首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文计算了木星掩星的相对论效应的数量级,同时讨论了利用木星掩星观测法检验广义相对论光线偏折效应的可能性。  相似文献   

2.
Bjarne S. Haugstad 《Icarus》1978,35(3):410-421
Turbulence in planetary atmospheres leads to both fluctuating and systematic errors in atmospheric profiles derived from Doppler measurements during radio occultation. If the upper atmospheres of Venus and Jupiter are about as turbulent as the earth's troposphere, we deduce rms fractional errors in temperature and pressure of less than ~ 10?2 for the Mariner 10 and Pioneer 10/11 occultation experiments. Fractional systematic errors are typically of the order of 10?6. These estimates depende rather weakly on quantities characterizing the atmosphere and the occultation, and it is conjectured that turbulence-induced errors in atmospheric profiles derived from Doppler measurements are always very small in the weak scattering limit  相似文献   

3.
W.B. Hubbard 《Icarus》1977,30(2):311-313
A correction to the Galilean satellite ephemerides indicated by the observations of 1973 mutual eclipse and occultation phenomena acts to reduce significantly the discrepancy between the dynamical oblateness of Jupiter measured by spacecraft and the optical oblateness measured by the 1971 β Sco occultations.  相似文献   

4.
CCD‐photometry was performed for two Jupiter Trojan asteroids (911) Agamemnon and (4709) Ennomos for which the diameters were obtained from occultation events. New data on rotation periods, lightcurve amplitudes, color indices, magnitude–phase slopes, and absolute magnitudes were obtained for these asteroids. We have used the diameters from occultations (166 and 99 km) and new data on absolute magnitudes at the instant occultation (7.95 and 8.85 mag) to revise their albedos to 0.042 (911 Agamemnon) and 0.052 (4709 Ennomos).  相似文献   

5.
Data from the 13 May 1971 β Scorpii occultation by the southern polar region of Jupiter (Vapillon et al., 1973, Astron. Astrophys. 29, 135-149) are re-analyzed with current methods. We correct the previous results for an inacurrate background estimation and calculate new temperature profiles, that are now consistent with the results of other observers of this occultation, as well as with the current knowledge of the jovian atmosphere. The characteristics of the profiles of temperature gradient and the spectral behavior of the temperature fluctuations are found to be similar to the results of previous investigations of planetary atmospheres and in agreement with the presence of atmospheric propagating gravity waves in the jovian atmosphere. We use a wavelet analysis of the temperature profiles to identify the dominant modes of wave activity and compare the reconstructed temperature fluctuations to model-generated gravity waves.  相似文献   

6.
We report unusual and somewhat unexpected observations of the jovian satellite Io, showing strong methane absorption bands. These observations were made by the Cassini VIMS experiment during the Jupiter flyby of December/January 2000/2001. The explanation is straightforward: Entering or exiting from Jupiter's shadow during an eclipse, Io is illuminated by solar light which has transited the atmosphere of Jupiter. This light, therefore becomes imprinted with the spectral signature of Jupiter's upper atmosphere, which includes strong atmospheric methane absorption bands. Intercepting solar light refracted by the jovian atmosphere, Io essentially becomes a “mirror” for solar occultation events of Jupiter. The thickness of the layer where refracted solar light is observed is so large (more than 3000 km at Io's orbit), that we can foresee a nearly continuous multi-year period of similar events at Saturn, utilizing the large and bright ring system. During Cassini's 4-year nominal mission, this probing technique should reveal information of Saturn's atmosphere over a large range of southern latitudes and times.  相似文献   

7.
Radiative-convective equilibrium models for Jupiter and Saturn have been produced in a study centered primarily on the stratospheric energy balance and the possible role of aerosol heating. These models are compared directly to the thermal structure profiles obtained from Voyager radio occultation measurements. The method is based on a straightforward flux divergence formulation derived from earlier work (J. S. Hogan, S. I. Rasool, and T. Encrenaz 1969, J. Atmos. Sci.26, 898–905). The balance between absorbed and emitted energies is computed iteratively at each level in the atmosphere, assuming local thermodynamic equilibrium and employing a standard treatment of opacities. Results for Jupiter indicate that a dust-free model (no aerosol heating) furnishes a good mean thermal profile for the stratosphere when compared with the Voyager 1 radio occultation (RSS) measurements. These observations of the equatorial region (0° and 12°S, respectively) exhibit periodic vertical structure. Of course, among many possible complications, the Voyager profiles may not represent typical excursions from the mean. The aerosol heat depositions required to match these profiles exactly, relative to the nominal dust-free model, are reasonably consistent with independent estimates for “continuum” absorbers. Other interpretations are discussed, along with a survey of problems encountered in intercomparing the lower portions (P ? 300 mb) of the models, the RSS profiles, and a recent IRIS equatorial profile. Although aerosol heating cannot be ruled out at low latitudes on Jupiter, our results indicate that it may not be required to reproduce the Voyager 1 RSS profiles. On the other hand, heating by aerosols or some other absorber seems necessary in order to match the high-latitude Voyager 2 RSS temperature profile. The Saturn models are relatively simple and in good-to-excellent agreement with the Voyager 2 RSS profiles at all levels. Our comparisons indicate that aerosol heating played a minor role in Saturn's midlatitude stratospheric energy balance at the time of the Voyager 2 encounter. These models, however, may need to be reassessed once the hydrocarbon concentrations have been more precisely determined.  相似文献   

8.
9.
During close angular approaches of solar system planets to astrometric radio sources, the apparent positions of these sources shift due to relativistic effects and, thus, these events may be used for testing the theory of general relativity; this fact was successfully demonstrated in the experiments on the measurements of radio source position shifts during the approaches of Jupiter carried out in 1988 and 2002. An analysis, performed within the frames of the present work, showed that when a source is observed near a planet’s disk edge, i.e., practically in the case of occultation, the current experimental accuracy makes it possible to measure the relativistic effects for all planets. However, radio occultations are fairly rare events. At the same time, only Jupiter and Saturn provide noticeable relativistic effects approaching the radio sources at angular distances of about a few planet radii. Our analysis resulted in the creation of a catalog of forthcoming occultations and approaches of planets to astrometric radio sources for the time period of 2008–2050, which can be used for planning experiments on testing gravity theories and other purposes. For all events included in the catalog, the main relativistic effects are calculated both for ground-based and space (Earth-Moon) interferometer baselines.  相似文献   

10.
Dynamic spectra of Jupiter's L-bursts are observed with high-resolution radio spectrographs. The L-bursts are characterized by their emission envelopes. The duration of envelopes varies from one to a few seconds increasing towards the opposition of Jupiter to reach a maximum in the vicinity of 10 to 20 d after opposition. Modulation lanes appear within the emission envelopes. The magnitude of thef-t slopes of lanes is determined by the central meridian longitude (CML) of Jupiter, and partly by the longitude of Io. The sign of the slopes depends on the CML only. The yearly averages for thef-t slopes do not seem to be related to the Jovicentric declination of the Earth. Most lanes are relatively faint. A summary of the properties of modulation lanes is given. A peculiar case of polarization of an L-burst is shown. Certain shadow events are interpreted as occultation effects caused by overdense meteor trails drifting in the upper atmosphere winds.  相似文献   

11.
J.L. Elliot  J. Veverka 《Icarus》1976,27(3):359-386
The characteristics of spikes observed in the occultation light curves of β Scorpii by Jupiter are reviewed and discussed. Using a model in which the refractivity (density) gradients in the Jovian atmosphere are parallel to the local gravitational field, the spikes are shown to yield information about (i) the [He]/-[H2] ratio in the atmosphere, (ii) the fine scale density structure of the atmosphere and (iii) high-resolution images of the occulted stars. The spikes also serve as indicators for ray crossing. Observational limits are placed on the magnitude of horizontal refractivity gradients; these appear to be absent on scales of a few kilometers at altitudes corresponding to number densities less than 2 × 1014 cm?3. Spikes are produced by atmospheric density variations, perhaps due to atmospheric layers, density waves or turbulence. To discriminate among these possibilities, future occultation observations should be made from a number of observation sites at two or more wavelengths simultaneously with high time resolution techniques. Given a large telescope and suitable observing techniques, useful information about Jupiter's atmosphere can be obtained from future occultations of early-type stars as faint as V ~ + 6–7.  相似文献   

12.
Anderson and Schubert [2007. Saturn's Gravitational field, internal rotation, and interior structure. Science 317, 1384-1387 (paper I)] proposed that Saturn's rotation period can be ascertained by minimizing the dynamic heights of the 100 mbar isosurface with respect to the geoid; they derived a rotation period of 10 h 32 m 35 s. We investigate the same approach for Jupiter to see if the Jovian rotation period is predicted by minimizing the dynamical heights of its isobaric (1 bar pressure level) surface using zonal wind data. A rotation period of 9 h 54 m 29.7 s is found. Further, we investigate the minimization method by fitting Pioneer and Voyager occultation radii for both Jupiter and Saturn. Rotation periods of 9 h 55 m 30 s and 10 h 32 m 35 s are found to minimize the dynamical heights for Jupiter and Saturn, respectively. Though there is no dynamical principle requiring the minimization of the dynamical heights of an isobaric surface, the successful application of the method to Jupiter lends support to its relevance for Saturn.We derive Jupiter and Saturn rotation periods using equilibrium theory to explain the difference between equatorial and polar radii. Rotation periods of 9 h 55 m 20 s and 10 h 31 m 49 s are found for Jupiter and Saturn, respectively. We show that both Jupiter's and Saturn's shapes can be derived using solid-body rotation, suggesting that zonal winds have a minor effect on the planetary shape for both planets.The agreement in the values of Saturn's rotation period predicted by the different approaches supports the conclusion that the planet's period of rotation is about 10 h 32 m.  相似文献   

13.
《Icarus》1987,72(1):35-47
Gaseous ammonia (NH3) has long been recognized as a primary source of microwave opacity in the atmosphere of Jupiter. In order to more accurately infer the abundance and distribution of ammonia from radio emission measurements in the 1 to 20-cm wavelength range and radio occultation measurements at 3.6 and 13 cm, we have made measurements of the microwave opacity from gaseous ammonia under simulated conditions for the Jovian atmosphere. Measurements of ammonia absorptivity were made at five frequencies from 1.62 to 21.7 GHz (wavelengths from 18.5 to 1.38 cm), at temperatures from 178 to 300°K, and at pressures from 1 to 6 atm, in a 90% hydrogen/10% helium atmosphere. The results of these measurements show that in the 1.38- to 18.5-cm wavelength range, the absorption from gaseous ammonia is correctly expressed by the modified Ben-Reuven lineshape as per G.L. Berge and S. Gulkis (1976, Earth-based radio observations of Jupiter: Millimeter to meter wavelengths. In Jupiter (T. Gehrels, Ed.), pp. 621–692, Univ. of Arizona Press, Tucson). When applied to the microwave opacity measured by radio occultation measurements, or the microwave opacity inferred from radio emmission measurements, these results suggest that either an abundance of ammonia 1.5 to 2.0 times greater than the solar abundance must exist at levels below the 1- to 2-bar pressure range, or that some other microwave absorber must be present.We conclude by suggesting further laboratory measurements of other potential microwave-absorbing constituents and additional investigation of the microwave absorption from ammonia in the 10- to 20-cm wavelength range and at wavelengths shortward of 1 cm.  相似文献   

14.
Radio occultation studies of the structure of planetary atmospheres have generally involved relatively shallow penetration of the spacecraft behind the limb of the planet in the plane of the sky. Current radio link sensitivities allow detection of the radio signals at all occultation depths, whenever the planet-spacecraft distance is sufficiently large for the refraction to occur at atmospheric heights where microwave absorption is not too large. Voyager 1 at Jupiter and Voyager 2 at Saturn will pass almost directly behind the planets as viewed from the Earth. Thus they will pass through the caustics that corresponds to the focal line of a spherical planet, expanded by oblateness into a surface approximating a four-cusp cylinder. In the plane of the sky, the projection of this surface approximates the evolute of the planet's limb. As the spacecraft passes behind the planet with its antenna tracking the occulting limb, the strength of the radio signals received on Earth will at first decrease due to defocusing in the atmosphere, but then increase as the evolute is approached, because of the focusing caused by limb curvature. Inside the evolute there are four simultaneous signal paths over four limb positions. If we neglect absorption, focused signals for an instant could become orders of magnitude stronger than for the unocculted spacecraft. Measurements of the frequency and intensity of deep occultation signals, and of the timing and character of these “evolute flashes”, could provide information on atmospheric absorption, turbulence, and structure, and on details of the shape of the atmosphere at the focusing limbs as affected, for example, by planetary gravitational moments, rotation, and zonal winds. Such observations will be attempted with Voyager and potentially could be very fruitful in the Pioneer Venus and Galileo (Jupiter) orbiting missions.  相似文献   

15.
Bjarne S. Haugstad 《Icarus》1979,37(1):322-335
Power spectra of phase and intensity scintillations during occultation by turbulent planetary atmospheres are significantly affected by the inhomogeneous background upon which the turbulence is superimposed. Such coupling is particularly pronounced in the intensity, where there is also a marked difference in spectral shape between a central and a grazing occultation. While the former has its structural features smoothed by coupling to the inhomogeneous background, such features are enhanced in the latter. Indeed, the latter power spectrum peaks around the characteristic frequency that is determined by the size of the free-space Fresnel zone and the ray velocity in the atmosphere; at higher frequencies strong fringes develop in the power spectrum. A confrontation between the theoretical scintillation spectra computed here and those calculated from the Mariner 5 Venus mission by R. Woo, A. Ishimaru, and W. B. Kendall (1974, J. Atmos. Sci.31, 1698–1706) is inconclusive, mainly because of insufficient statistical resolution. Phase and/or intensity power spectra computed from occultation data may be used to deduce characteristics of the turbulence and to distinguish turbulence from other perturbations in the refractive index. Such determinations are facilitated if observations are made at two or more frequencies (radio occultation) or in two or more colors (stellar occultation).  相似文献   

16.
Glenn S. Orton 《Icarus》1975,26(2):125-141
Temperature profiles for low latitude regions of Jupiter in the 1.0-0.1 bar pressure regime are recovered from Pioneer 10 infrared radiometer data. The temperature near 0.1 bar is 108–117K, depending on the overlying thermal structure assumed. For the South Equatorial Belt, the temperature at 1.0 bar is 170 K, assuming an adiabatic lapse rate in the deep atmosphere. The South Tropical Zone temperature at this level is 155K if pure gaseous absorption is assumed. Alternatively, the temperature is much closer to that in the SEB, assuming the presence of an optically opaque cloud near the 0.6atm (145K) level. Such a cloud presence in the STrZ may be correlated with the visible and 5 micron appearance of the planet and with NH3 saturation just below this position. The molar fraction of H2 most consistent with the data is 0.91 ± 0.08. conditional on the perfect validity of the model and the lack of systematic errors in the data. The effective temperatures of the SEB and STrZ are 127.6 and 124.2K, respectively. These temperature profiles are generally consistent with data at other wavelengths and radiative-equilibrium models, but a discrepancy with the preliminary neutral atmosphere inversion of Pioneer 10 radio occultation data remains unexplained.  相似文献   

17.
The occultation of bright star HIP9369 by the northern polar region of Jupiter was observed from four locations in North and South America, providing four data sets for ingress and egress. The inversion of the eight occultation lightcurves provides temperature profiles at different latitudes ranging from 55°N to 73.2°N. We estimate the errors on the profiles due to the uncertainties of the inversion method and compare the value of the temperature at the deepest level probed (∼ 50 μbar) with previous observations. The shape of the temperature gradient profile is found similar to previous investigations of planetary atmospheres with propagating and breaking gravity waves. We analyze the small scale structures in both lightcurves and temperature profiles using the continuous wavelet transform. The calculated power spectra of localized fluctuations in the temperature profiles show slopes close to −3 for all eight profiles. We also isolate and reconstruct the three-dimensional geometry of a single wave mode with vertical and horizontal wavelengths of respectively 3 and 70 km. The identified wave is consistent with the gravity wave regime, with a horizontal phase speed nearly parallel to the planetary meridian. Nevertheless, the dissipation of the corresponding wave in Jupiter’s stratosphere should preclude its detection at the observed levels and an acoustic wave cannot be ruled out.  相似文献   

18.
J.L. Elliot  J. Veverka  J. Goguen 《Icarus》1975,26(4):387-407
The diameters of Tethys, Dione, Rhea, Titan and Iapetus were determined from observations of their March 30, 1974, lunar occultations, made with the Mauna Kea 224 and 61 cm telescopes. Light curves were obtained simultaneously in four colors, and the difference between the time of occultation at the two telescopes provided a direct measurement of the slope of the lunar limb, found to be small in all cases. The satellite diameters were determined by least-squares fits of model occultation light curves to the data. In these fits the diameter and degree of limb darkening of the satellite are correlated variables, requiring the limb darkening to be specified before the diameter can be determined, or vice versa. However, for Titan the signal-to-noise ratio is sufficiently high to allow some assessment of the amount of limb darkening, which was found to be substantial. Titan's diameter must be at least 5800 km, much larger than the currently accepted value of 5000 km, making it the largest satellite in the solar system. This larger diameter implies a low mean density. For the other four satellites arguments are presented in favor of accepting the occultation diameters corresponding to limb darkened disks. Except for Titan, the lunar occultation diameters generally agree with previous diskmeter and radiometric determinations.  相似文献   

19.
COR1 is the innermost coronagraph of the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) instrument suite aboard the twin Solar Terrestrial Relations Observatory (STEREO) spacecraft. The paired COR1 telescopes observe the white-light K-corona from 1.4 to 4 solar radii in a waveband 22.5 nm wide centered on the Hα line at 656 nm. An internal polarizer allows the measurement of both total and polarized brightness. The co-alignment of the two COR1 telescopes is derived from the star λ Aquarii for the Ahead spacecraft, and from an occultation of the Sun by the Moon for Behind. Observations of the planet Jupiter are used to establish absolute photometric calibrations for each telescope. The intercalibration of the two COR1 telescopes are compared using coronal mass ejection observations made early in the mission, when the spacecraft were close together. Comparisons are also made with the Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph (LASCO) C2 and Mauna Loa Solar Observatory Mk4 coronagraphs.  相似文献   

20.
The depletion of an initially uniform distribution of asteroids extending form Mars to Saturn, caused by the gravitational perturbations of Jupiter and Saturn, is calculated by numerical integration of the asteroid orbits. Almost all (about 85%) the asteroids between Jupiter and Saturn are ejected in the first 6000 years Most of the asteroids between the 23 Jupiter resonance (4.0 A.U.) and Jupiter are ejected in the first 2400 years with the exception of the stable librators (e.g., the Hilda group). Interior to the 23 resonance the depletion was small, and interior to the 12 resonance (3.3 A.U.) no asteroids were ejected in the first 2400 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号