砷地下水不仅直接危害供水安全,还可通过与湿地之间的交互作用,影响湿地水质进而威胁湿地生态安全.长江中游河湖平原已被报道广泛分布有高砷地下水,而位于长江中游故道区域的天鹅洲湿地地下水中砷的空间分布特征尚不明确,湿地与地下水的交互作用对地下水中砷季节性动态的控制机理尚不明确.本研究在天鹅洲湿地采集2个水文地质钻孔的35件沉积物样品、12个分层监测井不同季节的共72组地下水样和18组地表水样,通过水位-水化学监测、沉积物地球化学组成分析和砷、铁形态表征探究天鹅洲湿地地下水中砷的时空分布规律及控制机理.研究发现天鹅洲湿地地下水砷含量为1.08~147 μg/L,牛轭湖外侧浅井(10 m)地下水砷含量普遍高于深井(25 m)和牛轭湖内侧浅井(10 m)、深井(25 m)地下水,枯水期和平水期的砷含量高于丰水期.牛轭湖外侧浅层地下水系统具有更厚的粘土、亚粘土沉积,沉积物中总砷、强吸附态砷和易还原的铁氧化物的含量更多,吸附砷的水铁矿等无定形铁氧化物还原性溶解导致砷释放进入地下水中.枯水期天鹅洲湿地底部向牛轭湖外侧浅层含水层输送不稳定的有机质,使天鹅洲湿地地下水-地表水界面成为砷释放的热点区域.丰水期时牛轭湖外侧含水层受长江补给的影响,还原环境发生改变使地下水中的砷和铁被氧化固定从而不利于砷向地下水释放.   相似文献   

18.
Hydrogeologic framework of the Maku area basalts, northwestern Iran   总被引:1,自引:0,他引:1  
The Maku area in northwestern Iran is characterized by young lava flows which erupted from Mount Ararat in Turkey. These fractured volcanic rocks overlie alluvium associated with pre-existing rivers and form a good basalt-alluvium aquifer over an area of 650 km2. Groundwater discharge occurs from 12 large springs, ranging from 20 to 4,000 L s?1, and from some extraction wells. Permian and Oligo-Miocene age limestones along the northern boundary of the Bazargan and Poldasht Plains basalts are intensively karstified and groundwater from these high lands easily enters the basalt-alluvium aquifers. The transmissivity of the basalt-alluvium aquifer ranges from 24 to 870 m2 d?1, indicating heterogeneity. Groundwater of the aquifer is a sodium-bicarbonate and mixed cation-bicarbonate type and the concentration of fluoride is higher than the universal maximum admissible concentrations for drinking. In order to determine the chemical composition and identify the source of the high fluoride concentrations in the groundwater of the basaltic area, water samples from the springs, wells and rivers were analyzed. The results indicate that the high fluoride water enters the study area from the Sari Su River.  相似文献   

19.
The spatial and temporal distribution of redox zones in an aquifer is important when designing groundwater supply systems. Redox zonation can have direct or indirect control of the biological and chemical reactions and mobility of pollutants. In this study, redox conditions are characterized by interpreting the hydrogeological conditions and water chemistry in groundwater during bank infiltration at a site in Shenyang, northeast China. The relevant redox processes and zonal differences in a shallow flow path and deeper flow path at the field scale were revealed by monitoring the redox parameters and chemistry of groundwater near the Liao River. The results show obvious horizontal and vertical components of redox zones during bank filtration. Variations in the horizontal extent of the redox zone were controlled by the different permeabilities of the riverbed sediments and aquifer with depth. Horizontally, the redox zone was situated within 17 m of the riverbank for the shallow flow path and within 200 m for the deep flow path. The vertical extent of the redox zone was affected by precipitation and seasonal river floods and extended to 10 m below the surface. During bank filtration, iron and manganese oxides or hydroxides were reductively dissolved, and arsenic that was adsorbed onto the medium surface or coprecipitated is released into the groundwater. This leads to increased arsenic content in groundwater, which poses a serious threat to water supply security.  相似文献   

20.
Despite the continuous increase in water supply from desalination plants in the Emirate of Abu Dhabi, groundwater remains the major source of fresh water satisfying domestic and agricultural demands. Groundwater has always been considered as a strategic water source towards groundwater security in the Emirate. Understanding the groundwater flow system, including identification of recharge and discharge areas, is a crucial step towards proper management of this precious source. One main tool to achieve such goal is a groundwater model development. As such, the main aim of this paper is to develop a regional groundwater flow model for the surficial aquifer in Abu Dhabi Emirate using MODFLOW. Up to our knowledge, this is the first regional numerical groundwater flow model for Abu Dhabi Emirate. After steady state and transient model calibration, several future scenarios of recharge and pumping are simulated. Results indicate that groundwater pumping remains several times higher than aquifer recharge from rainfall, which provides between 2 and 5% of total aquifer recharge. The largest contribution of recharge is due to subsurface inflow from the eastern Oman Mountains. While rainfall induced groundwater level fluctuation is absent in the western coastal region, it reaches a maximum of 0.5 m in the eastern part of the Emirate. In contrast, over the past decades, groundwater levels have declined annually by 0.5 m on average with local extremes spanning from 93 m of decline to 60 m of increase. Results also indicate that a further decrease in groundwater levels is expected in most of Emirate. At other few locations, upwelling of groundwater is expected due to a combination of reduced pumping and increased infiltration of water from nonconventional sources. Beyond results presented here, this regional groundwater model is expected to provide an effective tool to water resources managers in Abu Dhabi. It will help to accurately estimate sustainable extraction rates, assess groundwater availability, and identify pathways and velocity of groundwater flow as crucial information for identifying the best locations for artificial recharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号