首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relation between sinkhole density and water quality was investigated in seven selected carbonate aquifers in the eastern United States. Sinkhole density for these aquifers was grouped into high (>25 sinkholes/100 km2), medium (1–25 sinkholes/100 km2), or low (<1 sinkhole/100 km2) categories using a geographical information system that included four independent databases covering parts of Alabama, Florida, Missouri, Pennsylvania, and Tennessee. Field measurements and concentrations of major ions, nitrate, and selected pesticides in samples from 451 wells and 70 springs were included in the water-quality database. Data were collected as a part of the US Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program. Areas with high and medium sinkhole density had the greatest well depths and depths to water, the lowest concentrations of total dissolved solids and bicarbonate, the highest concentrations of dissolved oxygen, and the lowest partial pressure of CO2 compared to areas with low sinkhole density. These chemical indicators are consistent conceptually with a conduit-flow-dominated system in areas with a high density of sinkholes and a diffuse-flow-dominated system in areas with a low density of sinkholes. Higher cave density and spring discharge in Pennsylvania also support the concept that the high sinkhole density areas are dominated by conduit-flow systems. Concentrations of nitrate-N were significantly higher (p < 0.05) in areas with high and medium sinkhole density than in low sinkhole-density areas; when accounting for the variations in land use near the sampling sites, the high sinkhole-density area still had higher concentrations of nitrate-N than the low sinkhole-density area. Detection frequencies of atrazine, simazine, metolachlor, prometon, and the atrazine degradate deethylatrazine indicated a pattern similar to nitrate; highest pesticide detections were associated with high sinkhole-density areas. These patterns generally persisted when analyzing the detection frequency by land-use groups, particularly for agricultural land-use areas where pesticide use would be expected to be higher and more uniform areally compared to urban and forested areas. Although areas with agricultural land use and a high sinkhole density were most vulnerable (median nitrate-N concentration was 3.7 mg/L, 11% of samples exceeded 10 mg/L, and had the highest frequencies of pesticide detection), areas with agricultural land use and low sinkhole density still were vulnerable to contamination (median nitrate-N concentration was 1.5 mg/L, 8% of samples exceeded 10 mg/L, and had some of the highest frequencies of detections of pesticides). This may be due in part to incomplete or missing data regarding karst features (such as buried sinkholes, low-permeability material in bottom of sinkholes) that do not show up at the scales used for regional mapping and to inconsistent methods among states in karst feature delineation.  相似文献   

2.
The central region of Saudi Arabia is underlain by thick sedimentary formations belonging to the Mesozoic and Cenozoic era. These sedimentary formations form a prolific aquifer supplying groundwater for agricultural and domestic usage in and around Riyadh. The region south of Riyadh City is well known for agricultural activities. Wadi Sahba, which is an eastward extension of Wadi Nisah, has readily available groundwater resources in the Cretaceous Biyadh sandstone aquifer to sustain agricultural activities. The objective of the present study was the hydrochemical assessment of groundwater in the area to understand the main hydrological processes which influence groundwater chemistry. To achieve this objective, 20 groundwater samples were collected from agricultural farms in the Wadi Sahba in central Saudi Arabia, and the major physiochemical constituents were analyzed and interpreted. The average TDS value of the analyzed samples is 1578.05 mg/l, whereas the average EC concentration is 3220.05 μS/cm. Groundwater facies classification inferred from the Piper plot shows that groundwater in the study area belongs to the Ca-SO4-Cl type and Ca-Na-SO4-Cl type. The Ca-SO4-Cl type of groundwater facies is influenced mainly by gypsum dissolution and base ion exchange, whereas the Ca-Na-SO4-Cl type is influenced by gypsum and halite dissolution. All the groundwater samples are undersaturated with respect to these two principal mineral phases. The Q-mode cluster analysis results in two main groups of groundwater samples, mainly based on the TDS content. Cluster 1 has an average TDS value of 1980 mg/l, whereas cluster 2 has an average TDS of 1176 mg/l. The groundwater facies identified through the Piper plot reflects the major hydrological processes controlling groundwater chemistry in the area and was found to be more useful in this study as compared to cluster analysis.  相似文献   

3.
Geophysical methods—seismic refraction (SRFR), electrical resistivity tomography (ERT), and microgravity—were applied to the Dead Sea (DS) sinkhole problem in the Ein Gedi area at the earlier stage of the sinkhole development (1998–2002). They allowed determining the sinkhole formation mechanism and localizing the sinkhole hazardous zones. The SRFR method permitted to delineate the underground edge of a salt layer at the depth of 50 m. The salt edge was shaped like the sinkhole line on the surface. It was concluded that the sinkhole development is linked to the salt edge. Geoelectrical quasi-3D mapping based on the ERT technique detected large resistivity anomalies with 250–300 m2 diameter and 25–35 m deep. The Ein Gedi area has been also mapped by the use of Microgravity method. The residual Bouguer gravity anomaly map shows negative anomalies arranged along the edge of the salt layer. Those gravity anomalies overall are very similar in plan to the resistivity distribution in this area. The results of forward modeling indicate that both high resistivity and residual gravity anomalies are associated with a subsurface decompaction of the soil mass and deep cavity at the sinkhole site. Following monitoring of the sinkhole development carried out by the Geological Survey of Israel confirmed our suggestions. The drilling of numerous boreholes verified the location of the salt edge. Geographical Information System (GIS) database testifies that during 2003–2009 new sinkholes are continuing to develop along the salt edge within a narrow 50–100 m wide strip oriented approximately in north–south direction (slightly parallel to the shoreline). No promotion in west–east direction (perpendicularly to the DS shoreline) was observed in Israel. Collapse of sinkholes and their clustering have been occurred within the area of high resistivity anomaly and negative residual gravity anomaly. Similar studies carried out at the Ghor Al-Haditha area (Jordan) have shown that sinkholes there are also arranged along the winding line conforming to the salt edge. In this area sinkholes are slowly moved to the Dead Sea direction. Results of geophysical studies in numerous DS sites indicate similar sinkhole development. It allowed generating of the sinkhole formation model based on ancient (10,000–11,000-year old) salt belt girding the Dead Sea along its shores  相似文献   

4.
Basement rocks of presumed Precambrian age, in Yemen Republic (105,000 km2), are exposed in the northwestern and southeastern parts of the country. The basement rocks of southern Saudi Arabia and northern parts of Yemen are almost continuous and similar in the lithostratigraphic succession. In spite of the presence of such common basic characteristics for each, there are slight differences of local structural framework and major tectonic events. The structural complexity, great variety of rock units and types, multi-intrusive environments, and multiplicity of metamorphic events in the study basement rocks make the main target of lithostratigraphic analyses, in particular, daunting in the southern Arabian Shield. As reported here, accepting that the southern shield consists of five terranes and suture zones requires a limitation of such tectonic modifications. This led to the renaming of certain formations and groups and the revision of the lithostratigraphic successions for some regions. As a result, new lithostratigraphic relationships and names as well as tectonic events are proposed. Based on field and space image data, the basement rocks in Yemen exhibit at least six major phases of deformation (D1 to D6) including intensive brittle and ductile deformations that trend NW–SE and NNE–SSW (in major). Neoarchean rocks are well developed and restricted in the southeastern exposures (Al Bayda, Al Mahfid, and Al Mukalla terranes), whereas the final Pan-African cratonization of several rock units is widespread on all terranes, in which the major tectonic events and deformation history were concentrated during pre-Pan-African and early to late Pan-African orogenies. A correlation and evolution of the Precambrian rocks in Saudi Arabia and Egypt are taken into consideration.  相似文献   

5.
The present study designed to monitor and predict land cover change (LCC) in addition to characterizing LCC and its dynamics over Al-Baha region, Kingdom of Saudi Arabia, by utilizing remote sensing and GIS-cellular automata model (Markov-CA). Moreover, to determine the effect of rainwater storage reservoirs as a driver to the expansion of irrigated cropland. Eight Landsat 5/7 TM/ETM images from 1975 to 2010 were analyzed and ultimately utilized in categorizing LC. The LC maps classified into four main classes: bare soil, sparsely vegetated, forest and shrub land, and irrigated cropland. The quantification of LCC for the analyzed categories showed that bare soil and sparsely vegetated was the largest classes throughout the study period, followed by forest, shrubland, and irrigated cropland. The processes of LCC in the study area were not constant, and varied from one class to another. There were two stages in bare soil change, an increase stage (1975–1995) and decline stage (1995–2010), and the construction of 25 rainwater-harvesting dams in the region was the turning point in bare soil change. The greatest increase was observed in irrigated cropland after 1995 in the expense of the other three categories as an effect of extensive rainwater harvesting practices. Losses were evident in forest and shrubland and sparsely vegetated land during the first stage (1975–1995) with 5.4 and 25.6 % of total area in 1995, while in 1975, they covered more than 13.8 and 32.7 % of total area. During the second stage (1995–2010), forest and shrubland witnessed a significant increase from 1569.17 km2 in 1975 to 1840.87 km2 in 2010. Irrigated cropland underwent the greatest growth (from 422.766 km2 in 1975 to 1819.931 km2 in 2010) during the entire study period, and this agriculture expansion reached its zenith in the 2000s. Markov-CA simulation in 2050 predicts a continuing upward trend in irrigated cropland and forest and shrubland areas, as well as a downward trend in bare soil and sparsely vegetated areas; the spatial distribution prediction indicates that irrigated cropland will expand around reservoirs and the mountain areas. The validation result showed that the model successfully identified the state of land cover in 2010 with 97 % agreement between the actual and projected cover. The output of this study would be useful for decision makers and LC/land use planners in Saudi Arabia and similar arid regions.  相似文献   

6.
Sabkha Jayb Uwayyid is part of extensive sabkhas covering wide areas of eastern Saudi Arabia. Other than the production of salt for industrial and domestic purposes, no other economic utilization of sabkha brines is known in the region. Analyses from water samples collected in more than 20 shallow wells in Sabkha Jayb Uwayyid were used to estimate the concentrations and total mass of magnesium, potassium, calcium, and sodium. The total mass of each ion is calculated by multiplying the volume of water within the sabkha sands and the ion concentrations. The volume of water is the product of the saturated sabkha sediment thickness and the specific yield. The study shows that Sabkha Jayb Uwayyid brines are rich in some salts that exist in concentrations higher than that in seawater. The results show that Sabkha Jayb Uwayyid contains about 1.4, 0.4, 0.9, and 9.9 million metric tons of magnesium, potassium, calcium, and sodium, respectively. These amounts and probably more in other sabkhas potentially represent a significant untapped mineral resource in the eastern province of Saudi Arabia based on the current world production and market prices. The total mass estimates represent full extraction of brine from the sabkha and are based on a conservative specific yield estimate. Total recovery is unlikely and the actual amount will be limited by various logistical and climatic factors. Some uncertainty exists in the estimation of some parameters used in the calculations, including depth to the bedrock and hydraulic parameters.  相似文献   

7.
Karst Hazard Assessment of Eastern Saudi Arabia   总被引:1,自引:0,他引:1  
Karst phenomena exist in areas in the eastern part of Saudi Arabia, forming solution features such as sinkholes, collapsed dolines and solution caverns, as a result of the chemical leaching of the carbonate and evaporite formations by percolating water. The instability of these karst phenomena could produce land subsidence problems. This paper reviews the geology of documented karstic rock units in Saudi Arabia and proposes a simple engineering classification of the solution features characteristic of limestone. Two case histories in the Dhahran area, eastern Saudi Arabia, will be used as examples for the application of a modified engineering classification.  相似文献   

8.
Makkah City, west of the Kingdom of Saudi Arabia, is considered the third main highly populated metropolitan area in the Kingdom of Saudi Arabia. It exhibits two unique features that increase the hazardous flood consequences: (1) its topography is very complex and (2) about three million Muslims are gathered annually in Makkah to perform Hajj over a 2-week period. Floods are natural returning hydrological phenomena that have been affecting human lives. The objectives of the current study are: (1) identification of land use types and road networks in Makkah, (2) hydrological modeling of flood characteristics in Makkah based on precise up-to-date databases, (3) examination of the relationship between land use, land cover changes, transportation network expansion, and the floods' prosperities and hazards, and (4) development of digital hydrological maps for present and near future flood hazards in Makkah. The attained results show that the mean runoff depth and the total flood volume are significantly increased from 2010 to 2030. Additionally, it has been found that a great part of the road network in Makkah City is subjected to high dangerous flood impacts. The overall length of flood danger-factor roads is increased from 481 km (with almost 37 %) to 1,398 km (with 74 % approximately) between 2010 and 2030. Thus, it is concluded that urbanization has a direct strong relationship with flood hazards. Consequently, it is recommended that the attained results should be taken into account by decision makers in implementing new development planning of the Makkah metropolitan area.  相似文献   

9.
In the coastal western part of Saudi Arabia at Thuwal area located close from the Red Sea, the shallow groundwater specific electrical conductivities measured at the drill holes range from 6 to 13 mS/cm. In order to study the origin of this salinity, a good knowledge is required of the aquifer geometry with depth. Ninety nine transient electromagnetic (TEM) soundings were carried out over an area of about 100 km2. From the TEM profiles, a conductive substratum with a resistivity of 1–13 Ωm was identified at most of the sites at depth ranging from 50 to 150 m. This substratum is related to Oligocene–Miocene sediments (Shumaysi Formation) which are mainly red clay-rich formation containing brines at coastal zones. Clayey sediments are more likely present in the southeastern part and along the faults that run NE–SW across the study area and parallel to the Quaternary volcanic which runs NW–SE. The study demonstrated the effectiveness of the TEM sounding method to map conductive zones.  相似文献   

10.
The landform of Saudi Arabia in general and the Riyadh area in particular have their own potentiality for scenic and recreational purposes. The higher lands or features which have well cemented material in some areas of Riyadh have been recommended for scenic use, while lower lands like wide natural lakes, sand dunes and others can be mostly used for recreational purposes. Such features and purposes found here may be extrapolated into other similar areas within Saudi Arabia and may be compared with other areas elsewhere in the world.  相似文献   

11.
Paleozoic successions in Saudi Arabia are exposed around and bordering the south, north, and northeastern edge of the Arabian shield. They are represented by the Wajid group in the south and by the Taymah, Tabuk, Qalibah, Huj, and Buraydah groups in the north and northeast. The Wajid group includes Dibsiyah, Sanamah, Khusayyan, and Juwayl formations. The Taymah group includes Siq, Amai’er, Quweira, Saq, and Qasim formations. The Tabuk group includes Zarqa, Sara, and Hawban formations. The Qalibah group includes Baq’a, Qusaiba, and Sharawra formations. The Huj group includes Tawil, Jauf, and Jubah formations. The Buraydah group includes Berwath, Unayzah, and Khuff formations. The Wajid group form one block in the south and the other groups form another block in the north, and they can be correlated. There are similarities between the northern belt which consists of the Cambro-Ordovician formations of the Tayma and Tabuk groups and the southern belt which consists of the Dibsiyah and Sanama formations of the Wajid group. Similarities include sandstone composition, sedimentary environment, paleocurrent directions, unconformities, tectonic events, and influence of Gondwana glaciations. These formations and probably some or all the rest of the Paleozoic formations used to form one block but later separated after erosion caused by gradual tectonic growth, uplift, and prominence of the Arabian shield. During early Paleozoic time, the process started by poststabilization then sedimentation and at a later stage the growth and uplift of the shield occurred gradually. Growth of shields is a fact and it is the only way to explain the exposure of the Wajid sandstone on top of the highest mountain of the shield which exceeds 3,000 m in As Sawdah in Asir area in southwestern Saudi Arabia. The sandstone sediments of these outcrops were deposited on a low lying basin before been raised to this elevation.  相似文献   

12.
Formation mechanism of large sinkhole collapses in Laibin,Guangxi, China   总被引:1,自引:1,他引:0  
On June 3, 2010, a series of karst sinkholes occurred at Jili village surrounded by Gui-Bei highway, Wu-Ping highway and Nan-Liu High-Speed Railway in Laibin, Guangxi, China. The straight-line distances from an large sinkhole pit, 85 m in diameter and 38 m in depth, to the above mainlines are 200, 600 and 500 m, respectively. Several investigation methods including geophysical technology, borehole and well drilling, groundwater elevation survey and hydrochemistry analysis of groundwater were used to study the formation mechanisms of these sinkholes. Based on the results, the spatial distribution of the Jili underground river was confirmed with a strike of SN along the middle Carboniferous limestone bedrock and the Quaternary deposits controlled the sinkhole formation. In addition, both historical sinkhole events and analysis of the groundwater–air pressure monitoring data installed in the underlying karst conduit system indicate that sinkholes in this area are more likely induced by extreme weather conditions within typical karst geological settings. Extreme weather conditions in the study area before the sinkhole collapses consisted of a year-long drought followed by continuous precipitation with a daily maximum precipitation of 442 mm between May 31 and June 1, 2010. Typical geological conditions include the Jili underground river overlain by the Quaternary overburden with thick clayey rubble. Especially in the recharge zone of the underground river, a stabilized shallow water table was formed in response to the extreme rainstorm because of the presence of the thick clayey rubble. When the underground conduit was flooded through the cave entrance on the surface, air blasting may have caused the cave roof collapse followed by formation of soil cavities and surface collapses. Borehole monitoring results of the groundwater–air pressure monitoring show that the potential karst sinkhole can pose threats to Shanbei village, the High-Speed Railway and the Wu-Ping highway. Local government needs to be aware of any early indicators of this geohazard so that devastating sinkholes can be prevented in the future. The results also suggest that groundwater–air pressure monitoring data collected both the Quaternary deposits and the bedrock karst system provide useful indicators for potential sinkhole collapses in similar karst areas where sinkholes usually occur during rainy season or karst groundwater level is always under the rockhead.  相似文献   

13.
The Cenozoic volcanism of western Saudi Arabia extends from southern Yemen to Jordan northward. They cover an area of nearly 180,000 km2. The rocks are dominated by alkali olivine basalts and olivine basalts. Al-Wahbah crater, a part of Harrat Kishb, represents a model occurrence to study the gneisses of these rocks. New mineral chemistry and isotopic data are presented. It aims to follow the isotopic, mineralogical, and thermobarometry variations among these volcanics. Amphiboles of the studied volcanics belong to the monoclinic calcic group. The chemistry of the amphibole crystals shows two ranges of pressure. They are 3.6–5.6 and 0.38–0.78 kbar. The Aliv values of the amphiboles are in the range of 1.202 and 1.407, indicating corresponding temperature condition of 820–920 and 620–720 °C, respectively. The feldspar of the studied samples has the composition of plagioclase, though some grains have sanidine composition. They are formed in temperature range of 975 and 400 °C. The coexisting amphiboles and plagioclases indicate two sets of pressure and temperature. They are 540–575 °C (3.5–4 kbar) and 510–525 °C (~2 kbar), respectively. Rb–Sr isochron of the whole rock yields an age of 0.867 ± 0.160 Ma with initial Sr87/Sr86 of 0.702 ± 0.00086. The low initial ratio of Sr87/Sr86 together with positive values of εNd today implies that the studied volcanics have mantle source. Meanwhile, the present isotopic data suggest extraction of juvenile magma from asthenosphere source. The present study shows that the Al-Wahbah crater rocks belong to Cenozoic basalts and indicate EM-I-like signature.  相似文献   

14.
The main semidiurnal (M2 and S2) and diurnal (K1 and O1) tidal constituents are simulated in the Persian Gulf (PG). The topography is discretized on a spherical grid with a resolution of 30 s in both latitude and longitude. It includes coastal areas prone to flooding. The model permits flooding of drying banks up to 5 m above mean sea level. At the open boundary, it is forced by 13 harmonic constituents extracted from a global tidal model. The model results are in good agreement with tide gauge observations. Co-tidal charts and flow extremes are presented for each tidal constituent. The co-tidal charts show two amphidromic points for semidiurnal and one for diurnal tidal constituents. Maximum amplitudes of sea level are obtained for the north-western part of the PG, where coastal flooding prevails in wide areas. Strong tidal currents occur in different parts of the PG for different types of constituents. Maximum velocities are found in shallow regions. Particularly, high amplitudes of elevations and high speed currents are founded in the canal between Qeshm Island and the mainland. Rectification of tides around Qeshm Island affects the propagation of tides in the PG as far as the coast of Saudi Arabia and the northern part of the PG.  相似文献   

15.
Evaluation of mechanical and petrophysical properties of the karst limestone became essential to avoid future risks in the construction of new urban cities built on limestones. Therefore, this study aims to evaluate the impact of karsts phenomena on engineering properties of limestone foundation bed at Ar Riyadh in Saudi Arabia. Three hundred core plugs were obtained by rotary drilling at depths ranging from the ground surface to 20 m collected from 24 boreholes in two sites: (1) karst limestone (KL) at Al Aziziyah district and (2) massive hard limestone (HL) at Hittin district in Ar Riyadh city, Saudi Arabia. Petrographic, SEM, EDX, and XRD analyses are used to identify the mineralogical composition and microstructures of limestone samples. The petrophysical properties included the ovendry density, P-wave, and porosity where the mechanical properties covered the uniaxial compressive strength (UCS), point load strength index (PLI), and rock quality designation (RQD) for the karst and hard limestone samples. KL is characterized by 17.11% total porosity, 14.71% water absorption, 32.1 MPa UCS, 1.70 g/cm3 ovendry density (γ dry), 51% weathered RQD, 5.49 MPa medium shear strength, and low modulus of deformation of the plate loading test. HL showed 11.63% total porosity, 9.45% water absorption 43.1 MPa UCS, 2.50 g/cm3 ovendry density (γ dry), 78% hard to fresh rock affinity RQD, and 9.93 MPa high strength and high modulus of deformation of the plate loading test. For the water absorption (%), KL at Al Aziziyah district showed a range of 12.85–17.80% averaged 14.71%. HL at Hittin district varied between 7.04 and 11.29% with an average of 9.45%. KL proved to be dense with ovendry density (γ dry) averaged at 1.70 g/cm3 while HL showed very dense affinity of 2.50 g/cm3. KL clarified a UCS range from 22.5 to 40.1 MPa and an average of 32.1 MPa while HL showed a range from 35.4 t o 48.1 MPa with an average of 43.1 MPa. KL is moderately weathered with RQD average of 51% while HL showed a hard to fresh rock affinity of 78%. Point load test clarified a medium shear strength with 5.49 MPa for KL and high strength of 9.93 MPa for HL. Plate loading tests indicated low and high modulus of deformation for KL and HL, respectively. Results of petrographical analyses and XED of limestone samples showed that the strength parameters of samples mostly composed of micrite (mudstone/wackestone) and dolomite in hard limestone of Hittin district. In Al Aziziyah district (KL), the samples mostly consist of foraminifera and high amount of calcite as in karst limestone (wackestone/packstone). Rock mechanical tests with combination of fabric analyses have shown that strength parameters depend not only on the amount of karst but also on the amount of allochem. Major geomechanical differences between the two types of limestone provide the proper base for prioritizing areas to alleviate future risks and sustainable urban planning for decision makers. The karstic limestone, therefore, is considered as an acceptable foundation bed for light engineering structures. However, for heavy structures and buildings, improving the foundation bed strength by grouting, cement injection, and mat foundations is necessary to avoid future failure risks.  相似文献   

16.
ABSTRACT

The Neoproterozoic Kaijianqiao Formation is one of the most important pre-Sturtian rift successions in South China and there has long been a lack of reliable geochronological constraints for its minimum depositional age. In this study, new zircon U-Pb ages of volcaniclastic rocks from the topmost Kaijianqiao Formation are presented. The youngest SHRIMP and LA-ICP-MS zircon 206Pb/238U weighted mean ages of the tuff sample are 715.0 ± 9.8 and 718.8 ± 9.4 Ma, respectively. The youngest LA-ICP-MS zircon 206Pb/238U weighted mean age of the tuffaceous siltstone sample is 720.8 ± 7.4 Ma and represents the maximum depositional age of the topmost Kaijianqiao Formation. The results show that the minimum depositional age of the Kaijianqiao Formation in the western Yangtze Block should be ca. 715 Ma, consistent with other pre-Sturtian rift successions in South China, such as the Banxi Group, Chengjiang, and Liantuo formations. Together with the published zircon U-Pb ages, it is demonstrated that the Sturtian glaciation in South China (Jiangkou glaciation) most likely initiated around 715 Ma. In other Rodinia blocks, like Laurentia and Arabia, the Sturtian glaciation probably started between 712 and 717 Ma, thus our new results further support that the Sturtian glaciation was a rapid and globally synchronous event. Other 206Pb/238U zircon ages display five distinct peaks at ca. 751, 780, 799, 819, and 848 Ma, which corresponded to the tectonic-magmatic events related to the break-up of Rodinia.  相似文献   

17.
Sand and dust storms are causing hazards and problems in aviation as well as the dangers and distresses they cause on living things. The low meteorological visibility, the presence of strong winds with gust, and the transport of dust and sand particles by the wind are dangerous on landing and departure of aircrafts, and even on planes that are parked. The main aim of the study is to examine the meteorological conditions causing the dust storm that took place in the Arabian Peninsula on February 28, 2009, and to determine the source of dust caused dust storm, sand storm, blown sand, and blown dust at the airports. Within the scope of the study, aviation routine weather report (METAR) and aviation selected special weather report (SPECI) reports have been assessed at many airports over Arabian Peninsula (AP), the northern part of the AP and North Africa. As model outputs; NCEP–DOE Reanalysis 2 data, BSC–DREAM8B, and HYSPLIT model were used. In the satellite images; METEOSAT MSG dust RGB images, MODIS, and Kalpana-1 data were used. According to obtained results, dust storms were detected in Bahrain, Kuwait, Saudi Arabia, and United Arab Emirates (UAE). At Al-Ahsa Airport in Saudi Arabia, the lowest visibility measured on February 28, 2009, dropping to 200 m, which was dominated by blowing sand. The source region of the dust observed at Dubai Airport in UAE is the eastern regions of the Rub’al Khali Desert located between Saudi Arabia, Oman, and UAE.  相似文献   

18.
Sinkhole collapse is one of the main limitations on the development of karst areas, especially where bedrock is covered by unconsolidated material. Studies of sinkhole formation have shown that sinkholes are likely to develop in cutter (enlarged joint) zones as a result of subterranean erosion by flowing groundwater. Electrical resistivity imaging or tomography (RESTOM) is well suited to mapping sinkholes because of the ability of the technique for detecting resistive features and discriminating subtle resistivity variations. Two-dimensional electrical resistivity tomography surveys were conducted at two sinkhole sites near Cheria city where limestone is covered by about 10 m of clayey soils. A Wenner transect was conducted between the two sinkholes. The electrode spacing was 2 m. The length of transect is about 80 m. The survey results suggest that RESTOM is an ideal geophysical tool to aid in the detection and monitoring of sinkholes and other subsurface cavities.  相似文献   

19.
Water shortage has become a problem in many arid regions where rainfall is low. Wadi Aurnah Basin, in Saudi Arabia (Arabian Peninsula), where the Holy Islamic cities are located, was selected for study, since it represents a water-scarce region. The potential for groundwater storage was investigated. This was achieved using remote sensing and geographic information system (GIS) techniques to cover the whole area (3,113 km2). Satellite images with high spatial resolution were processed to recognize terrain elements controlling the subsurface rock behavior. Landsat 7 ETM+, ASTER and SRTM satellite images were processed using ERDAS IMAGINE software. The influencing factors on groundwater storage were determined and digitally mapped as thematic layers. This included rainfall, lithology, rock fractures, slope, drainage and land cover/use. These factors were integrated in the GIS system (ArcView). A map was produced, indicating potential areas for groundwater storage. The map shows that 12–15% of Wadi Aurnah Basin has potential for groundwater storage, mainly in areas where intensive fracture systems exist.  相似文献   

20.
Sediment characteristics are the indicators of the intensity and geological history of the processes active in an area. Their association with different geomorphic features also signifies the present day conditions of deposition. In this study, variations in sediment characteristics associated with different geomorphic features, such as the coastal zone, two islands and a lagoon in the Al-Lith area of central-west coast of Saudi Arabia have been analysed. Whereas, the detrital sediments (sand?+?mud) are common (61–87 %) in most of the subunits of the coastal zone; the nondetrital (carbonate rich) sediments are more common (54–95 %) on the two islands as well as the lagoon; indicating distinct sources of sediments in these regions. The variation of sediment texture between sand and sandy silt in most geomorphic units, also shows that they are exposed to high-energy conditions, whereas occurrence of heavy minerals in small proportions (<7 %) indicates limited inputs from land-based igneous and metamorphic rocks. Sediment mean size vs. standard deviation shows that the sediment characteristics of a geomorphic unit (e.g. beach or sand bar) on the coast and on the island are different owing to different processes responsible for their formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号