共查询到20条相似文献,搜索用时 15 毫秒
1.
Ruth Soto Antonio M. Casas-Sainz Juan J. Villalaín Beln Oliva-Urcia 《Tectonophysics》2007,445(3-4):373-394
In this work we analyse and check the results of anisotropy of magnetic susceptibility (AMS) by means of a comparison with palaeostress orientations obtained from the analysis of brittle mesostructures in the Cabuérniga Cretaceous basin, located in the western end of the Basque–Cantabrian basin, North Spain. The AMS data refer to 23 sites including Triassic red beds, Jurassic and Lower Cretaceous limestones, sandstones and shales. These deposits are weakly deformed, and represent the syn-rift sequence linked to basins formed during the Mesozoic and later inverted during the Pyrenean compression. The observed magnetic fabrics are typical of early stages of deformation, and show oblate, triaxial and prolate magnetic ellipsoids. The magnetic fabric seems to be related to a tectonic overprint of an original, compaction, sedimentary fabric. Most sites display a NE–SW magnetic lineation that is interpreted to represent the stretching direction of the Early Cretaceous extensional stage of the basin, without recording of the Tertiary compressional events, except for sites with compression-related cleavage.Brittle mesostructures include normal faults, calcite and quartz tension gashes and joints, related to the extensional stage. The results obtained from joints and tension gashes show a dominant N–S to NE–SW, and secondary NW–SE, extension direction. Paleostresses obtained from fault analysis (Right Dihedra and stress inversion methods) indicate NW–SE to E–W, and N–S extension direction. The results obtained from brittle mesostructures show a complex pattern resulting from the superposition of several tectonic processes during the Mesozoic, linked to the tectonic activity related to the opening of the Bay of Biscay during the Early Cretaceous. This work shows the potential in using AMS analysis in inverted basins to unravel its previous extensional history when the magnetic fabric is not expected to be modified by subsequent deformational events. Brittle mesostructure analysis seems to be more sensitive to far-field stress conditions and record longer time spans, whereas AMS records deformation on the near distance, during shorter intervals of time. 相似文献
2.
RUDY SWENNEN JULIE DEWIT ELS FIERENS PHILIPPE MUCHEZ MUMTAZ SHAH FADI NADER DAVID HUNT 《Sedimentology》2012,59(4):1345-1374
The Pozalagua Quarry in the Basque–Cantabrian Basin of northern Spain exposes a unique set of fault‐associated dolomites that can be studied on a decametre scale. The dolomites developed along the Pozalagua Fault system in slope‐deposited limestones of Albian age. Following marine phreatic diagenesis, the limestones were subject to meteoric karst formation. The resulting cavities were filled either by angular limestone fragments in a black clay‐rich matrix, or by cave floor/pond (now dolomitized) sediments. The subsequent diagenetic history reflects repeated periods of fracturing, fluid expulsion, dissolution and cementation. Contrasting fluid pulses resulted in the formation of a network of hydrothermal karst and the subsequent development of coarse‐crystalline calcite cement, zebra dolomite, recrystallized coarse‐crystalline dolomite, elongated blue–grey coarse‐crystalline dolomite cement in the open fault and, finally, coarse‐crystalline saddle dolomite. Decimetre‐size reworked host‐rock fragments present in the latter two dolomite phases probably reflect roof collapse fragments of a cave system that developed along the Pozalagua Fault system. However, there are also metre‐scale host‐rock fragments that apparently ‘float’ in the coarse‐crystalline saddle dolomites, implying that either fragment assimilation was a widespread process or violent expulsion of fluids occurred along the Pozalagua Fault system. The presence of pre‐dolomite and post‐dolomite stylolites, parallel to bedding, supports a linkage between the diagenetic events and the Late Albian tectonism that affected the region. 相似文献
3.
J. García-Mondjar L. M. Agirrezabala A. Aranburu P. A. Fernndez-Mendiola I. Gmez-Prez M. Lpez-Horgue I. Rosales 《Geological Journal》1996,31(1):13-45
During the Aptian and Albian thick terrigenous and carbonate successions of sediments up to 5000 m thick, including shallow water rudist limestones (Urgonian facies), were deposited in the Basque– Cantabrian Basin of northern Spain as a result of an intense rift-related subsidence. Based on criteria from surface and subsurface data, syn-sedimentary faults, folds, angular unconformities, diapirs and sub-basins are distinguished within the Urgonian successions. Faults are grouped into N– S, E– W, NW– SE and NE– SW families and most are normal and strike-slip. Folds are gentle anticlines and synclines related to major faults. The angular unconformities have small hiatuses, poor lateral continuity and they are associated with either folds or tilted blocks. Diapirs are related to the intersection of major basement faults and in at least one instance the diapir was fossilized by Late Albian times. Strong differential subsidence controlled by basement faults determined the division of the basin into many subbasins of different sizes, which acted as depocentres (e.g. Bilbao). Despite the tectonic inversion which affected the basin during the Tertiary and created thrusts in their margins and centre, the present position of the syn-sedimentary tectonic structures gives approximate clues about the broad structural style and this reveals the original model of basin extension. Features characteristic of strike-slip identified in different parts of the basin are displaced geological lines, wrench corridors, drag effects, thickness shifts, paired uplifts and basins, vaulting of ‘slabs’, decreasing displacements, horsetail and fault splays, ‘chessboard’, oroflexural bending, pull-apart geometries, in-line horst slices, and restraining/releasing bends. Sinistral strike-slip movements along major NW– SE faults are supposedly responsible for transtension, which characterized the basin particularly during the Albian. In this scenario, the main wrench movements would have concentrated along the Oiz domain (Biscay Tertiary Synclinorium) and is a situation that has more in common with the strike-slip model proposed by some workers for the western Pyrenees, than with the simple extension models proposed for the northern margin of the Bay of Biscay. 相似文献
4.
Quartz geodes and nodular chert have been found within middle–upper Campanian carbonate sediments from the Laño and Tubilla del Agua sections of the Basque‐Cantabrian Basin, northern Spain. The morphology of geodes together with the presence of anhydrite laths included in megaquartz crystals and spherulitic fibrous quartz (quartzine‐lutecite), suggest an origin from previous anhydrite nodules. The anhydrite nodules at Laño were produced by the percolation of marine brines, during a period corresponding to a sedimentary gap, with δ34S and δ18O mean values of 18.8‰ and 13.6‰ respectively, consistent with Upper Cretaceous seawater sulphate values. Higher δ34S and δ18O mean values of 21.2‰ and 21.8‰ recorded in the Tubilla del Agua section are interpreted as being due to a partial bacterial sulphate reduction process in a more restricted marine environment. The idea that sulphates may have originated from the leaching of previously deposited Keuper sulphate evaporites with subsequent precipitation as anhydrite, is rejected because the δ34S, δ18O and 87Sr/86Sr values of anhydrite laths observed at both the Tubilla del Agua and Laño sections suggest an origin from younger marine brines. Later calcite replacement and precipitation of geode‐filling calcite is recorded in both sections, with δ13C and δ18O values indicating the participation of meteoric waters. Synsedimentary activity of the Peñacerrada diapir, which lies close to the Laño section, played a significant role in the local shallowing of the basin and the formation of quartz geodes. In contrast, eustatic shallowing of the inner marine series of the Tubilla del Agua section led to the generation of morphologically similar quartz geodes. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
5.
Contrasting environmental effects of astronomically driven climate change on three Eocene hemipelagic successions from the Basque–Cantabrian Basin 下载免费PDF全文
Naroa Martínez‐Braceras Aitor Payros Francesco Miniati Javier Arostegi Gloria Franceschetti 《Sedimentology》2017,64(4):960-986
Several processes can contribute to the formation of hemipelagic limestone–marl alternations as a consequence of astronomically driven climate change. The aim of this study was to decipher which environmental factors governed the formation of three Eocene hemipelagic successions of the Basque–Cantabrian Basin using a comprehensive set of physical and bulk carbonate geochemical data (bed thickness, mineralogy, %CaCO3, δ13C and δ18O). The results show that the significance of several environmental processes varied depending on the palaeogeographic setting and eccentricity‐modulated precessional seasonality. In the Sopelana starved deep‐sea basin, limestones were formed as a consequence of high pelagic carbonate productivity during periods of warm seawater and sluggish circulation, which corresponded with periods of low seasonality (summers at aphelion); conversely, marls accumulated when pelagic carbonate productivity decreased during periods with cooler waters and more vigorous circulation, which occurred when seasonality was higher (summers at perihelion). In the Gorrondatxe submarine fan fringe, marls accumulated when high seasonality produced significant continental rainfall and run‐off, causing the dilution of pelagic carbonate sedimentation with terrigenous supplies. In the Oyambre upper slope, marls also accumulated when seasonality was high, as pelagic carbonate productivity decreased due to both the expansion of low‐salinity waters on the ocean surface and the increase in continentally derived nutrients, which caused detrimental seawater conditions for calcareous plankton. Both in Gorrondatxe and Oyambre, limestones accumulated when boreal summer at aphelion caused low seasonality, which allowed relatively stable conditions to prevail. At minimum eccentricity, when precession‐driven seasonality contrast diminished, changes in pelagic carbonate productivity were significant in the three sections. On the contrary, at maximum eccentricity, when seasonality peaked due to summers occurring at perihelion, the effects of other environmental processes, such as continental and oceanic currents, became influential. However, the influence of these processes minimized when summertime coincided with aphelion at maximum eccentricity and seasonality was weakest. 相似文献
6.
An analysis of Anisotropy of Magnetic Susceptibility was done on Aptian–Albian sediments from the Basque–Cantabrian basin. Samples were collected from 39 sites in the halokinetic sequences of the Bakio, Bermeo, Guernica and Mungia diapirs; 28 sites were sampled close to diapirs, and 11 sites were far from the diapir edges. The magnetic foliation is parallel to bedding, suggesting it reflects depositional and compaction processes, whereas the orientation of magnetic lineation varies. Far from the diapir edges, the magnetic lineation is interpreted as being related to the regional Pyrenean compression. Close to diapir edges, the observed behaviour shows that diapirs, predominantly formed by rigid ophites, have acted as buttresses, with shadow areas at their northern faces being protected from the Pyrenean compression. The high sensitivity of AMS makes it a very useful tool to distinguish deformation in halokinetic sequences related to diapir growth from that related to subsequent compression. 相似文献
7.
Sebastián Pérez‐Díaz José Antonio López‐Sáez Xabier Pontevedra‐Pombal Martín Souto‐Souto Didier Galop 《Boreas: An International Journal of Quaternary Research》2016,45(4):658-672
This paper focuses on pollen, spores, non‐pollen palynomorphs (NPPs) and certain geochemical elements from the ombrotrophic blanket bog of Zalama (Basque‐Cantabrian Mountains, northern Iberian Peninsula), with the support of a robust chronology based on 17 AMS 14C dates. The main results related to the last 8000 years show that, during the early middle Holocene, pines and deciduous forests were the most extensive tree formations. At the beginning of the succession, pines reach 44%, showing regional presence, whereas after 7600 cal. a BP, deciduous forests were particularly abundant. From c. 6500 cal. a BP the pollen diagram constructed from our samples shows the first anthropogenic evidence, linked with the new economic practices related to the Neolithic of the Basque‐Cantabrian Mountains. From 3300 cal. a BP the expansion of Fagus sylvatica is particularly clear, and has since then become one of the dominant forest species in this region. We also discuss the Holocene evolution of other noteworthy plant communities in southwestern Europe, such as Taxus baccata, Juglans and shrublands. 相似文献
8.
I. Expsito J. F. Simancas F. Gonzlez Lodeiro F. Bea P. Montero K. Salman 《Journal of Structural Geology》2003,25(12):2077-2087
The high-temperature metamorphism recorded in the Valuengo and Monesterio areas constitutes a rare occurrence in the Ossa-Morena Zone of Southwest Iberia, where low-grade metamorphism dominates. The metamorphism of the Valuengo area has been previously considered either Cadomian or Variscan in age, whereas that of Monesterio has been interpreted as a Cadomian imprint. However, these areas share important metamorphic and structural features that point towards a common tectonometamorphic evolution. The metamorphism of the Valuengo and Monesterio areas affects Late Proterozoic and Early Cambrian rocks, and is syn-kinematic with a top-to-the-north mylonitic foliation, which was subsequently deformed by early Variscan folds and thrusts. The U–Pb zircon age (480±7 Ma) we have obtained for an undeformed granite of the Valuengo area is consistent with our geological observations constraining the age of the metamorphism. We propose that this high-temperature metamorphic imprint along a NW–SE ductile extensional shear zone is related to the crustal extension that occurred in the Ossa-Morena Zone during the Cambro-Ordovician rifting. In the same way, the tectonothermal effect of the preorogenic rifting stage may have been wrongly attributed to orogenic processes in other regions as well as in this one. 相似文献
9.
J. D. Van Wees A. Arche C. G. Beijdorff J. Lpez-Gmez S. A. P. L. Cloetingh 《Tectonophysics》1998,300(1-4):285-310
By subsidence analysis on eighteen surface sections and 6 wells, which cover large part of the Iberian Basin (E Spain) and which are marked by high-resolution stratigraphy of the Permian, Triassic, Jurassic and Cretaceous, we quantify the complex Permian and Mesozoic tectonic subsidence history of the basin. Backstripping analysis of the available high resolution and high surface density of the database allows to quantify spatial and temporal patterns of tectonically driven subsidence to a much higher degree than previous studies. The sections and wells have also been forward modelled with a new ‘automated' modelling technique, with unlimited number of stretching phases, in order to quantify variations in timing and magnitude of rifting. It is demonstrated that the tectonic subsidence history in the Iberian Basin is characterized by pulsating periods of stretching intermitted by periods of relative tectonic quiescence and thermal subsidence. The number of stretching phases appears to be much larger than found by earlier studies, showing a close match with stretching phases found in other parts of the Iberian Peninsula and allowing a clear correlation with discrete phases in the opening of the Tethys and Atlantic. 相似文献
10.
Joaquina Alvarez-Marron Andres Perez-Estaun 《International Journal of Earth Sciences》1988,77(2):539-550
The Variscan thrust and associated fold structures of the Ponga Region (Cantabrian Zone, NW Spain) are interpreted in terms of thin skinned tectonics, with a dominant eastward transport direction.A 2.5 km thick sequence of Paleozoic rocks was deformed by an east vergent thrust system that includes an imbricate fan and a duplex. The thrust surfaces have a very irregular map outcrop pattern due to the existence of a set of folds (longitudinal and transverse systems). A strike-normal balanced section illustrates the geometry of the thrusts and their related folds. The minimum value of accumulate transport is about 62 km. A tear fault can be recognized in a transverse cross-section.A later out-of-sequence thrust system (e.g. Peña Ten Thrust) with dominant southward direction is superimposed upon the earlier eastward verging thrust system. These thrust reactivate the earlier lateral structures as frontal structures.
Zusammenfassung Die Vartszische Front und damit verbundene Faltenstrukturen des Pongagebietes (Kantabrische Zone, NW Spanien), werden mit Hilfe von »thin skinned tectonic« mit dominierendem ostwärts gerichtetem Transport interpretiert. Eine 2,5 km mächtige Folge paläozoischer Gesteine wurde durch ostvergente überschiebung deformiert. Dabei wurde ein Schuppenfächer und eine Duplexstruktur ausgebildet.Das Ausbei\en der überschiebungsbahn an der Oberfläche ist duch die Existenz longitudinaler und transversaler Faltensysteme sehr unregelmä\ig. Ein Profil senkrecht zum Streichen verdeutlicht die Geometrie der überschiebungen und Faltensysteme.Die gesamte Transportweite beträgt mindestens 62 km.In einem diagonalen Profil kann eine »tear fault« festgestellt werden.Ein späteres überschiebungssystem (z. B. Peña Ten überschiebung), mit hauptsächlich Südwärts gerichtetem Transport hat das frühere Ostwärts vergierende System überprägt. Das jüngere überschiebungssystem hat die älteren Lateralstrukturen als Frontstrukturen reaktiviert.
Resumen La estructura de la Región del Ponga (Zona Cantábrica, NO de España) es interpretada en el contexto de su situación en la zona externa de una cordillera, y consiste en un sistema de cabalgamientos que han sido emplazados predominantemente hacia el Este con un conjunto de pliegues asociados. Las superficies de cabalgamiento muestran un trazado cartográfico muy irregular debido a la existencia de un conjunto de pliegues transversales a ellos. La Ventana Tectónica del Río Monasterio representa una estructura lateral de estos mantos. El desplazamiento mínimo calculado en una sección a través de la parte central de la región es de 62 Km.Posteriormente, tiene lugar el emplazamiento hacia el Sur de un nuevo sistema de cabalgamientos que reactivan estructuras laterales del sistema previamente emplazado, pasando a constituir estas las estructuras frontales de los nuevos cabalgamientos.Estas estructuras fueron formadas durante la orogénesis varíscica y afectan a un conjunto de materiales Paleozoicos de 2.5 Km. de espesor.
, , - , , . 2,5 , . . . , , . 62 . . .: , . . — . , .相似文献
11.
Soft-sediment deformation structures induced by cyclic stress of storm waves in tempestites (Miocene, Guadalquivir Basin, Spain) 总被引:1,自引:0,他引:1
The identification of triggering agents for soft-sedimentation structures is an enigmatic geological problem. Mainly seismic-induced soft-sediment structures have been recognized in ancient sediments, rather than those resulting from storm waves. We analyse soft-sediment deformation structures in Upper Miocene calcarenitic tempestites of the Guadalquivir Basin (Southern Spain). The most common structures are load-casts which vary in height and width from 10 centimetres to several metres. The structures are always restricted to a small part of the stratigraphic sections, in exclusive association with tempestites. The analysed soft-deformation structures are interpreted to be the result of liquidization processes. Chiefly from their inferred depositional environment, and subordinately from the deformation style, we have devised basic criteria to identify the trigger mechanism. In these soft-sediment deformation structures the liquefaction was triggered by pore pressure changes induced by cyclic and residual stress of storm waves. 相似文献
12.
Palaeostresses inferred from brittle mesostructures in the eastern Duero Basin show a recent stress field characterized by an extensional regime, with local strike-slip and compressional stress states. Orientations of the maximum horizontal stress ( SHmax ) show a relative scattering with two main modes: NNE to NE–SW and NW–SE. These orientations suggest the existence of two stress sources responsible for the dominant directions of the maximum horizontal stress in northeastern Iberia. Extensional structures within a broad-scale compressional stress field can be related to both the decrease in relative stress magnitudes from active margins to intraplate regions and rifting proccesses ocurring in eastern Iberia. Stress states with NW–SE-trending SHmax are compatible with the dominant pattern established for western Europe. NE–SW orientations of SHmax suggest the occurrence of tectonic forces coming from the Pyrenean zone. Geological and geophysical data indicate the existence of both orientations from the upper Miocene to the present-day in NE Iberia. 相似文献
13.
Ana Moreno Blas L. Valero‐Garcés Montserrat Jiménez‐Sánchez María José Domínguez‐Cuesta M. Pilar Mata Ana Navas Penélope González‐Sampériz Heather Stoll Pedro Farias Mario Morellón J. Pablo Corella Mayte Rico 《第四纪科学杂志》2010,25(7):1076-1091
A sedimentological and geochemical study of the Lago Enol sequence (Cantabrian Mountains, northern Spain), together with detailed geomorphological mapping, provides a first record of glacier evolution and climate change over the last 40 ka in the Picos de Europa National Park. The Enol glacier retreated from its maximum extent prior to 40 ka BP as demonstrated by the onset of proglacial lacustrine sedimentation in two glaciated depressions: the Comella hollow to the north (before 40 ka BP) and the Lago Enol (before 38 ka BP). These results support previous evidence that the maximum extent of southern European glaciers occurred earlier than in northern Europe. Alternation of homogeneous and laminated proglacial sediments during the glacier retreat illustrate a dynamic glacial evolution during the Marine Isotope Stage (MIS) 3 (40–26 ka BP). A slight warming is detected at 26 ka ago with the change from proglacial sediments (in a lake located in contact to the glacier) to glaciolacustrine sedimentation (in a non‐contact or distal lake). Finally, the onset of organic‐rich sediments took place at 18 ka ago. This last transition occurred in two phases, similarly to the North Atlantic Last Termination, suggesting a link between North Atlantic Deep Water formation oscillations and palaeohydrological variability in the Cantabrian Mountains. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
14.
15.
Susana García‐Lpez Covadonga Brime M. Luz Valín Javier Sanz‐Lpez Fernando Bastida Jesús Aller Silvia Blanco‐Ferrera 《地学学报》2007,19(6):469-475
Analysis of the conodont colour alteration index and the Kübler index of illite allowed us the characterization of four types of very low‐ or low‐grade metamorphism in the Cantabrian Zone (CZ) and determination of their regional and temporal distribution. These types are: (1) an orogenic Variscan metamorphism present only in restricted areas of the western and north‐western parts of the CZ where epizonal conditions are reached; (2) a burial metamorphism that appears in the basal part of some nappes, where anchizonal conditions are sometimes achieved; the thermal peak preceded emplacement of the nappes; (3) a late‐Variscan metamorphism in the southern and south‐eastern parts of the CZ; a cleavage, cutting most of the Variscan folds, is associated with this metamorphism, which has been related to an extensional episode; (4) a contact metamorphism and hydrothermal activity associated with minor intrusive bodies. The extension continued after the Variscan deformation giving rise to hydrothermal activity during Permian times. 相似文献
16.
Mauro Aldinucci Anna Gandin Fabio Sandrelli 《International Journal of Earth Sciences》2008,97(6):1247-1269
In the Alpine-Mediterranean region, the continental redbeds and shallow-marine siliciclastics related to the early depositional
phases of the Late Permian-Mesozoic continental rifting are referred to as the most common representative of the “Verrucano
tectofacies”. The Verrucano-type successions exposed in southern Tuscany are diachronous, spanning from Triassic to earliest
Jurassic in age, and accumulated within the Tuscan domain, a paleogeographic region of continental crust that due to the opening
of the Piedmont–Ligurian ocean formed part of the Adria passive-margin. They belong to the metamorphic Verrucano Group and
the non-metamorphic Pseudoverrucano fm. Viewed overall, these Verrucano-type successions appear to manifest five episodes
or pulses of an ongoing continental rifting. With the exception of the first episode that developed entirely within a terrestrial
setting, each one is represented by basal Verrucano-type continental siliciclastics overlain by compositionally mixed marine
deposits, which resulted from four diachronous, post-Middle Triassic transgressions. This suite of tectonic pulses produced
the progressive westward widening (backstepping) of the Tuscan domain in the rifting south-Tuscany area. 相似文献
17.
In the southeastern area of the Neogene-Quaternary Granada Basin, ∼E–W trending normal faults crosscut ∼80 m-thick clay-bearing conglomerates and ∼30–40 m-thick carbonate grainstones containing centimeter-thick microconglomerate and sand interbeds. Three fundamental failure modes took place during fault nucleation: (1) phyllosilicate shear banding in the conglomerates, (2) jointing, mainly in the carbonate grainstones and (3) pressure solution in the carbonate matrix and grains of the microconglomerate and sand interbeds. Within the conglomerates, normal faults developed by pronounced clay smearing and, ultimately, cataclasis. Jointing also occurred within some of the pebbles surrounding the cataclastic rocks. In contrast, in the carbonate grainstones fault growth was characterized by predominant jointing and rock fragmentation, which localized in the extensional quadrants and/or releasing jogs of the evolving slip surfaces. Brecciation and cataclasis occurred only around the well-developed slip surfaces. Based upon their inner structure, we qualitatively assign a combined barrier-conduit fluid behavior to the tens of meters-throw normal faults juxtaposing the conglomerates against the carbonate grainstones. The inner fault cores inhibit fault-orthogonal fluid flow along their entire length. Instead, fault damage zones act as fluid barriers in the conglomerates, and as composite fluid conduits in the carbonate grainstones. 相似文献
18.
A number of Palaeogene to Early Neogene gypsum units are located along the southern margins of the Ebro Basin (North‐east Spain). These marginal units, of Eocene to Lower Miocene age, formed and accumulated deposits of Ca sulphates (gypsum and anhydrite) in small, shallow saline lakes of low ionic concentration. The lakes were fed mainly by ground water from deep regional aquifers whose recharge areas were located in the mountain chains bounding the basin, and these aquifers recycled and delivered Ca sulphate and Na chloride from Mesozoic evaporites (Triassic and Lower Jurassic). In outcrop, the marginal sulphate units are largely secondary gypsum after anhydrite and exhibit meganodules (from 0·5 to >5 m across) and large irregular masses. In the sub‐surface these meganodules and masses are mostly made of anhydrite, which replaced the original primary gypsum. The isotopic composition (11·1 to 17·4‰ for δ18OVSMOW; 10·7 to 15·3‰ for δ34SVCDT) of secondary gypsum in this meganodular facies indicates that the precursor anhydrite derived from in situ replacement of an initial primary gypsum. As a result of ascending circulation of deep regional fluid flows through the gypsum units near the basin margins, the gypsum was partly altered to anhydrite within burial conditions from shallow to moderate depths (from some metres to a few hundred metres?). At such depths, the temperatures and solute contents of these regional flows exceeded those of the ground water today. These palaeoflows became anhydritizing solutions and partly altered the subsiding gypsum units before they became totally transformed by deep burial anhydritization. The characteristics of the meganodular anhydritization (for example, size and geometry of the meganodules and irregular masses, spatial arrangement, relations with the associated lithologies and the depositional cycles, presence of an enterolithic vein complex and palaeogeographic distribution) are compared with those of the anhydritization generated both in a sabkha setting or under deep burial conditions, and a number of fundamental differences are highlighted. 相似文献
19.
Devonian sediments of the Malaguide Complex potentially could include the Frasnian–Famennian boundary, one of the five greatest Phanerozoic biotic crises. Conodont biofacies and microfacies of carbonate clasts from a pebbly mudstone underlying Tournaisian radiolarites allows identification, for the first time in the Malaguide Complex, of Devonian shallow marine environments laterally grading to deeper realms. The clasts yielded Frasnian conodont associations of the falsiovalis to rhenana biozones, with six biofacies that reveal different environmental conditions in their source areas. Source sediments were dismantled and redeposited within the pebbly mudstone, whose origin is tentatively related to one of the events that are associated worldwide with the Frasnian–Famennian crisis. The latter is recorded, in two equivalent Malaguide pelagic successions, by stratigraphic discontinuities, and it was, probably, tectonically and/or eustatically controlled, as in other Alpine‐Mediterranean Paleotethyan margins. 相似文献
20.
M. Egal F. Elbaz-Poulichet C. Casiot M. Motelica-Heino P. Ngrel O. Bruneel A.M. Sarmiento J.M. Nieto 《Chemical Geology》2008,253(3-4):162-171
The isotopic composition of Fe was determined in water, Fe-oxides and sulfides from the Tinto and Odiel Basins (South West Spain). As a consequence of sulfide oxidation in mine tailings both rivers are acidic (1.45 < pH < 3.85) and display high concentrations of dissolved Fe (up to 420 mmol l− 1) and sulphates (up to 1190 mmol l− 1).The δ56Fe of pyrite-rich samples from the Rio Tinto and from the Tharsis mine ranged from − 0.56 ± 0.08‰ to + 0.25 ± 0.1‰. δ56Fe values for Fe-oxides precipitates that currently form in the riverbed varied from − 1.98 ± 0.10‰ to 1.57 ± 0.08‰. Comparatively narrower ranges of values (− 0.18 ± 0.08‰ and + 0.21 ± 0.14‰) were observed in their fossil analogues from the Pliocene–Pleistocene and in samples from the Gossan (the oxidized layer that formed through exposure to oxygen of the massive sulfide deposits) (− 0.36 ± 0.12‰ to 0.82 ± 0.07‰). In water, δ56Fe values ranged from − 1.76 ± 0.10‰ to + 0.43 ± 0.05‰.At the source of the Tinto River, fractionation between aqueous Fe(III) and pyrite from the tailings was less than would be expected from a simple pyrite oxidation process. Similarly, the isotopic composition of Gossan oxides and that of pyrite was different from what would be expected from pyrite oxidation. In rivers, the precipitation of Fe-oxides (mainly jarosite and schwertmannite and lesser amounts of goethite) from water containing mainly (more than 99%) Fe(III) with concentrations up to 372 mmol l− 1 causes variable fractionation between the solid and the aqueous phase (− 0.98‰ < Δ56Fesolid–water < 2.25‰). The significant magnitude of the positive fractionation factor observed in several Fe(III) dominated water may be related to the precipitation of Fe(III) sulphates containing phases. 相似文献