共查询到20条相似文献,搜索用时 15 毫秒
1.
《国际泥沙研究》2016,(4):299-310
The failure of the Barlin Dam in Taiwan, China offers an important case study for evaluating concepts in modeling the rapid erosion and channel recovery following intentional and unplanned dam removals. We present a modeling effort that applied a 1D and quasi-2D uncoupled hydraulics and sediment model (NETSTARS) to evaluate how discretization and parameterization influence thefitofbed elevationpredic-tions to observations following dam failure. Our analysis evaluated the model sensitivity to sediment transport function, active layer thickness, and number of stream tubes used to define the cross-section. Results indicate that a) the model is more sensitive to active layer thickness and sediment transport function than to the number of stream tubes, b) development of dam removal models are likely to benefit from varying the active layer thickness in time, and c) increased lateral discretization does not appear to improve model fit in the steep and rapidly changing river environment at our site. We conclude with discussion on differences between, identifying the need for, and general use of 1D, quasi-2D, and fully 2D models in dam removal and failure analysis. 相似文献
2.
《Limnologica》2015
Habitat degradation in river ecosystems has considerably increased over the past decades, resulting in detrimental effects on aquatic and riparian communities. During the last two decades, the value of large wood as a resource for river restoration and recovery has been increasingly documented. However, post-project appraisal of the associations between restored large wood, morphological complexity and river ecology as a result of river restoration is extremely rare and thus scientific knowledge is essential. To investigate restored wood-induced morphological response and sediment complexity in an overwidened reach along a low gradient lowland river (River Bure, UK), two sub-reaches containing 12 jams initiated by wood emplacement in 2008 and 2010 and a sub-reach free of wood were studied. Wood surveys recording the dimensions and number of wood pieces in jams, geomorphological mapping of the reach illustrating the spatial distribution of features in and around the jams and in a section free of wood, and sediment sampling (analysed for particle size, organic content and plant propagule abundance) of five recurring patch types surrounding each jam (two wood-related patches and three representing the broader river environment) were performed. Wood jams partially spanned the river channel and contained large pieces of wood that created more open structures than naturally-formed wood jams. Where no wood was introduced, the channel remains wide and the gravel bed is buried by sand and finer sediment. In the restored reaches, fine sediment has accumulated in and around the wood jams and has been stabilised by vegetation colonisation, enhancing flow velocities in the narrowed channel sufficiently to mobilise fine sediment and expose the gravel bed. Sediment analysis reveals sediment fining with time since wood emplacement, largely achieved within the two wood-related patch types. Fine sediment retained around the wood shows a relatively higher plant propagule content than other patch types, suitable for sustaining plant succession as the vegetated side bars aggrade. Although channel narrowing and morphological adjustment has occurred surprisingly rapidly in this low energy, over-widened reach following wood introduction (2–4 years), sustaining the recovery in the longer term to suitably support flora and fauna communities depends on the continued delivery of wood by ensuring a natural supply of sufficiently large wood pieces from riparian trees both upstream and within the reach. 相似文献
3.
The sediment delivery ratio in a small catchment in the black soil region of Northeast China 总被引:1,自引:0,他引:1
The black soil region of northeast China,which covers the Provinces of Heilongjiang,Jilin and the Inner Mongolia autonomous region with black soil,chernozem and meadow soil,has experienced soil erosion since intense agricultural reclamation began approximately 100 years ago.However,the sediment delivery ratio,defined as the fraction of gross erosion that is transported from a given area in a given time interval,is still unclear.In this study,we calculated the delivery ratio and analysed changes in erosive processes within Hebei catchment from 1977 to 2007 based on an analysis of sediments of the Liudui reservoir.The original vegetation layer clearly identified the bottom of the reservoir when it was constructed in 1977;thus,the reservoir sediments could be precisely dated.The delivery ratio,calculated by comparing the sediment deposition in the reservoir with the total soil erosion in the upstream catchment,was found to be exponentially correlated(r2 = 0.95,P < 0.01) with decreasing grain size,except for the fraction <0.002 mm.The delivery ratio for the clays(<0.002 mm) was low,averaging 0.10 during the study period, which indicated partial removal of clays from the reservoir.The changes in the reservoir deposition rate reflected the temporal changes in the erosion processes.The exceptionally high rainfall in 1998 was confirmed by the distributions of 137Cs,210Pb,and the grain-size of the sediments.Beginning from the position of the original grass layer,we defined three periods from 1977 to 2007 based on deposition rates:2.40 cm year-1 from 1977 to 1997,5.60 cm year-1 in 1998 due to unusually high rainfall,and 1.55 cm year-1 from 1999 to 2007.The overall average deposition rate for the entire period was 2.26 cm year-1.Precipitation was found to be the main factor affecting the soil erosion of the study area. 相似文献
4.
底泥疏浚效果及环境效应研究进展 总被引:35,自引:5,他引:35
底泥疏浚的效果至今仍存在很大争议,其中之一是疏浚后所产生的环境效果有可能偏离人们的期望.疏浚能够有效的削减沉积物中营养物、重金属和持久性有机物等污染物含量,但疏浚过程中会引起污染物向水体释放,疏浚后的界面过程有可能对疏浚效果产生较大影响.底泥疏浚对水体富营养化的控制有成功的经验也有失败的教训,不同的湖泊疏浚后对营养盐释放的控制效果不同.底泥疏浚往往对底栖生物产生危害,具体表现为种类、丰富度与生物量的减少,群落结构发生变化,多样性降低;疏浚后微生物胞外酶活性降低,底泥疏浚对沉积物代谢功能存在显著影响,底栖生物和酶活性的恢复需要长期的过程.底泥疏浚对湖泊水污染控制具有时效性,疏浚方式、疏浚深度与疏浚时令是疏浚工程应关注的问题. 相似文献
5.
《国际泥沙研究》2023,38(5):653-661
Studying the characteristics of runoff and sediment processes and revealing the sources of sediment provide key guidance for the scientific formulation of relevant soil erosion protection measures and water conservancy development plans. In the current study, the flow and sediment data of five hydrological stations on the main stream of the Fu River Basin (FRB) from 2007 to 2018 were selected to identify flood events, explore the variation of sediment transport along the FRB, and clarify the sediment sources. The results found that the Jiangyou–Fujiangqiao section is the main source of sediment in the FRB during the flood season. The runoff volume and sediment load during flood events in the Jiangyou–Fujiangqiao section accounted for 35% and 145% respectively of that of Xiaoheba station. These results combined with the change of the sediment load before and after the 2008 Wenchuan Earthquake (May 12) show that the sediment in this section mainly comes from the Fu River tributary–the Tongkou River watershed. The calculation results for the sediment carrying capacity of the Fu River show that the main stream was in a state of erosion in theory. However, according to the calculation results for the interval sediment yield during flood events, the sediment load at the Xiaoheba station was smaller than that at the Shehong station upstream. The analysis indicates that this was not because of sediment deposition in the river channel, but because of sand mining in the river channel and sediment interception by water conservancy projects. If heavy rainfall occurs in the FRB, the sediment accumulated upstream will move downstream with the resulting flood, and the sediment yield in the FRB may further increase. These research conclusions can provide reference information for improving the prediction and management ability of soil and water loss in the FRB and scientific regulation of the Three Gorges Reservoir. 相似文献
6.
Climate change is an issue of major concern nowadays.Its impact on the natural and human environment is studied intensively,as the expected shift in climate will be significant in the next few decades.Recent experience shows that the effects will be critical in coastal areas,resulting in erosion and inundation phenomena worldwide.In addition to that,coastal areas are subject to "pressures" from upstream watersheds in terms of water quality and sediment transport.The present paper studies the impact of climate change on sediment transport and morphology in the aforementioned coupled system.The study regards a sandy coast and its upstream watershed in Chalkidiki,North Greece;it is based on:(a)an integrated approach for the quantitative correlation of the two through numerical modeling,developed by the authors,and(b)a calibrated application of the relevant models Soil and Water Assessment Tool(SWAT)and PELNCON-M,applied to the watershed and the coastal zone,respectively.The examined climate change scenarios focus on a shift of the rainfall distribution towards fewer and more extreme rainfall events,and an increased frequency of occurrence of extreme wave events.Results indicate the significance of climatic pressures in wide-scale sediment dynamics,and are deemed to provide a useful perspective for researchers and policy planners involved in the study of coastal morphology evolution in a changing climate. 相似文献
7.
Water and sediment evolution in areas with high and coarse sediment yield of the Loess Plateau 总被引:1,自引:0,他引:1
In the past few years, the amount of sediment entering the Yellow River decreased significantly in areas with high and coarse sediment yield of the Loess Plateau. Some researchers considered that it was owing to the soil and water conservation project, while others believed that it was caused by the low precipitation. The observation data showed -2 that the ultimate sod erosion modulus m 1960s could reach 150,000 t km . However some experts preferred to believe that the ultimate soil erosion modulus in 1960s was wrong due to some uncertain mistakes. This paper quantitatively analyzed the spatial-temporal evolution pattern of sediment yield in areas with high and coarse sediment yield of the Loess Plateau over the past 50 years, by simulating the precipitation-runoff and soil erosion in 12 sample years with the digital watershed model. Some preliminary conclusions have been drawn as following: since the 1960s and 1970s, the rainstorm center had moved southward and the intensity of rainfall center became weaker and spread into dispersed rainfall distribution in areas with high and coarse sediment yield; the decrease of the amount of sediment entering the Yellow River was caused by the changes of rainfall type in recent years; the rainstorm of 1967 was concentrated in the re~ion nearby "Shenmu-Fugu" in Shaanxi Province, and the annual maximum transport modulus (150,000 t km-2 ) measured in Bullpen Ditch of the left bank tributary between "Shenmu" and "Fugu" in 1967 is reasonable. 相似文献
8.
筑坝拦截对黑河河道沉积物粒度空间分布的影响 总被引:1,自引:1,他引:1
河流沉积物对流域环境变化具有敏感响应,其粒度参数能反映沉积环境中物质来源和水动力环境.本文以黑河流域上中游为研究区域,探究河流沉积物粒度对流域环境变化的响应.从黑河上中游干流22个主要控制断面采集河床沉积物样品,采用筛分法和吸管法对沉积物样品粒度参数进行测定,并分析其空间分布规律对筑坝拦截为主的环境改变响应.研究结果表明:受梯级水库建设影响,黑河上中游泥沙粒径大小差异显著.干流库区泥沙粒径较自然河段明显减小,分选很好,呈正偏或极正偏尖锐分布,而且在库区不同沉积高度上表现出分层沉积特征;坝下游河段因遭受强烈冲刷,较自然河段泥沙粒径粗化显著,分选变差,偏态趋向极正偏,峰态尖锐化;水库回水区受水库壅水及下泄清水的双重制约,泥沙粒度参数介于自然河段和坝下游河段之间,整体分选中等,呈极正偏尖锐分布;沉积环境分析表明,上游支流河段沉积物粒度特征受泥沙供给和物源特征的影响较水动力条件显著,干流河段沉积物粒度特征主要受水动力条件控制.研究结果既符合河流上中游沉积物粒度分布规律,也反映了河流环境变化对沉积物粒度组成的影响. 相似文献
9.
Geometric characteristics and evolution of a tidal channel network in experimental setting 总被引:3,自引:0,他引:3
This paper reports on a laboratory study that aims to reproduce a tidal channel network, in order to enhance the understanding of the morphodynamic evolution of the channel characteristics as the network expands and finally reaches equilibrium. A high‐resolution laser system scanned the bed topography at different time steps creating multiple digital elevation models of the channel network. Two hundred and seventy individual channel segments are analyzed and cross‐correlated in terms of their width, depth and length. The laboratory results show positive linear correlations between depth and width as well as between length and width of channel segments of the network configuration at final equilibrium. In a downstream direction, channels appear to widen more than they deepen, indirectly a sign that discharge has a stronger control on channel width than on depth. In contrast to fluvial drainage networks that commonly display fractal and scale‐invariant behavior, the geometric properties of the experimental tidal creek network shows scale dependence. Channel attributes exhibit consistent patterns of exponentially decreasing abundance, with increasing creek length, depth and width. The nature of the observed exponential distributions within creek attributes (width, depth, length) allows for statistical predictability of relative creek attribute dimensions downstream and through time. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
10.
One of the main problems in reservoirs is sedimentation which reduces the operating life of dams if a proper plan and analysis method are not in place.The techniques to manage sediment in reservoirs include several sustainable management techniques that route sediment through or around the reservoir.One of the main economical methods in arid and semi-arid regions is pressurized flushing using moderate drawdown of the water level of the reservoir to evacuate sediment deposited behind dams.In the current study,the effect of a new structure called a dendritic bottomless extended(DBE)outlet structure at three angles of 30°,45°,and 60°on pressurized flushing efficiency was investigated.Consequently,45 experiments were designed for three discharge rates (Qo),three sediment levels(Hs),four types of structure,and a no-structure condition(reference test).The results indicated that the DBE structure with a 30°angle between the branches,a sedimentary dimensionless index of Hs/Do=4.59,and a flow dimensionless index of Qo=/√gD05=1:43(where g is the acceleration of gravity and Do is the diameter of the bottom outlet)lead to 10-fold increase in the sediment flushing cone dimensions and sediment removal efficiency compared to the results of the reference test.Finally,according to a statistical analysis of the results,a dimensionless equation for calculating the sediment flushing cone dimensions was developed for the tested sediment characteristics. 相似文献
11.
Sediment dynamics of an allogenic river channel in a very arid environment 总被引:1,自引:0,他引:1 下载免费PDF全文
Despite a growing interest in the sediment dynamics of dryland rivers, most research has been based on ephemeral streams in endogenic hydrological systems (runoff and sediment transport determined by local precipitation). Less attention, however, has been paid to allogenic and perennial dryland rivers. Here, we report a case study on the suspended sediment dynamics of the Tarim River, an allogenic and perennial river flowing in a very arid environment in China, based on mean daily discharge and mean daily suspended sediment concentration (SSC) over the last 5 decades (1960–2011). Results reveal that discharge and SSCs are predominantly low and have distributions with large positive skewness. The SSC–discharge relationships can be fairly well generalized by power functions, with quite large scatter at extreme (low and high) flow conditions. Marked temporal and spatial variations were observed in the effective discharge for sediment transport. The frequency of the effective discharge ranged from 0.5% to 2% (or an average flow duration of 2–7 days/year), implying that moderate to high flows play an important role in sediment transport. The sediment rating curves show strong hysteresis effects, with 3 types of hysteresis loops observed, clockwise (the most predominant), anticlockwise, and figure of eight. The high potential for bank collapse near the peak and falling limb of the flood hydrograph is the major cause of anticlockwise and figure‐of‐eight hysteresis loops. 相似文献
12.
《国际泥沙研究》2022,37(5):619-638
The large confluence between the Yangtze River and the outflow channel of Poyang Lake is receiving attention due to its importance in flood control and ecological protection in the Yangtze River basin. There is a large floodplain along the outflow channel of Poyang Lake, which is submerged during high flow and dry during low flow. The effects of the submergence of this floodplain on sediment and morphological characteristics at this large confluence have not been known. Hence, a field investigation was done in March 2019 (relatively high flow, Survey 3) to complement the previous field studies done in August (high flow, Survey 1) and December 2018 (low flow, Survey 2) to identify the temporal variations of sediment and morphological characteristics considering the submergence of this large floodplain. The predominant sediment transport modes were wash load for Poyang Lake and confluence particles and mixed bedload/suspended load for the Yangtze River particles. The sediment transport processes were largely affected by both the secondary flows and the water density contrast between the tributaries with a lock-exchange sediment rich, denser flow moving across the inclined mixing interface in Surveys 1 and 2. The sediment flux across the mixing interface was weakened in Survey 3 when the density contrast was very small. The stagnation zone near the confluence apex had a low sediment concentration and played a role in preventing the sediment flux exchange between the two flows, and its size, and, thus, its importance as a barrier to sediment mixing were related to the submergence of the floodplain. The bed morphology with the local scour holes at the confluence was largely affected by the large-size helical cells, and this kind of effect was weakened as the secondary flows got restricted in Survey 3. The current results expand the database and knowledge on the sediment transport and morphological features of large river confluences. 相似文献
13.
Nearshore regions act as an interface between the terrestrial environment and deeper waters. As such, they play important roles in the dispersal of fluvial sediment and the transport of sand to and from the shoreline. This study focused on the nearshore of Poverty Bay, New Zealand, and the processes controlling the dispersal of sediment from the main source, the Waipaoa River. Hydrodynamics and sediment-transport in water shallower than 15 m were observed from April through mid-September 2006. This deployment afforded observations during 3-4 periods of elevated river discharge and 5 dry storms.Similar wind, river discharge, wave, current, and turbidity patterns were characterized during three of the wet storms. At the beginning of each event, winds blew shoreward, increasing wave heights to 2-3 m within Poverty Bay. As the cyclonic storms moved through the system the winds reversed direction and became seaward, reducing the local wave height and orbital velocity while river discharge remained elevated. At these times, high river discharge and relatively small waves enabled fluvially derived suspended sediment to deposit in shallow water. Altimetry measurements indicated that at least 7 cm was deposited at a 15 m deep site during a single discharge event. Turbidity and seabed observations showed this deposition to be removed, however, as large swell waves from the Southern Ocean triggered resuspension of the material within three weeks of deposition. Consequently, two periods of dispersal were associated with each discharge pulse, one coinciding with fluvial delivery, and a second driven by wave resuspension a few weeks later. These observations of nearfield sediment deposition contradict current hypotheses of very limited sediment deposition in shallow water offshore of small mountainous rivers when floods and high-energy, large wave and fast current, oceanic conditions coincide.Consistently shoreward near-bed currents, observed along the 10 m isobath of Poverty Bay, were attributed to a combination of estuarine circulation, Stokes drift, and wind driven upwelling. Velocities measured at the 15 m isobath, however, were directed more alongshore and diverged from those at the 10 m isobath. The divergence in the currents observed at the 10 and 15 m locations seemed to facilitate segregation of coarse and fine sediment, with sand transported near-bed toward the beach, while suspended silts and clays were exported to deeper water. 相似文献
14.
G. Pickup 《地球表面变化过程与地形》1980,5(1):61-75
A computer-based study of the impact of the proposed Wabo hydroelectric scheme on the Purari River, Papua New Guinea was carried out. The HEC-6 model, Scour and Deposition in Rivers and Reservoirs developed by the Hydrologic Engineering Centre was used to simulate the effect of the dam on sediment transport and erosion in the lower Purari. Two runs with the model were carried out. The first one was used to establish baseline conditions and the second modelled dam impact. Before the study was carried out, data had to be collected on channel geometry, sediment input, river bed material size composition and hydraulic conditions in the river. Supplementary models also had to be developed to fill in gaps in runoff records and to describe flow in the river during power generation. Results of the investigation indicate that limited erosion will occur because of bed-armouring and the river will adjust towards a new equilibrium condition quite rapidly. The sediment output of the river into the Purari delta will change, load in the clay, silt and sand/gravel fractions decreasing by 22, 53 and 78 per cent respectively. 相似文献
15.
Delta channels are important landforms at the interface of sediment transfer from terrestrial to oceanic realms and affect large, and often vulnerable, human populations. Understanding these dynamics is pressing because delta processes are sensitive to climate change and human activity via adjustments in, for example, mean sea level and water/sediment regimes. Data collected over a 40-year period along a 110-km distributary channel of the Yellow River Delta offer an ideal opportunity to investigate morphological responses to changing water and sediment regimes and intensive human activity. Complementary data from the delta front provide an opportunity to explore the interaction between delta channel geomorphology and delta-front erosion–accretion patterns. Cross-section dimensions and shape, longitudinal gradation and a sediment budget are used to quantify spatial and temporal morphological change along the Qingshuigou channel. Distinctive periods of channel change are identified, and analysis provides a detailed understanding of the temporal and spatial adjustments of the channel to specific human interventions, including two artificial channel diversions and changes in water and sediment supply driven by river management, and downstream delta-front development. Adjustments to the diversions included a short-lived period of erosion upstream and significant erosion in the newly activated channel, which progressed downstream. Channel geomorphology widened and deepened during periods when management increased water yield and decreased sediment supply, and narrowed and shallowed during periods when management reduced water yield and the sediment load. Changes along the channel are driven by both upstream and downstream forcing. Finally, there is some evidence that changing delta-front erosion–accretion patterns played an important role in the geomorphic evolution of the deltaic channel; an area that requires further investigation. © 2020 John Wiley & Sons, Ltd. 相似文献
16.
《水文科学杂志》2012,57(2):183-199
ABSTRACTCurrent estimations of sediment transport at the watershed scale are limited by the difficulty of accurately simulating the sediment transfer along the main stem. The typical approach to simulating watershed sediment transport involves the adoption of hydrologic sediment routing schemes that do not fully capture the contribution and timing of side tributaries, and the inclusion of a simplified channel geometry that does not include its hydraulic feedback. In this paper, we present the results of a coupled hydrologic-hydraulic model of sediment transport applied to a small watershed of Iowa. The model was developed to simulate both the hydrologic network and non-equilibrium sediment transport that occur during a flood. The model results highlight the importance of including side tributaries in order to capture a realistic duration of shear stress that ultimately affects sediment transport. Comparisons with bank erosion measurements indicate that the presented approach is also promising to estimate sediment sources along the main stem. 相似文献
17.
Cem Tokatlı 《国际泥沙研究》2022,37(2):139-150
In the current research,the impact of the COVID-19 lockdown period on sediment quality of the MericErgene River Basin was evaluated by determining the potentially toxic elements(PTEs) in sediment samples collected from 25 sampling points in the basin.Also some important ecological indicators including potential ecological risk index(PERI),contamination factor(CF),pollution load index(PLI),biological risk index(BRI),and geo-accumulation index(Igeo) and some important statistical indica... 相似文献
18.
三峡水库对长江N、P营养盐截留效应的模型分析 总被引:21,自引:2,他引:21
在长江流域干支流NP营养盐现场观测资料的基础上利用模式分析的方法分析了三峡水库对上游营养盐的截流效应. 三峡水库投入使用后发育出的水库生态系统可将上游输入的2%-7%溶解态无机氮和13%-42%的溶解态无机磷固定于浮游生物中库区水体中生物有机碳总量可保持在0.84109-2.65109mol的范围. 相应地三峡工程可减缓长江下游及长江口区的富营养化趋势但却在一定程度上加剧了长江中下游营养盐N/P比上升的趋势. 相似文献
19.
Delayed delivery from the sediment factory: modeling the impact of catchment response time to tectonics on sediment flux and fluvio‐deltaic stratigraphy 下载免费PDF全文
Andrea Forzoni Joep E.A. Storms Alexander C. Whittaker Gerben de Jager 《地球表面变化过程与地形》2014,39(5):689-704
The sediment flux from a catchment is driven by tectonics and climate but is moderated by the geomorphic response of the landscape system to changes in these two boundary conditions. Consequently, catchment response time and the non‐linear behavior of landscapes in response to boundary condition change control the downstream propagation of climatic or tectonic perturbations from catchments to neighboring basins. In order to investigate the impact of catchment response time on sediment flux, we integrated a spatially‐lumped numerical model PaCMod, with new routines simulating the evolution of landscape morphology and erosion rates under tectonic and climatic forcing. We subsequently applied the model to reconstruct the sediment flux from a tectonically perturbed catchment in central Italy. Finally, we coupled our model to DeltaSim, a process‐response model simulating fluvio‐deltaic stratigraphy, and investigated the impact of catchment response time on stratigraphy, using both synthetic scenarios and a real world system (Fucino Basin, central Italy). Our results demonstrate that the differential response of geomorphic elements to tectonic and climatic changes induces a complex sediment flux signal, and produces characteristic stratigraphic architectures and shoreline trajectories. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
20.
The paper presents a numerical movable-bed channel capable of simulating three-dimensional motions of flows and gravel particles in different shapes. At first, the numerical channel was tested against results of fixed-bed channel experiments in which gravel particles were transported. Simulated particle motions were validated in comparison with those in the laboratory experiment. Next, numerical movable-bed experiments with sphere particles and gravel particles were conducted. The results of these experiments clearly elucidated the difference in motion between the large and the small particles, effects of shapes of gravel particles on sediment-transport rates, and hydrodynamic forces and contact forces at incipient motion and at settling. 相似文献