首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
This paper contributes a field study of suspended sediment transport through aquatic vegetation. The study was run over a 3 month period which was selected to coincide with scheduled weed cutting activities. This provided the opportunity to obtain data points with no vegetation cover, as well as to investigate the effects of weed cutting on Suspended Sediment Concentrations (SSC), particle size distributions and river hydraulics. Aquatic vegetation cover was quantified through remote sensing with Unmanned Aerial Vehicles and biomass estimated from ground truth sampling. SSC was highly dependent on aquatic vegetation abundance, and the distance upstream that had been cleared of aquatic vegetation. The data indicates that fine sediment was being trapped and stored by aquatic vegetation, then likely remobilised after vegetation removal. Investigation of suspended sediment spatial dynamics illustrated changes in particle size distribution due to preferential settling of coarse particles within aquatic vegetation, for example D50 decreased from 36.08 μm to 15.64 μm after suspended sediment travelled 304.2 m downstream and passed ~3700 kg of aquatic vegetation biomass. Hydraulic resistance in the study reach (parameterized by Manning's n) dropped by over 70% following vegetation cutting. Prior to cutting hydraulic resistance was discharge dependent (likely due to vegetation pronating at higher flows), while post cutting hydraulic resistance was approximately invariant of discharge. Aerial surveying captured interesting changes in aquatic vegetation cover prior to vegetation cutting, where some very dense regions of aquatic vegetation were naturally removed (without any high flow events) leaving behind unvegetated riverbed and fine sediment. The weed cutting boat had a lower impact on SSC than was originally expected, which indicates that it may offer a less damaging solution to aquatic vegetation removal in rivers than some other approaches such as mechanical excavation. This paper contributes valuable field data (which are generally scarce) on the research topic of flow-vegetation-sediment interactions, to supplement laboratory and numerical studies.  相似文献   

2.
Despite increasing recognition of the potential of aquatic biota to act as ‘geomorphic agents’, key knowledge gaps exist in relation to biotic drivers of fine sediment dynamics at microscales and particularly the role of invasive species. This study explores the impacts of invasive signal crayfish on suspended sediment dynamics at the patch scale through laboratory and field study. Three hypotheses are presented and tested: (1) that signal crayfish generate pulses of fine sediment mobilisation through burrowing and movement that are detectable in the flow field; (2) that such pulses may be more frequent during nocturnal periods when signal crayfish are known to be most active; and (3) that cumulatively the pulses would be sufficient to drive an overall increase in turbidity. Laboratory mesocosm experiments were used to explore crayfish impacts on suspended sediment concentrations for two treatments: clay banks and clay bed substrate. For the field study, high frequency near‐bed and mid‐flow turbidity time series from a lowland river with known high densities of signal crayfish were examined. Laboratory data demonstrate the direct influence of signal crayfish on mobilisation of pulses of fine sediment through burrowing into banks and fine bed material, with evidence of enhanced activity levels around the mid‐point of the nocturnal period. Similar patterns of pulsed fine sediment mobilisation identified under field conditions follow a clear nocturnal trend and appear capable of driving an increase in ambient turbidity levels. The findings indicate that signal crayfish have the potential to influence suspended sediment yields, with implications for morphological change, physical habitat quality and the transfer of nutrients and contaminants. This is particularly important given the spread of signal crayfish across Europe and their presence in extremely high densities in many catchments. Further process‐based studies are required to develop a full understanding of impacts across a range of river styles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Despite a growing interest in the sediment dynamics of dryland rivers, most research has been based on ephemeral streams in endogenic hydrological systems (runoff and sediment transport determined by local precipitation). Less attention, however, has been paid to allogenic and perennial dryland rivers. Here, we report a case study on the suspended sediment dynamics of the Tarim River, an allogenic and perennial river flowing in a very arid environment in China, based on mean daily discharge and mean daily suspended sediment concentration (SSC) over the last 5 decades (1960–2011). Results reveal that discharge and SSCs are predominantly low and have distributions with large positive skewness. The SSC–discharge relationships can be fairly well generalized by power functions, with quite large scatter at extreme (low and high) flow conditions. Marked temporal and spatial variations were observed in the effective discharge for sediment transport. The frequency of the effective discharge ranged from 0.5% to 2% (or an average flow duration of 2–7 days/year), implying that moderate to high flows play an important role in sediment transport. The sediment rating curves show strong hysteresis effects, with 3 types of hysteresis loops observed, clockwise (the most predominant), anticlockwise, and figure of eight. The high potential for bank collapse near the peak and falling limb of the flood hydrograph is the major cause of anticlockwise and figure‐of‐eight hysteresis loops.  相似文献   

4.
The Mekong Basin in southeast Asia is facing rapid development, impacting its hydrology and sediment dynamics. Although the understanding of the sediment transport rates in the Mekong is gradually growing, the sediment dynamics in the lower Mekong floodplains (downstream from Kratie) are poorly understood. The aim of this study is to conduct an analysis to increase the understanding of the sediment dynamics at the Chaktomuk confluence of the Mekong River, and the Tonle Sap River in the Lower Mekong River in Cambodia. This study is based on the data from a detailed field survey over the three hydrological years (May 2008–April 2011) at the two sites (the Mekong mainstream and the Tonle Sap River) at the Chaktomuk confluence. We further compared the sediment fluxes at Chaktomuk to an upstream station (i.e. Mukdahan) with longer time series. Inflow sediment load towards the lake was lower than that of the outflow, with a ratio on average of 84%. Although annually only a small amount of sediment load from the Tonle Sap contributes to the delta (less than 15%), its share is substantial during the February–April period. The annual sediment load transport from the confluence to the delta in 2009 and 2010 accounted for 54 and 50 Mt, respectively. This was on average only 55% of the sediment fluxes measured at Mukdahan, a more upstream station. Furthermore when compared to sediment loads further downstream at the Cambodia–Vietnam border, we found that the suspended sediment flux continued to decline towards the South China Sea. Our findings thus indicate that the sediment load to the South China Sea is much lower than the previous estimate 150–160 Mt/yr. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
6.
The impacts of fine sediment on riverine fish   总被引:2,自引:0,他引:2  
Elevated fine sediment input from terrestrial and aquatic sources as a result of anthropogenic activity is widely recognized to impact negatively on aquatic ecosystems. In rivers, freshwater fish are exposed to a range of impacts resulting from fine sediment pressures. To date, research on the effects of fine sediments on fish has been concentrated within relatively few families, notably the salmonidae. This paper reviews the literature describing indirect and direct impacts of fine sediment on freshwater fish as a contribution towards enhancing the understanding of the impacts of anthropogenic activities on freshwater ecosystems. We identify the causal mechanisms that underpin the observed negative response exhibited by fish populations to enhanced fine sediment loads, and the variability across different fish species. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Water regime characteristics have been recognized as critical factors for aquatic vegetation. In this study, we examined changes in aquatic vegetation coverage area in two shallow sub-lakes of Poyang Lake (Bang Lake and Cuoji Lake) during the dry season from 1987 to 2017. The relationships between eight water regime components (annual average water level, annual maximum water level, annual minimum water level, and flooded days at five water levels [11, 13, 15, 17, and 19 m]) and aquatic vegetation coverage area were determined. The most critical water regimes were identified and results demonstrated that aquatic vegetation coverage area in Bang Lake and Cuoji Lake peaked in drier years (2005 and 2009, respectively) with no obvious up or down trend. Water regimes indicating high flow events such as annual maximum water level, flooded days at water level 19 m, and annual average water level were found to be more important for predicting aquatic vegetation. High-flow events appear to be essential for understanding aquatic vegetation dynamics in pit lakes, yet overall the influences of water level fluctuation on aquatic vegetation varied among wetland units of Poyang Lake. This study helps to understand the hydroecological dynamics in connected lakes further and provide a reference for the lake management and protection.  相似文献   

8.
Suspended sediment is the primary source for a sustainable agro‐ecosystem in the Mekong Delta by providing nutrient input for the subsequent cropping season. In addition, the suspended sediment concentration (SSC) plays an important role in the erosion and deposition processes in the Delta; that is, it influences the morphologic development and may counteract the deltaic subsidence and sea level rise. Despite this importance, little is known about the dynamics of suspended sediment in the floodplains of the Mekong Delta. In particular, quantitative analyses are lacking mainly because of data scarcity with respect to the inundation processes in the floodplains. In 2008, therefore, a comprehensive in situ system to monitor the dynamics of suspended sediment in a study area located in the Plain of Reeds was established, aiming at the characterization and quantification of suspended sediment dynamics in the deeply inundated parts of the Vietnamese part of the Mekong Delta. The monitoring system was equipped with seven water quality–monitoring stations. They have a robust design and autonomous power supply suitable for operation on inundated floodplains, enabling the collection of reliable data over a long period of time with a high temporal resolution. The data analysis shows that the general seasonal dynamics of suspended sediment transport in the Delta is controlled by two main mechanisms: the flood wave of the Mekong River and the tidal backwater influences from the coast. In the channel network, SSC decreases exponentially with distance from the Mekong River. The anthropogenic influence on SSC could also be identified for two periods: at the start of the floodplain inundation and at the end of the flood period, when subsequent paddy rice crops are prepared. Based on the results, we recommend an operation scheme for the sluice gates, which intends to distribute the sediment and thus the nutrients equally over the floodplain. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
This work deals with analysis of hydrographic observations and results of numerical simulations. The data base includes acoustic Doppler current profilers (ADCP) observations, continuous measurements on data stations and satellite data originating from the medium resolution imaging spectrometer (MERIS) onboard the European Space Agency (ESA) satellite ENVISAT with a spatial resolution of 300 m. Numerical simulations use nested models with horizontal resolutions ranging from 1 km in the German Bight to 200 m in the East Frisian Wadden Sea coupled with a suspended matter transport model. Modern satellite observations have now a comparable horizontal resolution with high-resolution numerical model of the entire area of the East Frisian Wadden Sea allowing to describe and validate new and so far unknown patterns of sediment distribution. The two data sets are consistent and reveal an oscillatory behaviour of sediment pools to the north of the back-barrier basins and clear propagation patterns of tidally driven suspended particulate matter outflow into the North Sea. The good agreement between observations and simulations is convincing evidence that the model simulates the basic dynamics and sediment transport processes, which motivates its further use in hindcasting, as well as in the initial steps towards forecasting circulation and sediment dynamics in the coastal zone.  相似文献   

10.
中国大陆动力学研究导向和思考   总被引:7,自引:3,他引:4       下载免费PDF全文
大陆动力学是研究和探索地球内部物质大尺度运动和深化认识地球本体与其在整体运动中深部圈层耦合、介质与结构变异的物理-力学属性、物质与能量的交换、深层动力过程和机制的一门边缘科学.地球动力学集成了当代众多高、新学科技领域和学科交叉的研究成果,它涉及到成山、成盆、成岩、成矿、成灾和深化对地球本体的认识,它在地球科学研究中占有极为重要的地位.本文通过深入研究、综合集成与剖析讨论了该领域五个重要的基本科学问题,即:(1)地球动力学在地球科学研究中的地位和作用;(2)国际上地球动力学研究的进展和发展动向;(3)中国地球动力学的研究状况;(4)当今地球动力学研究的导向和战略思考;(5)地球动力学研究在我国的实现和开拓.  相似文献   

11.
Estuarine environments are influenced by both river flows and oceanic tidal movement of water, sediment, and nutrients, often forming ecosystems that are rich in resources and biodiversity. The Yellow River once carried the world’s largest sediment load, but artificial structures have transformed its hydrodynamic processes. An annual Water-Sediment Regulation Scheme(WSRS) was introduced to flush accumulated sediment from the Xiaolangdi Reservoir, which provides flood control and water storage.Ho...  相似文献   

12.
水生态系统是人类赖以生存的基础,近年来气候变化和水资源开发、水体污染、过度捕捞等人类活动导致水生态系统严重受损,水生态系统的保护和修复已成为全球面临的重大挑战。科学合理的水生态评价方法是实现水生态系统稳定、健康和可持续管理的基本保障,也是目前我国各相关管理部门高度重视的关键问题,多个部门围绕水生态评价展开了积极探索与实践。本文系统回顾了水生态评价方法的发展历程并阐释了水生态评价的内涵,梳理了常用的水生态评价方法,明晰了各方法的基本理念和应用场景,分析了各方法的优点和不足,提出了基于生态完整性的水生态健康评价方法,最后对目前我国水生态评价需进一步完善的工作进行了展望。本文以期与相关领域研究者和管理者在水生态评价理论和方法方面进行探讨,为我国水生态考核工作提供理论支持。  相似文献   

13.
Sediments are an essential habitat compartment in rivers, which is a subject to dynamic transport processes. In many rivers, the fine deposited sediments are contaminated with heavy metals and organic compounds. Contaminated deposits are considered as potential hot spots because of the risk of the mobilization under erosive hydraulic conditions. Numerical models for particulate contaminant transport are then necessary and can be applied to estimate and predict the potential impact of mobilized contaminants as an important contribution to sediment management. This paper focuses on the quantification of the amount of contaminated sediments resuspended during the extreme flood event in 1999 and the prediction of deposition one year after the flood event. To assess such erosive flood event, a 2D numerical transport model was developed to analyse the dynamics of erosion and sedimentation processes in the headwater of a cross dam at the Upper Rhine River. The dam consists of a weir, a hydropower plant, and a navigation lock. As the weir is operating only for flood management, a huge amount of sediment highly contaminated with the hexachlorobenzene (HCB) was deposited in the weir zone. Therefore, numerical simulations were performed to determine the spatial and temporal distribution of deposited contaminated sediments as depending on the river discharge and its distribution to the hydraulic structures. The numerical investigation presented here is taken as a retrospective analysis of the contaminated sediment dynamics in the headwater to improve future sediment management.  相似文献   

14.
Planform dynamics of the Lower Mississippi River   总被引:1,自引:0,他引:1  
This paper presents an analysis of the planform behaviour of the Lower Mississippi River (LMR) using a series of maps and hydrographic surveys covering the period 1765–1975. Data allow analysis at various time and space scales, using fixed and statistically defined reaches, both before and after extensive channel modification. Previous research has interpreted planform change in relation to geomorphological or engineering regime‐type analyses of channel length and width for the LMR as a ‘single system’. The analysis here is broadly consistent with these approaches, but highlights the importance of meander geometry, in the form of the radius of curvature:width ratio. This neglected factor helps resolve paradoxes relating to observed changes in sediment transport and channel stability. When viewed over smaller time and space scales, analysis of dynamics using fixed reach boundaries reveals a downstream trend in the pattern of planform behaviour, which is closely related to the distribution of valley floor deposits, and which also reflects neotectonic influences. Analysis of changes using statistically determined reach boundaries shows that, over shorter time scales, meander trains are continually formed and modified over a period of approximately 120 years. Zones of more‐or‐less dynamic behaviour thus move through the LMR. The research also provides a context for 20th century engineering interventions to the river. These have constrained the magnitude of planform adjustment, but also altered the kind of response that is now possible in relation to changes in discharge and sediment load, and as a consequence of internal feedbacks within the LMR system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
沉水植物和螺类都是水生生态系统的重要组成部分,两者的牧食关系也是水生食物网中重要的一环,而不同的基质类型可能会影响两者的生长和改变沉水植物对螺类牧食的防御策略.以耳萝卜螺(Radix auricularia)和苦草(Vallisneria spiralis)为对象,研究基质类型、螺类牧食对沉水植物的生长及防御策略的影响,以及基质类型及沉水植物对螺类生长和生理特征的影响.研究发现,螺类牧食和基质类型对苦草生长和元素特征具有显著的影响,存在螺类牧食时,泥沙基质和沙基质苦草的相对生长速率显著降低,泥沙、沙和泥基质苦草地上生物量分别减少了67.74%、58.58%和17.84%,根冠比分别升高了177.51%、217.23%和1.44%;且泥沙基质中苦草的叶片数显著低于无牧食组.不同基质类型下,牧食对苦草总碳含量无显著影响,但泥和泥沙组中,螺类牧食使苦草的总氮含量均显著降低,碳氮比均显著升高;沙基质下,螺类牧食使苦草总酚含量显著降低.基质类型对螺类的形态特征(除壳宽外)、生长及元素含量均无显著影响.总体来看,基质类型对耳萝卜螺牧食和苦草防御策略具有一定程度的影响,但对螺类的生长及元素特征基本无影响.本研究可以为牧食理论的研究提供基础数据支持,也可为沉水植被恢复、水生生态系统稳定提供参考,但基质类型对螺草牧食关系的长期影响,仍需进一步深入研究.  相似文献   

16.
传统理论认为,支撑水生态系统食物网的碳主要来自于系统内部的初级生产者,如藻类、大型水生植物等,或者来自陆源输入的新鲜且容易分解的有机质;而部分生物或非生物生产的有机碳,在冰川、冻土等环境中可停留数百年至数千年(定义为老碳),由于储存环境稳定、物理化学性质顽固,难以参与水生生态系统有机碳循环.近年来这一观念不断被挑战.研究表明老碳能够参与水生态系统食物网碳循环:可以被微生物分解利用;被浮游动物、无脊椎动物直接或者间接摄取、或沿着营养级传递至鱼类、水禽等高级消费者.这意味着除了内部初级生产,老碳是支撑水生态系统重要的碳源.本文概述了当前老碳与水生态系统食物网关系研究最新进展和所取得的研究成果,介绍放射性14C同位素技术在水生态学领域的应用,同时提出研究中存在的问题以及未来研究应关注的方向,以期促进我国水生态系统碳循环研究的进一步发展.  相似文献   

17.
Dynamics and functions of large wood have become integral considerations in the science and management of river systems. Study of large wood in rivers took place as monitoring of fish response to wooden structures placed in rivers in the central United States in the early 20th century, but did not begin in earnest until the 1970s. Research has increased in intensity and thematic scope ever since. A wide range of factors has prompted these research efforts, including basic understanding of stream systems, protection and restoration of aquatic ecosystems, and environmental hazards in mountain environments. Research and management have adopted perspectives from ecology, geomorphology, and engineering, using observational, experimental, and modelling approaches. Important advances have been made where practical information needs converge with institutional and science leadership capacities to undertake multi-pronged research programmes. Case studies include ecosystem research to inform regulations for forest management; storage and transport of large wood as a component in global carbon dynamics; and the role of wood transport in environmental hazards in mountain regions, including areas affected by severe landscape disturbances, such as volcanic eruptions. As the field of research has advanced, influences of large wood on river structures and processes have been merged with understanding of streamflow and sediment regimes, so river form and function are now viewed as involving the tripartite system of water, sediment, and wood. A growing community of researchers and river managers is extending understanding of large wood in rivers to climatic, forest, landform, and social contexts not previously investigated. © 2020 John Wiley & Sons, Ltd.  相似文献   

18.
于1993-19954上对武汉东湖的布和网围受控生态系统中的植被恢复,结构优化及水质进行了初步研究。结果表明;在受控生态系统中,水生维管束植物生物量明显增加,控制养殖规模是恢复水生植被的前提,自然恢复的水生植被,结构较简单,通过选种优良植物,可优化植被结构,加速植被恢复进程;恢复水生植被时,应以沉水植物为主体。生长良好的水生维管束能使水中N,P浓度明显降低,浮游植物生物量减小;莲,芦苇,苦草,狐尾  相似文献   

19.
Interactions between climate change and contaminants   总被引:1,自引:0,他引:1  
There is now general consensus that climate change is a global threat and a challenge for the 21st century. More and more information is available demonstrating how increased temperature may affect aquatic ecosystems and living resources or how increased water levels may impact coastal zones and their management. Many ecosystems are also affected by human releases of contaminants, for example from land based sources or the atmosphere, which also may cause severe effects. So far these two important stresses on ecosystems have mainly been discussed independently. The present paper is intended to increase awareness among scientists, coastal zone managers and decision makers that climate change will affect contaminant exposure and toxic effects and that both forms of stress will impact aquatic ecosystems and biota. Based on examples from different ecosystems, we discuss risks anticipated from contaminants in a rapidly changing environment and the research required to understand and predict how on-going and future climate change may alter risks from chemical pollution.  相似文献   

20.
Phosphorus (P) is one of the major limiting nutrient in many freshwater ecosystems. During the last decade, attention has been focused on the fluxes of suspended sediment and particulate P through freshwater drainage systems because of severe eutrophication effects in aquatic ecosystems. Hence, the analysis and prediction of phosphorus and sediment dynamics constitute an important element for ecological conservation and restoration of freshwater ecosystems. In that sense, the development of a suitable prediction model is justified, and the present work is devoted to the validation and application of a predictive soluble reactive phosphorus (SRP) uptake and sedimentation models, to a real riparian system of the middle Ebro river floodplain. Both models are coupled to a fully distributed two‐dimensional shallow‐water flow numerical model. The SRP uptake model is validated using data from three field experiments. The model predictions show a good accuracy for SRP concentration, where the linear regressions between measured and calculated values of the three experiments were significant (r2 ≥ 0.62; p ≤ 0.05), and a Nash–Sutcliffe coefficient (E) that ranged from 0.54 to 0.62. The sedimentation model is validated using field data collected during two real flooding events within the same river reach. The comparison between calculated and measured sediment depositions showed a significant linear regression (p ≤ 0.05; r2 = 0.97) and an E that ranged from 0.63 to 0.78. Subsequently, the complete model that includes flow dynamics, solute transport, SRP uptake and sedimentation is used to simulate and analyse floodplain sediment deposition, river nutrient contribution and SRP uptake. According to this analysis, the main SRP uptake process appears to be the sediment sorption. The analysis also reveals the presence of a lateral gradient of hydrological connectivity that decreases with distance from the river and controls the river matter contribution to the floodplain. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号