首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gas production from shale formations by hydraulic fracturing has raised concerns about the effects on the quality of fresh groundwater. The migration of injected fracking fluids towards the surface was investigated in the North German Basin, based on the known standard lithology. This included cases with natural preferential pathways such as permeable fault zones and fracture networks. Conservative assumptions were applied in the simulation of flow and mass transport triggered by a high pressure boundary of up to 50 MPa excess pressure. The results show no significant fluid migration for a case with undisturbed cap rocks and a maximum of 41 m vertical transport within a permeable fault zone during the pressurization. Open fractures, if present, strongly control the flow field and migration; here vertical transport of fracking fluids reaches up to 200 m during hydraulic fracturing simulation. Long-term transport of the injected water was simulated for 300 years. The fracking fluid rises vertically within the fault zone up to 485 m due to buoyancy. Progressively, it is transported horizontally into sandstone layers, following the natural groundwater flow direction. In the long-term, the injected fluids are diluted to minor concentrations. Despite the presence of permeable pathways, the injected fracking fluids in the reported model did not reach near-surface aquifers, either during the hydraulic fracturing or in the long term. Therefore, the probability of impacts on shallow groundwater by the rise of fracking fluids from a deep shale-gas formation through the geological underground to the surface is small.  相似文献   

2.
Fluid inclusions have been studied in minerals infilling fissures (quartz, calcite, fluorite, anhydrite) hosted by Carboniferous and Permian strata from wells in the central and eastern part of the North German Basin in order to decipher the fluid and gas migration related to basin tectonics. The microthermometric data and the results of laser Raman spectroscopy reveal compelling evidence for multiple events of fluid migration. The fluid systems evolved from a H2O–NaCl±KCl type during early stage of basin subsidence to a H2O–NaCl–CaCl2 type during further burial. Locally, fluid inclusions are enriched in K, Cs, Li, B, Rb and other cations indicating intensive fluid–rock interaction of the saline brines with Lower Permian volcanic rocks or sediments. Fluid migration through Carboniferous sediments was often accompanied by the migration of gases. Aqueous fluid inclusions in quartz from fissures in Carboniferous sedimentary rocks are commonly associated with co-genetically trapped CH4–CO2 inclusions. P–T conditions estimated, via isochore construction, yield pressure conditions between 620 and 1,650 bar and temperatures between 170 and 300°C during fluid entrapment. The migration of CH4-rich gases within the Carboniferous rocks can be related to the main stage of basin subsidence and stages of basin uplift. A different situation is recorded in fluid inclusions in fissure minerals hosted by Permian sandstones and carbonates: aqueous fluid inclusions in calcite, quartz, fluorite and anhydrite are always H2O–NaCl–CaCl2-rich and show homogenization temperatures between 120 and 180°C. Co-genetically trapped gas inclusions are generally less frequent. When present, they show variable N2–CH4 compositions but contain no CO2. P–T reconstructions indicate low-pressure conditions during fluid entrapment, always below 500 bar. The entrapment of N2–CH4 inclusions seems to be related to phases of tectonic uplift during the Upper Cretaceous. A potential source for nitrogen in the inclusions and reservoirs is Corg-rich Carboniferous shales with high nitrogen content. Intensive interaction of brines with Carboniferous or even older shales is proposed from fluid inclusion data (enrichment in Li, Ba, Pb, Zn, Mg) and sulfur isotopic compositions of abundant anhydrite from fissures. The mainly light δ34S values of the fissure anhydrites suggest that sulfate is either derived through oxidation and re-deposition of biogenic sulfur or through mixing of SO42−-rich formation waters with variable amounts of dissolved biogenic sulfide. An igneous source for nitrogen seems to be unlikely since these rocks have low total nitrogen content and, furthermore, even extremely altered volcanic rocks from the study area do not show a decrease in total nitrogen content.  相似文献   

3.
断层对压裂液运移影响的数值模拟研究   总被引:1,自引:1,他引:0       下载免费PDF全文
水力压裂必然会带来相关环境问题,压裂液对浅层含水层的影响不容忽视。为了查明压裂液潜在的向上运移通道及不同地质条件下压裂液的运移情况,对压裂液潜在的运移通道进行了分类,基于变密度数值模拟软件SEAWAT,考虑不同渗漏点与断层底部距离、不同断层倾角对压裂液运移的影响,设计了6种情景开展了数值模拟。结果表明:压裂液潜在向上运移通道主要有对流传输、裂隙传输以及井管泄露。密度差异产生的浮力是压裂液上升的主要动力。压裂液渗漏点距离断层底部越近,影响范围越大,监测点水位和浓度均最先降低。在存在微弱水力梯度条件下,断层倾角α为20°时,断层对局部水流水位及浓度影响较大;α为90°时,对压裂液运移产生影响较小;α为70°时,断层对压裂液运移影响最大,压裂液会扩散至较大范围。  相似文献   

4.
Field studies of fracture systems associated with 58 normal fault zones crosscutting sedimentary rocks were performed in the Northwest German Basin. Fracture orientations, densities, apertures and lengths, as well as fault zone structural indices, were analysed separately for fault damage zones and host rocks. The results show a pronounced difference between carbonate and clastic rocks: mainly in carbonate rocks we found presence of clear damage zones, characterized by higher fracture densities than in the host rocks. While the maximum aperture is similar for both units, the percentage of fractures with large apertures is much higher in the damage zones than in the host rocks.Based on laboratory measurements of Young's moduli and field measurements of fracture densities, we calculate effective stiffnesses Ee, that is the Young's moduli of the in situ rock masses, within the normal fault zones. Compared with carbonate rocks, Ee computed for clastic-rock damage zones decreases significantly less due to lower fracture densities. We conclude that normal fault zones in carbonate rocks have more profound effects on enhancing permeability in fluid reservoirs than those in clastic rocks. The results are of great importance for modelling the hydromechanical behaviour of normal fault zones in subsurface fluid reservoirs.  相似文献   

5.
Major element chemistry, rare-earth element distribution, and H and O isotopes are conjointly used to study the sources of salinisation and interaquifer flow of saline groundwater in the North East German Basin. Chemical analyses from hydrocarbon exploration campaigns showed evidence of the existence of two different groups of brines: halite and halite Ca–Cl brines. Residual brines and leachates are identified by Br?/Cl? ratios. Most of the brines are dissolution brines of Permian evaporites. New analyses show that the pattern of rare-earth elements and yttrium (REY) are closely linked to H and O isotope distribution. Thermal brines from deep wells and artesian wells indicate isotopically evaporated brines, which chemically interacted with their aquifer environment. Isotopes and rare-earth element patterns prove that cross flow exists, especially in the post-Rupelian aquifer. However, even at depths exceeding 2,000 m, interaquifer flow takes place. The rare-earth element pattern and H and O isotopes identify locally ascending brines. A large-scale lateral groundwater flow has to be assumed because all pre-Rupelian aquifer systems to a depth of at least 500 m are isotopically characterised by Recent or Pleistocene recharge conditions.  相似文献   

6.
Metasomatism and fluid flow in ductile fault zones   总被引:8,自引:0,他引:8  
Observed major element metasomatism in 5 amphibolite facies ductile fault zones can be explained as the inevitable consequence of aqueous fluid flow along normal temperature gradients under conditions of local chemical equilibrium. The metasomatism does not require the infiltration of chemically exotic fluids. Calculations suggest that metasomatized ductile fault zones are typically infiltrated by 105 moles H2O/cm2, fluid flow is in the direction of decreasing temperature, and fluids contain about 1.0 molal total chloride. Where available, stable isotopic alteration data confirm both flow direction and fluid fluxes calculated from major element metasomatism. The fluid fluxes inferred from metasomatism do not require large-scale fluid recirculation or mantle sources if significant lateral fluid flow occurs in the deep crust. Time-integrated fluid fluxes are combined with estimates of flow duration to constrain average flow rates and average permeabilities. Rocks in ductile fault zones are probably much more permeable during metasomatism (average permeabilities of 10-17 to 10-15 m2) than rocks normally are during regional metamorphism (10-21 to 10-18 m2). Estimated average fluid flow rates (3.5×10-3 to 0.35 m/yr) are insufficient, however, to significantly elevate ambient temperatures within ductile faults. Fluid flow in the direction of decreasing temperature may increase the ductility of silicate rocks by adding K to the rocks and thereby driving mica-forming reactions.  相似文献   

7.
Field measurements were made of 1717 mineral-filled veins in the damage zone of an active dextral strike-slip fault zone in Iceland. Most veins are composed of quartz, chalcedony and zeolites, strike roughly parallel or perpendicular to the fault zone, and are members of dense palaeo-fluid transporting networks. A common vein frequency in these networks is 10 veins per metre. Cross-cutting relationships indicate that 79% of the veins are extension (mode I) cracks and 21% are shear cracks. The apertures of most veins, measured as mineral-fill thicknesses, are from 0.1 to 85 mm, and the aperture frequency distribution is a power law. The outcrop trace lengths of 384 veins (of the 1717) could be measured accurately. These 384 veins are mostly small and range in length from 2.5 to 400 cm, in aperture from 0.01 to 0.9 cm, and have an average length/aperture ratio of about 400. Simple analytical models are derived and used to make rough estimates of the volumetric flow rates in hydrofractures of dimensions equal to those of typical veins. The results indicate that volumetric flow rates for a horizontal fracture and a vertical fracture in a rigid (non-deforming) host rock would be around 1.5×10−4 and 8.9×10−4 m3s−1, respectively. The volumetric flow rate in a vertical fracture of equal size but in a deforming host rock, with buoyancy added to the pressure gradient, is around 1.3×10−3 m3s−1. Thus, vertical fluid transport is favoured under these conditions.  相似文献   

8.
华北地区主要断裂带的现今运动特征   总被引:4,自引:0,他引:4  
用中国地壳网络观测中心提供的华北地区最新GPS观测数据, 研究了华北地区主要断裂带的现今运动特征, 得到NE走向断裂带由北至南存在由挤压转变为拉张、右旋走滑速率增大的特征, NW走向断裂带以左旋挤压变形为主, 走滑速率NW向断裂带大于NE走向断裂带, 据此认为华北地区煤层气开发的有利区块位于南部地区。  相似文献   

9.
《Applied Geochemistry》1998,13(5):593-606
The comparative geochemical and isotopic study of confined and unconfined Chalk groundwaters of the Paris Basin and the N German Basin proves a significant chemical evolution during groundwater flow from the recharge zones to the deep confined aquifer. Different time dependent geochemical parameters have been tested as dating tools: Cation ratios (Sr2+/Ca2+, Mg2+/Ca2+), N–NO3, noble gas contents as paleotemperature indicators (Ne, Ar, Kr, Xe), radiogenic He, 13C, 14C, 18O, 2H, 3H. Cation ratios and 13C show the importance of incongruent dissolution processes in the Chalk aquifer. Water–rock interactions were taken into account in a multi-step dissolution model to determine radiocarbon groundwater ages. The oldest waters in the confined part of the Paris basin Chalk with maximum 14C ages of 14,000 a B.P. contain pleistocene recharge components as can be shown by a stable isotope depletion and noble gas temperatures significantly lower than in recent groundwaters. Chalk waters at the Lägerdorf site in Northern Germany show a distinct stratification with respect to residence times and hydrochemistry.  相似文献   

10.
Fluid-dynamics driving saline water in the North East German Basin   总被引:2,自引:0,他引:2  
In several areas of the North German Basin, saline water comes close to, or even reaches the surface. Available data from wells indicate that brine stratification is under unstable conditions in the deeper underground. In order to analyse the possible transport mechanisms, 3D thermohaline simulations have been carried out for two different scenarios. The 3D regional model (230×330 km) indicates that salty water is driven to the surface by hydrostatical forces from the surrounding highlands. In addition, a smaller scale model (10×10 km) has been constructed with a grid resolution accounting for possible convective flow. The results indicate that convective flow may play a dominant role in areas with minor topography. In summary, the complex pattern of near surface occurrences of saline water probably results from the interaction of hydrostatic and thermal forces.  相似文献   

11.
12.
A network of deep seismic refraction profiles in Northern Germany consisting of parts of the European Geotraverse (EGT) and additional new Unes is interpreted. The most striking result is the proof of an approximately 10 km thick high-velocity layer in the lower crust. Its P-wave velocity of 6.9-7.5 km s−1 is typical for shield crusts or lower crust in extensional environments intruded by mafic magma. The layer is observed in an area of roughly 150 × 180 km north of the Elbe river and seems to continue north-east, at least up to the Caledonian deformation front at the southern edge of the Ringkøbing-Fyn High. It correlates spatially with an area of high positive gravity anomalies. Here, a Moho topography of several kilometres, which had already been postulated on the basis of gravity inversions and sporadic near-vertical PMP reflections, could be confirmed by the interpretation of seismic wide-angle records. The termination of the high-velocity lower crust at the Lower Elbe Lineament, which strikes parallel to the Teisseyre-Tornquist Zone, contributes to its definition as a major lineament in the context of central European tectonics.  相似文献   

13.
Numerical modeling of stress-permeability coupling in rough fractures   总被引:2,自引:0,他引:2  
A numerical model is described for coupled flow and mechanical deformation in fractured rock. The mechanical response of rock joints to changes in hydraulic pressure is strongly influenced by the geometric characteristics of the joint surfaces. The concept of this work is to combine straightforward finite element solutions with complex and realistic fracture surface geometry in order to reproduce the non-linear stress-deformation-permeability coupling that is commonly observed in fractures. Building on the numerous studies that have expanded the understanding of the key parameters needed to describe natural rough-walled fractures, new methods have been developed to generate a finite element mesh representing discrete fractures with realistic rough surface geometries embedded in a rock matrix. The finite element code GeoSys/Rockflow was then used to simulate the coupled effects of hydraulic stress, mechanical stress, and surface geometry on the evolving permeability of a single discrete fracture. The modeling concept was experimentally verified against examples from the literature. Modeling results were also compared to a simple interpenetration model.  相似文献   

14.
德国北部盆地上侏罗统广泛发育,但野外露头地层普遍出露不全。Hildesheimer Wald地区Wendhausen 6井和Süntel山地区Eulenflucht 1井完整钻遇了上侏罗统牛津阶和启莫里阶地层,为分析该区晚侏罗世沉积演化过程及其所反映的古环境变化规律提供了丰富的资料。通过岩心描述和岩石薄片镜下观察,根据不同层段的颗粒成分、生物组合特征、沉积结构和构造等特征,在2口井的岩心中共划分出14个岩石类型,分别形成于碳酸盐岩斜坡和三角洲环境。建立了该区牛津阶和启莫里阶垂向沉积演化序列,垂向上由Heersum组到Süntel组,沉积环境逐步由外陆棚、内陆棚、临滨过渡到了开阔台地、潮坪环境,表现出了相对海平面降低的进积过程。同时对不同沉积相中保存较好的以低镁方解石为主要成分的牡蛎壳进行原位Mg/Ca值(古温度指标)测试,得出该区牛津期至启莫里期总体表现出了古气候变暖的趋势,且共有3次气候变暖过程。这一古气候变化与由沉积相分析得出的古气候变化一致,且同苏格兰、俄罗斯台地古温度变化趋势有很好的对应关系,表明古气候是控制该区沉积演化的一个重要因素,且牡蛎壳Mg/Ca值可以做为一个古气候指示指标应用于其他地区的古气候分析中。  相似文献   

15.
塔里木盆地塔北和塔中地区流体作用环境差异性分析   总被引:2,自引:0,他引:2  
对塔里木盆地塔北和塔中地区奥陶系灰岩孔洞和裂缝中的方解石进行了系统的流体包裹体测温、碳氧锶同位素以及稀土元素方面的分析测试。塔北地区多数方解石样品具有较低的流体包裹体均一温度、较轻的氧同位素组成和较高的87Sr/86Sr值,其均一温度平均值范围为66.6~105.8℃,δ18OPDB值为–18.9‰~–10.8‰,87Sr/86Sr比值为0.709190~0.709989,为大气降水成因;此外,还有5个方解石样品认为是地层水成因,2个样品认为是热液流体成因。塔中地区方解石样品多数具有高于围岩埋藏温度的流体包裹体均一温度、较轻的氧同位素组成和较高的87Sr/86Sr值,其均一温度平均值范围为139.2~180.0℃,δ18OPDB值为–7.9‰~–14.3‰,87Sr/86Sr比值为0.709049~0.719503;与灰岩围岩差别明显的稀土元素分布模式及显著的Eu正异常,其δEu变化范围为1.39~76.03;这些方解石认为是以热液流体成因为主。由上可见,塔北奥陶系灰岩中的流体作用类型主要为大气降水;塔中地区奥陶系灰岩中主要的流体作用类型是热液流体。流体作用的差异主要是由两个地区构造演化、岩浆火山活动等地质环境的差异造成的。塔北奥陶系灰岩因多次强烈构造抬升作用导致遭受多次大气降水地表岩溶改造,塔中则因二叠纪强烈而广泛的岩浆火山作用而经历以热液为主的流体改造作用。  相似文献   

16.
In an integrated analysis, metamorphic processes in the accreted crust, potential field anomalies, temperature field and subsidence history are summarized into a model for the development of the North German Basin. The model integrates observed phenomena such as the high nitrogen content in natural gases in Permian sandstone reservoirs and the structure of the crust with model calculations. Rock density increase, subsequent volume reduction and loss of volatiles during metamorphism lead to a depression at the surface of the Earth. The load of the sediments, which will be deposited in the depression, enhances the subsidence and the ongoing metamorphism. The model provides an alternative to the application of existing tectonic stretching models for the explanation of the subsidence of sedimentary basins.  相似文献   

17.
18.
19.
Summary In spite of the high content of clay in the rock, blasting technique had to be adopted for excavation because the hydrothermally altered clay was interbedded in the hard rock. Problems with groundwater did not arise owing to the dewatering effect of the pilot tunnel.  相似文献   

20.
The recent evolution of the north German Basin (NGB), which is presently a low-seismic area, was partly affected by glacial loading and unloading of the ice masses. Major stresses acting within the NGB are induced by the North-Atlantic ridge push, the ongoing Alpine collision, and the post-glacial rebound of Fennoscandia. Present-day horizontal stresses within the NGB are directed generally NW–SE, but fan and bend north of 52°N towards NNE. Major basement faults are directed NW–SE, minor faults NE–SW and NNE–SSW, and are clearly detectable in geomorphological and satellite lineaments. Furthermore, the drainage pattern and the distribution of lakes in northern Germany follow exactly block boundaries and, hence, mark zones of present-day subsidence. The understanding of the post-glacial morphology and reactivation of faults requires a view into the very heterogeneous crust and upper mantle below the NGB. The re-adjustment of the individual fault blocks during post-glacial relaxation of the lithosphere leads to differential, crust-dependent uplift and, probably, to the formation of Urstrom valleys. The Urstrom valleys and terminal moraines in northern Germany appear to parallel the major tectonic lineaments and lithospheric “block” boundaries. The lithospheric memory is expressed in the post-glacial landscape evolution of the NGB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号