首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We observed Saturn at far-infrared and submillimeter wavelengths during the Earth's March 1980 passage through the plane of Saturn's rings. Comparison with earlier spectroscopic observations by D. B. Ward [Icarus32, 437–442 (1977)], obtained at a time when the tilt angle of the rings was 21.8°, permits separation of the disk and ring contributions to the flux observed in this wavelength range. We present two main results: (1) The observed emission of the disk between 60 and 180 μm corresponds to a brightness temperature of 104 ± 2°K; (2) the brightness temperature of the rings drops approximately 20°K between 60 and 80 μm. Our data, in conjunction with the data obtained by other observers between 1 μm and 1 mm, permit us to derive an improved estimate for the total Saturnian surface brightness of (4.84 ± 0.32) × 10?4W cm?2 corresponding to an effective temperature of 96.1 ± 1.6°K. The ratio of radiated to incident power, PR/PI, is (1.46 ± 0.08)/(1 - A), where A is the Bond albedo. For A = 0.337 ± 0.029, PR/PI = 2.20 ± 0.15 and Saturn's intrinsic luminosity is LS = (2.9 ± 0.5) × 10?10L.  相似文献   

2.
Titan was observed in four broad passbands between 35 and 150 μm. The brightness temperature in this interval is roughly constant at 76 ± 3°K. Integrating Titan's spectrum from 5 to 150 μm yields an effective temperature of 86 ± 3°K. Both the bright and dark hemispheres of Iapetus were observed in one broadband filter with λe ~ 66 μm. The brightness temperatures for these two sides of Iapetus are 96 ± 9°K and 114 ± 10°K, respectively. The bright-side Bond albedo is calculated to be 0.61?0.22+0.16.  相似文献   

3.
We have resolved the relative rings-to-disk brightness (specific intensity) of Saturn at 39 μm (δλ ? 8 μm) using the 224-cm telecscope at Mauna Kea Oservatory, and have also measured the total flux of Saturn relative to Jupiter in the same bandpass from the NASA Learjet Observatory. These two measurements, which were made in early 1975 with Saturn's rings near maximum inclination (b′ ? 25°), determine the disk and average ring (A and B) brightness in terms of an absolute flux calibration of Jupiter in the same bandpass. While present uncertainties in Jupiter's absolute calibration make it possible to compare existing measurementsunambiguously, it is nevertheless possible to conclude the following: (1) observations between 20 and 40 μm are all compatible (within 2σ) of a disk brightness temperature of 94°K, and do not agree with the radiative equilibrium models of Trafton; (2) the rings at large tilt contribute a flux component comparable to that of the planet itself for λ ? 40 μm and (3) there is a decrease of ~22% in the relative ring: disk brightness between effective wavelengths of 33.5 and 39 μm.  相似文献   

4.
Infrared (1.5–20 μm) observations of the nuclear condensation of Comet IRAS-Araki-Alcock (1983d) during the interval 5–8 May 1983 (UT) show that the distribution of 3.5- to 20-μm radiation was blackbody in character with no evidence of 10-μm emission from silicate grains in the coma of the comet. The observed color temperature of the nuclear condensation of the comet was 319 ± 5°K on 7 May and 307 ± 5°K on 8 May. Low-resolution spectrophotometry on 5 May in the 1.5- to 2.6-μm region shows no obvious emission or absorption features, but thermal radiation of approximately the same color temperature as the 3.5- to 20-μm radiation was present along with reflected sunlight. Scans of the nuclear region of the comet indicate that most of the thermal radiation observed at 11.6 and 20.0 μm came from an ≤120-km-diameter, unresolved area centered on the nuclear region. Absolute flux measurements suggest that projected areas (unit emissivity) of 70 and 40 km2 were responsible for the thermal radiation from the nuclear condensation on 7 and 8 May, respectively. This large change in total surface area suggests that the amount of dust in the nuclear region of Comet 1983d was highly variable and is consistent with the observation by M.A. Feierberg, F.C. Witteborn, J.R. Johnson, and H. Campins (1984, Icarus, 60, 449–454) of an outburst on 11 May 1983.  相似文献   

5.
We present far-infrared observations of Saturn in the wavelength band 76–116 μm, using a balloon-borne 75-cm telescope launched on 10 December 1980 from Hyderabad, India, when B′, the Saturnicentric latitude of the Sun, was 4°.3. Normalizing with respect to Jupiter, we find the average brightness temperature of the disk-ring system to be 90 ± 3° K. Correcting for the contribution from rings using experimental information on the brightness temperature of rings at 20 μm, we find TD, the brightness temperature of the disk, to be 96.9 ± 3.5° K. The systematic errors and the correction for the ring contribution are small for our observations. We, therefore, make use of our estimate of TD and earlier observations of Saturn when contribution from the rings was large and find that for wavelengths greater than 50 μm, there is a small reduction in the ring brightness temperature as compared to that at 20 μm.  相似文献   

6.
Disk scans of Saturn at 10 and 20 μm were obtained when the Saturnicentric solar declination (B′) was ?11°.8. The scans show little change from scans obtained when B′ was ?16°.3, and this could result from the long radiative time constant of the Saturnian atmosphere. The observations at 20 μm, in the H2 continuum, show positively that the temperature inversion at the south pole has a higher temperature than at any other point on the disk. In addition, the 12.1- and 20-μm scans indicate that the temperature of the inversion region is higher at the equator compared to the temperate zone. The data also suggest that enhanced 20-μm emission is correlated with the strength of the ultraviolet absorption.  相似文献   

7.
M.A. Janssen  W.J. Welch 《Icarus》1973,18(3):502-504
We report observations of the radio disk temperatures of Mars and Jupiter made during October 1971, at a wavelength of 1.35 cm. The mean disk temperature of Jupiter is 136 ± 5°K, in good agreement with the value 139 ± 6°K obtained by Wrixon et al. (1971) with the same instrument three years earlier. The disk temperature of Mars is 181 ± 11°K, consistent with an essentially wavelength independent disk temperature for Mars at radio wavelengths. The ratio of the two disk temperatures, 1.33 ± .07, is largely free of the systematic uncertainties: antenna gain, pointing, and atmospheric extinction.  相似文献   

8.
Dennis B. Ward 《Icarus》1977,32(4):437-442
The spectrum of Saturn and its rings between 45 and 115 μm has been measured at an average resolving power of 14 from the NASA Lear Jet. The combined brightness temperature of the rings and planetary disk decreases beyond 65 μm, in disagreement with previous results. A brightness temperature of 65 ± 10°K is obtained for the planetary disk in the 80–110-μm wavelength range if a large-particle, constant-emissivity model is assumed for the rings. The possible effects of small particles in the rings are briefly considered.  相似文献   

9.
《Icarus》1987,69(1):29-32
λ = 2 cm emission from 704 Interamnia was detected on June 28, 1984, using the VLA. At this time, 704 Interamnia was 2.0 AU distant from Earth. A flux density of 953±53 μJy was measured at 14.9 GHz (50-MHz bandwidth). If 338 km is adopted for the diameter, a disk temperature of 190±15°K results. This temperature is consistent with a rapidly rotating black sphere with 704 Interamnia's diameter. Using published 20-μm infrared data, we infer that a dust-like layer (depth ≥3 cm) covers 704 Interamnia. Most probably, the bulk composition of this layer is identical to that of the outermost shell of the asteroid. Comparison with observations of 15 Eunomia reported earlier suggest that smaller main belt asteroids are covered by a few centimeters of impact gardened material. The physical properties of this layer (especially its depth) make it impossible to infer the dielectric properties of the underlying surface with radio measurements at frequencies above 8 GHz.  相似文献   

10.
We present 20-μm photometry of Uranus and Neptune which confirms the presence of a temperature inversion in the lower stratospheres in both planets. We find the brightness temperature difference between 17.8 and 19.6 μm to be 0.8 ± 0.5°K for Uranus and 1.8 ± 0.6°K for Neptune. These results indicate that the temperature inversions on both planets are weaker than previously thought. Comparison to model atmospheres by J. Appleby [Ph.D. thesis, SUNY at Stony Brook 1980] indicates that the temperature inversions can be understood as arising from heating by the absorption of sunlight by CH4 and aerosols. However, the stratospheric CH4 mixing ratio on Neptune must be higher than that at the temperature minimum.  相似文献   

11.
Nonthermal emission occurs in the cores of the 9.4- and 10.4-μm CO2 bands on Mars, and has been recently identified as a natural atmospheric laser. This paper presents observations of the total flux and center-to-limb dependence of this emission for Mars and Venus. The emission is believed to be excited by absorption of solar flux in the near-ir CO2 bands, followed by collisional transfer to the 00°1 state of CO2. A comparison is made between the observations and a detailed theoretical model based on this mechanism. It is found that the theoretical model successfully reproduces the observed center-to-limb dependence of this emission, to within the limits imposed by the spatial resolution of the observations. A comparison is also made between the observed fluxes and the predictions of the theoretical models. The observed flux from Mars agrees closely with the prediction of the model; the flux observed from Venus is 74% of the flux predicted by the model. This emission is utilized to obtain the kinetic temperatures of the Martian and Venusian mesospheres. For Mars near 70 km altitude, a rotational temperature analysis using five lines gives T = 135 ± 20°K. The frequency width of the emission is also analyzed to derive a temperature of 126 ± 6°K. In the case of the Venusian mesosphere near 109 km, the frequency width of the emission gives T = 204 ± 10°K.  相似文献   

12.
The spectrum of Saturn was measured from 80 to 350 cm?1 (29 to 125 μm) with ≈6-cm?1 resolution using a Michelson interferometer aboard NASA's Kuiper Airborne Observatory. These observations are of the full disk, with little contribution from the rings. For frequencies below 300 cm?1, Saturn's brightness temperature rises slowly, reaching ≈111°K at 100 cm?1. The effective temperature is 96.8 ± 2.5°K, implying that Saturn emits 3.0 ± 0.5 times as much energy as it receives from the Sun. The rotation-inversion manifolds of NH3 that are prominent in the far-infrared spectrum of Jupiter are not observed on Saturn. Our models predict the strengths to be only ≈2 to 5°K in brightness temperature because most of the NH3 is frozen out; this is comparable to the noise in our data. By combining our data with those of an earlier investigation when the Saturnicentric latitude of the Sun was B′ = 21.2°, we obtain the spectrum of the rings. The high-frequency end of the ring spectrum (ν > 230 cm?1) has nearly constant brightness temperature of 85°K. At lower frequencies, the brightness temperature decreases roughly as predicted by a simple absorption model with an optical depth proportional to ν1.5. This behavior could be due to mu-structure on the surface of the ring particles with a scale size of 10 to 100 μm and/or to impurities in their composition.  相似文献   

13.
David Morrison 《Icarus》1974,22(1):57-65
Broad-band radiometry with a spatial resolution of 5 arc sec is presented of Saturn and its rings. The brightness temperature of the B ring is 96 ± 3°K at 20 μm and 91 ± 3°K at 11 μm. These values constrain the bolometric Bond albedo of the ring particles to be less than 0.6, thus requiring a phase integral of less than unity. From differences in the thermal emission of the ansae, I suggest that the leading side of the particles has higher albedo than the trailing side. A measured drop in temperature of the B ring following eclipse of 2.0 ± 0.5°K is consistent with radii for the ring particles of 2 cm or larger.  相似文献   

14.
New broadband observations in several passbands between 30 and 500 μm of Mercury, Venus, Mars, Jupiter, Saturn, and Uranus are presented. The best agreement between the data and various thermal models of Mars, Jupiter, and Uranus is obtained with a slightly cooler absolute temperature scale than that previously adopted by Armstrong et al. (1972). The effective temperature of Uranus is 58 ± 2°K, which is in agreement with its solar equilibrium temperature. The existence of an internal energy source of Saturn has been reconfirmed and must lie within the range of 0.9 to 3.2 times the absorbed solar flux. A depression exists in the spectra of Jupiter, Saturn, and Uranus between 80 and 300 μm, which may be a result of NH3 opacity.  相似文献   

15.
Dale P. Cruikshank 《Icarus》1979,37(1):307-309
The radius and surface geometric albedo of Hyperion are calculated using the photometric/ radiometric method and a new measurement of the 20-μm thermal flux of the satellite. The results are R = 112 ± 15 km and pv = 0.47 ± 0.11.  相似文献   

16.
We examine the effects of NH3 ice particle clouds in the atmosphere of Jupiter on outgoing thermal radiances. The cloud models are characterized by a number density at the cloud base, by the ratio of the scale height of the vertical distribution of particles (Hp) to the gas scale height (Hg), and by an effective particle radius. NH3 ice particle-scattering properties are scaled from laboratory measurements. The number density for the various particle radius and scale height models is inferred from the observed disk average radiance at 246 cm?1, and preliminary lower limits on particle sizes are inferred from the lack of apparent NH3 absorption features in the observed spectral radiances as well as the observed minimum flux near 2100 cm?1. We find lower limits on the particle size of 3 μm if Hp/Hg = 0.15, or 10μmif Hp/Hg = 0.50 or 0.05. NH3 ice particles are relatively dark near the far-infrared and 8.5-μm atmospheric windows, and the outgoing thermal radiances are not very sensitive to various assumptions about the particle-scattering function as opposed to radiances at 5 μm, where particles are relatively brighter. We examined observations in these three different spectral window regions which provide, in principle, complementary constraints on cloud parameters. Characterization of the cloud scale height is difficult, but a promising approach is the examination of radiances and their center-to-limb variation in spectral regions where there is significant opacity provided by gases of known vertical distribution. A blackbody cloud top model can reduce systematic errors due to clouds in temperature sounding to the level of 1K or less. The NH3 clouds provide a substantial influence on the internal infrared flux field near the 600-mbar level.  相似文献   

17.
《Icarus》1987,69(2):230-238
Radiometric measurement of Uranus and Neptune near 21 and 32 μm have been made with filters with widths of 8 and 5 μm, respectively. The observations at 21 μm, made on 1985 June 19 at the NASA Infrared telescope facility at Mauna Kea, Hawaii, were calibrated against α Boo and corresponded to brightness temperatures of 54.1 ± 0.3 K for Uranus and 58.1 ± 0.3 K for Neptune. The observations at 32 μm were made on three nights: 1983 May 1 and 1984 May 30 and 31, also at the NASA IRTF. Calibrated against the Jovian satellites Callisto (J4) and Ganymede (J3), these measurements corresponded to brightness temperatures of 51.8 ± 1.5 K for Uranus and 55.6 ± 1.2 K for Neptune. The observations are consistent with higher-resolution studies and confirm the general decrease of brightness temperatures going from about 20 to 30 μm.  相似文献   

18.
F.H. Briggs  B.H. Andrew 《Icarus》1980,41(2):269-277
We present high-resolution interferometry of Uranus at 6 cm wavelength and single-dish observations of the disk-averaged brightness temperature, TB, at 2.8 and 4.8 cm wavelength. The 1978 measurements of TB of 228 ± 2,243 ± 9, and 259 ± 4 K at 2.8, 4.8, and 6 cm, respectively, support the finding of M. J. Klein and J. A. Turegano (1978, Astrophy. J.224, L31–L34) that the brightness temperature of Uranus has been rising. There is no evidence for radio emission from outside the visible disk at 6 cm. Radiation from a synchrotron radiation belt or from the Uranian rings is certainly less than 10% of the total radio flux. The interferometry shows a possible 55 ± 20 K difference in brightness temperature between the equator and the currently exposed pole. The pole appears to be ~275 K while the equator is ~220 K. However, a permanent gradient of this magnitude is insufficient to account for the rise in disk-averaged brightness by simple reorientation of Uranus' globe relative to our line of sight. The changing insolation probably triggers a redistribution of the trace constituent NH3 which is responsible for the radio opacity. The NH3 may be interacting strongly with H2S on Uranus.  相似文献   

19.
G.S. Orton  R.J. Terrile 《Icarus》1978,35(3):297-307
Prior analysis of 20- and 45-μm flux measurements made from Pioneer 10 of broad regions near the Jovian equator revealed a cold longitudinal inhomogeneity (interpreted as a cloud obscuration) on the rising limb in the South Equatorial Belt. This feature appeared quite prominently at 45 μm and also at 5 μm in ground-based maps made simultaneously with the spacecraft measurements, but it does not appear at visible wavelengths. We describe a method by which the 5-μm observations are used to determine the fraction of 45-μm flux originating from only the region of the SEB obscured by this “anomalous” cloud. This allows the 45-μm data to constrain the cloud properties. On one extreme, the top of the SEB cloud was about 160°K, some 10°K warmer than a cloud in the neighboring South Tropical Zone, if the cloud was optically thick (nontransmissive). On the other hand, if the SEB cloud was as cool as the STrZ cloud, it must have been 60 to 80% transmissive, i.e., somewhat diffuse. With less uncertainty in the fraction of cloud obscuration, the ambiguity between tansmissivity and temperature is significantly diminished. The method described offers a potentially valuable tool for monitoring properties of clouds which do not necessarily appear at visible wavelengths.  相似文献   

20.
《Icarus》1987,70(3):506-516
We present 2.7-mm interferometric observations of Saturn made near opposition in June 1984 and June 1985, when the ring opening angle was 19° and 23°, respectively. By combining the data sets we produce brightness maps of Saturn and its rings with a resolution of 6″. The maps show flux from the ring ansae, and are the first direct evidence of ring flux in the 3-mm wavelength region. Modelfits to the visibility data yield a disk brightness temperature of 156 ± 5°K, a combined A, B, and C ring brightness temperature of 19 ± 3°K, and a combined a ring cusp (region of the rings which block the planet's disk) brightness temperature of 85 ± 5°K. These results imply a normal-to-the-ring optical depth for the combined ABC ringof 0.31 ± 0.04, which is nearly the same value found for wavelenghts from the UV to 6 cm. About 6°K of the ring flux is attributed to scattered planetary emission, leaving an intrinsic thermal component of ∼13°K. These results, together with the ring particle size distributions found by the Voyager radio occultation experiments, are consistent with the idea that the ring particles are composed chiefly of water ice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号