首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Major and trace element geochemistry of coexisting hornblendes and biotites from the Ambalavayal granite, northern Kerala, are presented. The hornblendes correspond to edenitic composition, whereas the biotites correspond to annite. The hornblendes typically show high Al2O3 contents (9·69–11·89%) comparable with those from anorogenic granites. The biotites are characteristically low Mg-type, similar to those reported from alkaline rocks. The distribution coefficients calculated for all the major and trace elements are presented and an evaluation of the nature of variation indicate near-chemical equilibrium conditions during the crystallization of the two minerals. The hornblende-biotite tie lines in the Fe3+?Fe2+?Mg compositional triangle, lie parallel to those of buffered biotites, indicating crystallization in an environment closed to oxygen and well above the Ni?NiO buffer. It is inferred that thefH2O increased towards the residual stage andfO2 values were high, in the range of 10?15 bars.  相似文献   

2.
This paper attempts to illustrate the chemical variations of metamorphic hornblendes regarding host rocks and prograde variations. Changes related to bulk chemistry (orthoamphibolites) mainly concern Si, Al, Mg, Fetot and Ca. The Mg, Fe2+ and Fe3+ contents of hornblendes are, however, not strictly related to host rook compositions and Mg enrichments are correlated with increasing Fe3+ contents in the amphiboles. Thus, variations of oxygen fugacity may control the Mg contents of the Ca amphiboles studied but this does not show clear relations with the prograde metamorphism. The most sensitive but irregular variation related to the metamorphic conditions is the prograde enrichment of the alkalis into the A vacant position and an increase of the (Na+K)tot/Na+K+Ca ratios of the amphiboles. Increasing Ti and AlIV contents as well as decreasing AlVI concentrations are also, but much less evidently, related to increasing T and P. A variation trend from tschermakitic to edenitic hornblendes may be drawn using Shido's end members calculation; this tendency and the relative deficiency of AlVI contents in the low-grade members suggests that the amphiboles studied were subjected to conditions of a low-pressure metamorphism type. Such a conclusion is in agreement with the occurrence of andalusite-cordierite/sillimanite-cordierite associations in the metapelitic rocks, and the absence of Fe-rich garnet and epidote from the orthoamphibolites of the amphibolite facies at Aracena. Comparisons with Ca amphiboles from other metamorphic areas show, in agreement with various authors, that Abukuma hornblendes are similar to those encountered in high-grade thermal aureoles and tonalitic intrusives but different from the hornblendes of Barrovian metamorphism types.  相似文献   

3.
A small intrusive fresh gabbroic mass intrudes the Neoproterozoic metasediments and Dokhan volcanics of Wadi Az Zarib area, Central Eastern Desert. It is composed of hornblende gabbros and leuco-hornblende gabbros. Their petrography, opaque mineralogy, and geochemistry are addressed to elucidate their tectonic setting and petrogenesis. They represent a subduction-related calc–alkaline magma that evolved in an island arc setting. In terms of maturity, the supposed arc represents an intermediate stage between continental arc and active continental margin. Thermobarometry and physical–chemical data of the parent magma as deduced from compositions of amphiboles, biotite, and plagioclase indicate crystallization temperatures of 931–825 °C at pressures of 6.16–4.01 kbar and H2Omelt of 6.4–5.2 wt%. Data, as presented, argue in favor of fractional crystallization mechanism to be accounted to the present suite to interpret the observed variations. The evolution of the suite from hornblende gabbros to leuco-hornblende gabbros was accompanied by decreasing of MgO, CaO, Cr, and Ni with simultaneous increasing of Al2O3, TiO2, Na2O, K2O, Ba, Rb, Sr, La, and Ce. Residuals calculated during mass balance fractional crystallization modeling suggest that brown and green hornblendes are the main fractionated phases which derived the melt composition towards the leuco-hornblende gabbros.  相似文献   

4.
Metabasites of the southern Ötztal basement hitherto mapped as amphibolites, were identified as eclogites. Primary mineral parageneses are tschermakitic to pargasitic green amphiboles, omphacite (Jd40), garnet II (Gr20–30) Py10), phengite (Si3.5), zoisite, rutile and quartz. Al—pargasite (20 wt% Al2O3) rims between garnet and omphacite are interpreted as retrograde reaction products.Retrogression of the eclogite parageneses reflecting decreasing pressure and increasing temperature conditions are: Symplectites of diopside and plagioclase after omphacite, Al-and Na-poor green amphiboles, grossularite-poor garnet III surrounding garnet II partly with atoll textures and symplectites of biotite and plagioclase replacing phengite. Continuation of retrogression with decreasing temperature conditions is indicated by actinolitic amphiboles and albite-rims between amphibole II and quartz.  相似文献   

5.
The migmatitic rocks exposed in Hafafit and Feiran areas exhibit some migmatitic structures as the banded, agmatic, boudinage and schlieren structures. The dominant type of these structures is the stromatic migmatites. Electron microprobe analyses of plagioclases, biotites and amphiboles from Hafafit and Feiran areas, in the Eastern Desert and Sinai, Egypt, are carried out and the metamorphic conditions are discussed. The present study revealed marked differences in the composition of plagioclases, biotites and amphiboles from Hafafit and Feiran localities. The obtained data indicated that plagioclases of the Feiran migmatites are of andesine and oligoclase composition, and display anorthite content from An20 to An38; whereas the Hafafit migmatites show a wider range of plagioclases from An10 to An60, and therefore plagioclases have labradorite, andesine and oligoclase composition. This may be due to the slow rate of the crystallisation processes. The analyses indicated that biotites of the studied areas are of metamorphic origin showing significant variation in Fe–Mg. It is worth mentioning that biotites from Hafafit migmatites have Mg–biotite composition while that of Feiram migmatites have Fe–biotite composition. High Mg and low Fe contents in biotite suggest higher crystallisation temperature. The composition of amphiboles in Hafafit migmatites is ferro-tschermakitic hornblende, while amphiboles from Feiram migmatites are magnesio-hornblende. High Ti content in the hornblende of Feiran migmatites suggests that they were formed at slightly higher temperatures and lower pressure than the Hafafit migmatites (i.e. Feiram migmatites and Hafafit migmatites were formed at granulite and amphibolite facies, respectively). Discrimination diagrams show that the muscovite is of secondary origin. Moreover, the present study confirmed that these migmatites are mainly formed by metamorphic differentiation via partial melting.  相似文献   

6.
Calcic amphiboles are ubiquitous in the East Bull Lake anorthosite-gabbro complex, northeastern Ontario. The mode of occurrence suggests the amphiboles replaced clinopyroxene throughout the stratigraphic levels of the pluton, but they are also prolific in the top younger units. Three types of amphiboles, namely (1) tremolite-actinolite, (2) actinolitic hornblende and (3) hornblende, were identified. The composition of the amphiboles shows that they define a continuous series without any obvious compositional-miscibility gap. The analyses further indicated that the amphiboles evolved from actinolite to hornblende through coupled substitution involving edenite and tschermakite end members. Among the three coexisting amphiboles, chlorine is concentrated in hornblende. This is due to preferential location of hornblende along grain boundaries and/or its favourable structure.The compositional variability of amphiboles is controlled by (1) bulk rock composition and (2) faulting and fracturing. The most Fe- and Al-rich hornblendes are confined generally to top units in the gabbro. These units are rich in Si and Fe, but relatively poor in Mg. The Mg-rich tremolite is restricted to a Si-poor, Mg-rich troctolite unit. Amphiboles in gabbro samples from fault zones also contain relatively Mg-rich calcic amphibole. The fault gabbro is highly oxidized.  相似文献   

7.
Ciomadul is the youngest volcano in the Carpathian–Pannonian region produced crystal-rich high-K dacites that contain abundant amphibole phenocrysts. The amphiboles in the studied dacites are characterized by large variety of zoning patterns, textures, and a wide range of compositions (e.g., 6.4–15 wt% Al2O3, 79–821 ppm Sr) often in thin-section scale and even in single crystals. Two amphibole populations were observed in the dacite: low-Al hornblendes represent a cold (<800 °C) silicic crystal mush, whereas the high-Al pargasites crystallized in a hot (>900 °C) mafic magma. Amphibole thermobarometry suggests that the silicic crystal mush was stored in an upper crustal storage (~8–12 km). This was also the place where the erupted dacitic magma was formed during the remobilization of upper crustal silicic crystal mush body by hot mafic magma indicated by simple-zoned and composite amphiboles. This includes reheating (by ~200 °C) and partial remelting of different parts of the crystal mush followed by intensive crystallization of the second mineral population (including pargasites). Breakdown textures of amphiboles imply that they were formed by reheating in case of hornblendes, suggesting that pre-eruptive heating and mixing could take place within days or weeks before the eruption. The decompression rim of pargasites suggests around 12 days of magma ascent in the conduit. Several arc volcanoes produce mixed intermediate magmas with similar bimodal amphibole cargo as the Ciomadul, but in our dacite the two amphibole population can be found even in a single crystal (composite amphiboles). Our study indicates that high-Al pargasites form as a second generation in these magmas after the mafic replenishment into a silicic capture zone; thus, they cannot unambiguously indicate a deeper mafic storage zone beneath these volcanoes. The simple-zoned and composite amphiboles provide direct evidence that significant compositional variations of amphiboles do not necessarily mean variation in the pressure of crystallization even if the Al-tschermak substitution can be recognized, suggesting that amphibole barometers that consider only amphibole composition may often yield unrealistic pressure variation.  相似文献   

8.
Actinolite, hornblende and biotite coexisting in greenschist mafic metagreywackes have been analysed with the electron microprobe to obtain information on their chemical relationship during metamorphism. As in some other parts of the world, the two calcic amphiboles coexist in the greenschist facies because of a miscibility gap between them which is observed under conditions of low-pressure regional metamorphism; it is thought that the two amphiboles are in equilibrium, or at least that the actinolite participated in hornblendeforming reactions. Contact metamorphism by granitic intrusives of these metagreywackes has converted them to hornblende hornfelses with the assemblage hornblende, andesine, quartz, biotite±cummingtonite; the hornblendes of the hornfelses are found to have compositions between actinolite and hornblende of the greenschists, and frequently show fine exsolution lamellae of cummingtonite as a result of oversaturation in this component. The distribution of Fe-Mg between hornblende and biotite changes from the greenschist to the hornblende hornfels facies, and the K D is probably dependent on AlVI in the hornblende.  相似文献   

9.
The chemistry and phase relations of calcic and sodic amphiboles in the Ouégoa blueschists are investigated. The first appearance of sodic amphiboles is controlled by bulkrock chemistry. Sodic amphibole appears first in weakly-metamorphosed pumpellyite metabasalts prior to the crystallization of lawsonite but does not crystallize in pelitic schists until the middle of the lawsonite zone; sodic amphibole continues as an apparently stable phase in rocks of all bulk compositions into, and throughout, the highest-grade rocks in the district. Calcic amphibole is widespread in metabasalts of the lawsonite and epidote zones and also occurs in metasediments of appropriate composition. Coexisting pairs of calcic and sodic amphiboles are common in metabasalts but they have also been found in some metasediments. A grunerite-riebeckite pair is described.Electron-probe analyses of 120 amphiboles from representative rock-types are presented in graphical form. Sodic amphiboles show an increased Mg/(Mg+Fe) ratio with increasing metamorphic grade. Sodic amphiboles in pelitic schists are ferroglaucophane in the lawsonite zone and crossite and glaucophane in the epidote zone. Sodic amphiboles in metabasalts are iron-rich crossites in weakly-metamorphosed rocks and more-magnesian crossites and glaucophanes in the lawsonite and epidote zones. The abrupt increase in Mg/(Mg+Fe) ratio in sodic amphiboles at the epidote isograd is attributed to the crystallization of epidote and almandine which take the place of lawsonite and spessartine of the lawsonite zone. Calcic amphiboles are fibrous actinolites in the lawsonite zone and grade with increasing Al and Na/Ca ratio into prismatic blue-green hornblendes (barroisites) in the upper epidote zone. In calcic amphiboles, increasing metamorphic grade effects the coupled substitution of (Na+Al) for (Ca+Mg) and a small increases in Fe/Mg ratio; octahedrally and tetrahedrally coordinated Al increases in an approximately 11 ratio. Both the calcic and the sodic amphiboles show an increase in A-site occupancy with increasing metamorphic grade. In two-amphibole assemblages Ti, Mn and K are concentrated in the calcic amphibole.The textural and chemical relations between coexisting calcic and sodic amphiboles are discussed. If the calcic and sodic amphiboles are an equilibrium pair then the data collected from the Ouégoa amphiboles gives a picture of a very asymmetric solvus in the system glaucophane-actinolite-hornblende, i.e. steep-sided to glaucophane and with a gentle slope to the calcic amphibole field; there is no indication of any termination of the solvus under the pressure-temperature conditions of crystallization of the Ouégoa schists.  相似文献   

10.
Four pairs of associated calcic and sodic amphiboles from blueschistfacies metamorphic rocks were analyzed with the electron microprobeand studied by single-crystal X-ray diffraction techniques.Except for ranges in the ratios Mg/(Mg+Fe) and Fe3+/(Fe3++Al+Ti),the sodic amphiboles are similar in chemical composition. Theamount of calcium in the M(4)-site ranges only from 0·18to 0·21 ion per formula unit. The calcic amphiboles,in addition to a range in Mg/(Mg+Fe), vary in Na/(Na+Ca) ratio(0·29–0·48). Three of the calcic amphibolescontain less than 1·5 calcium ions per formula unit,indicating a significant solid solution of sodic amphibole componentsin the calcic amphibole phase. The a and b unit-cell parametersof the calcic amphiboles decrease with increased content ofthe sodic component.  相似文献   

11.
Seventeen co-existing blue and blue-green amphibole pairs fromamphibolites of zones I, II and III of Ile de Groix have beenanalysed by electron microprobe. The size of the miscibilitygap, related to variations of compositions of blue and associatedblue-green amphiboles in well defined P and T conditions, asa function of whole rock compositions, is shown. Blue amphibolesare glaucophanes of relatively homogeneous composition (0.018< Ca/(Ca + Na) < 0.102); associated blue-green amphibolesshow larger substitutions, from actinolitic hornblendes to pargasitichornblendes (0.43 < Ca/(Ca + Na) < 0.81). A comparisonwith pairs crystallized in other physical conditions shows variationsin blue amphiboles with P, in blue-green amphiboles with T,inside glaucophane schist facies. The miscibility gap seemsto be the narrowest for glaucophane schist facies conditions,which are near the greenschist facies boundary: P 8 kb, T 450 °C.  相似文献   

12.
This study of La Gloria pluton in the Chilean Andes evaluates what information about magmatic conditions can be extracted from minerals in a granitic pluton, despite lower-temperature re-equilibration. The pluton is zoned vertically from granodiorite/quartz monzodiorite to quartz monzonite at the roof, with the uppermost 1500 m showing the strongest modal and compositional trends. This mimics the pattern frequently inferred from zoning in voluminous ignimbrites: a strongly zoned cap overlying a more homogeneous main␣body. The presence of large, euhedral amphibole ± biotite at the chamber margins and roof indicate that water was concentrated there. Biotite and amphibole compositions indicate a roofward increase in magmatic f HF, f HCl and F/Cl ratio, analogous to pre-eruptive volatile gradients recorded in zoned ignimbrites. Hornblende that crystallized directly from the melt in the volatile-rich wall and roof zones yields total-Al solidification pressures of ˜1 kbar, consistent with the estimated 4000 m of cover at the time of emplacement. In the core of the pluton, actinolitic amphibole formed by reaction of melt with early-crystallized clinopyroxene. Plag-cpx cumulate clots in the lower level are interpreted as early crystallizing phases entrained in rising granitic magma. Cores of amphibole phenocrysts in mafic enclaves suggest initial crystallization at pressures of 2–3 kbar. Lower Ti and Al contents of rims and acicular groundmass amphibole, overlapping the composition of amphibole in the host granitoid, indicate that the enclaves equilibrated with the host at the present exposure level in the presence of interstitial melt. A roofward relative increase in fO2 of the magma is recorded by an increasing proportion of Fe-Ti oxides as a fraction of the mafic phases, greater Mn content of ilmenite, and constant or higher Mg/(Mg+Fe) in hornblende and biotite despite declining whole-rock MgO contents. Association␣of subhedral biotite and magnetite with actinolitic amphibole in clots implies a reaction: K-Ti-hb + O2(gas) = bi + mt + actinolitic amph + titanite. Magnetite coexisting with biotite with Fe/(Fe+Mg) = 0.34– 0.40 implies temperatures of equilibration no lower than about 720–750 °C, i.e., late-magmatic rather than subsolidus. Saturation with respect to a water-rich vapor and subsequent diffusive loss of hydrogen may have caused this oxidation trend, which resulted in the most magnesian mafic phases occurring in the most compositionally evolved rocks, opposite to trends in most zoned ignimbrites, which presumably record conditions nearer the liquidus and prior to exsolution of a water-rich vapor. Two-feldspar and Fe-Ti-oxide geothermometers record subsolidus conditions in the pluton and yield higher temperatures for samples from the roof zone, suggesting that slower cooling at deeper levels allowed these minerals to continue to equilibrate to lower temperatures. Individual minerals span wide ranges in composition at any given level of the pluton, from those appropriate for phenocrysts, to those that record conditions well below the solidus. We suggest that the shallow level and isolated position of the pluton led to rapid escape of magmatic volatiles and rapid cooling, thereby preventing development of a long-lived hydrothermal system. Resulting small water/rock ratios may account for why late-magmatic and subsolidus re-equilibration were not pervasive. Received: 23 August 1996 / Accepted: 18 October 1996  相似文献   

13.
徐州-宿州地区中生代闪长质岩石中存在丰富的榴辉岩类捕虏体。对该类捕虏体的岩相学和矿物化学研究表明,其中的角闪石具有4种产状:1)位于石榴石中的早期角闪石包裹体,为镁质普通角闪石;2)与榴辉岩中矿物平衡存在的原生角闪石,为韭闪石或韭闪石质普通角闪石;3)位于石榴石和单斜辉石周边的退变角闪石,主要为浅闪石质和阳起石质普通角闪石;4)沿单斜辉石解理分布的出溶角闪石,主要为浅闪石、浅闪石质角闪石和含亚铁韭闪石质普通角闪石。不同产状角闪石矿物化学成分的差异和温压估算结果显示,榴辉岩类捕虏体经历了一个顺时针的P—T演化轨迹,进而反映了中生代早期华北克拉通东部造山作用的存在。  相似文献   

14.
Mafic microgranular enclaves (MMEs) are widespread in the Horoz pluton with granodiorite and granite units. Rounded to elliptical MMEs have variable size (from a few centimetres up to metres) and are generally fine-grained with typical magmatic textures. The plagioclase compositions of the MMEs range from An18?CAn64 in the cores to An17?CAn29 in the rims, while that of the host rocks varies from An17 to An55 in the cores to An07 to An33 in the rims. The biotite is mostly eastonitic, and the calcic-amphibole is magnesio-hornblende and edenite. Oxygen fugacity estimates from both groups?? biotites suggest that the Horoz magma possibly crystallised at fO2 conditions above the nickel?Cnickel oxide (NNO) buffer. The significance of magma mixing in their genesis is highlighted by various petrographic and mineralogical characteristics such as resorption surfaces in plagioclases and amphibole; quartz ocelli rimmed by biotite and amphibole; sieve and boxy cellular textures, and sharp zoning discontinuities in plagioclase. The importance of magma mixing is also evident in the amphiboles of the host rocks, which are slightly richer in Si, Fe3+ and Mg in comparison with the amphiboles of MMEs. However, the compositional similarity of the plagioclase and biotite phenocrysts from MMEs and their host rocks suggests that the MMEs were predominantly equilibrated with their hosts. Evidence from petrography and mineral chemistry suggests that the adakitic Horoz MMEs could be developed from a mantle-derived, water-rich magma (>3 mass%) affected by a mixing of felsic melt at P >2.3?kbar, T >730°C.  相似文献   

15.
An unusual association of chromite and hornblende was found in the spessartites of andesite composition, occurring as a dike swarm associated with a Cretaceous granite batholith. The spessartites are largely porphyritic with phenocrysts of either hornblende or augite. One dike, comprising a finegrained spessartite, exhibits distinct chilled selvages of aphanitic facies. The chromites in the fine-grained and augite-spessartites are significantly higher in Cr/ (Cr+Al) than those occurring rarely as inclusions in the phenocrystic hornblendes in the hornblende spessartite, although both are similar in Mg/ (Mg+Fe), Fe2O3, and TiO2. The phenocrystic hornblendes are titaniferous pargasite with high Mg/ (Mg+Fe), and differ in their higher octahedral Al from the groundmass hornblendes including those in the fine-grained spessartite. The crystallization sequence in the phenocrystic hornblende-bearing spessartites is Al-rich chromite, phenocrystic hornblende, and plagioclase without pyroxene, suggesting a high water content in the magma and the start of the crystallization at relatively high pressures. The finegrained spessartite from which the porphyritic spessartites have been derived by fractionation of dominant mafic minerals, has the high Mg-value and Cr content equivalent to those in primitive, undifferentiated basalts, although still andesitic in SiO2 content. Chemically similar magnesian andesites, although uncommon, found in some orogenic calc-alkalic suites may represent a magma composition in equilibrium with mantle peridotite under the condition of high water pressures.  相似文献   

16.
《International Geology Review》2012,54(13):1497-1531
The NW–SE-trendingLate Cretaceous–Cenozoic Urumieh-Dokhtar Magmatic Arc (UDMA) in southwest Iran hosts numerous Plio-Quaternary subvolcanic porphyritic andesitic to rhyodacitic domes intruded into a variety of rock sequences. Bulk-rock geochemical data show that the calc-alkaline dacitic to rhyodacitic subvolcanic rocks share compositional affinities with high-silica adakites, including high ratios of Na2O/K2O >1, Sr/Y (most >70), and La/Yb (>35), high Al2O3 (>15 wt.%), low Yb (<1.8 ppm) and Y (<18 ppm) contents, no significant Eu anomalies, and flat to gently upward-sloping chondrite-normalized heavy rare-earth element (HREE) patterns. All analysed rocks are characterized by enrichment in large-ion lithophile elements (LILEs) and depletion in high field strength elements (HFSEs). They also display typical features of subduction-related calc-alkaline magmas. In chondrite-normalized rare-earth element patterns, the light rare-earth elements (LREEs) are enriched ((La/Sm) N = 3.49–7.89) in comparison to those of the HREE ((Gd/Yb) N = 1.52–2.38). Except for the G-Aliabad Dome, plagioclase crystals in the Shamsabad, Ostaj, Abdollah, and Bouragh Domes are mostly oligoclase to andesine (An19–49). Amphibole and biotite are abundant ferromagnesian minerals in the subvolcanic rocks. Calcic amphiboles are dominantly magnesiohornblende, magnesiohastingsite, and tschermakite with Mg/(Mg + Fetot) ratios ranging from 0.58 to 0.78. In all the studied domes, amphiboles are typically ferric iron-rich, but that those the Shamsabad Dome have the highest Fe3+/(Fe3+ + Fe2+) ratios, between 0.69 and 0.98. Amphiboles from the Ostaj and Shamsabad Domes are relatively rich in F (0.39–1.01 wt.%) in comparison to the other studied domes. This phase commonly shows pargasitic and hastingsitic substitutions with a combination of tschermakitic and edenitic types.

Temperature-corrected Al-in-hornblende data show that amphibole phenocrysts from the Ostaj, Abdollah, and G-Aliabad Domes crystallized at pressures ranging from 2.14 to 3.42 kbar, 3.49 to 3.96 kbar, and 2.02 to 3.47 kbar, respectively. Temperatures of crystallization calculated with the amphibole–plagioclase thermometer for the Ostaj, Abdollah, and G-Aliabad subvolcanic domes range from 735°C to 826°C (mean = 786 ± 29), 778°C to 808°C (mean = 791 ± 13), and 866°C to 908°C (mean = 885 ± 12), respectively. In the annite–siderophyllite–phlogopite–eastonite quadrilateral, biotite from the G-Aliabad, Bouragh, and Ostaj Domes are characterized by relatively low total Al contents with variable Fetot/(Fetot + Mg) values from 0.26 to 0.43. All biotite analyses define a nearly straight line in the X Mg versus Fetot plot, with r = –0.96 correlation coefficient. In comparison to other domes, the F content of biotite from the G-Aliabad Dome shows high concentrations in the range of 1.80–2.57 wt.% (mean = 2.20). Inferred pre-eruptive conditions based on the calcic amphibole thermobarometric calculations for the Shamsabad, Abdollah, and Ostaj Domes show that the calc-alkaline subvolcanic magma chamber, on average, was characterized by a water content of 6.10 wt.%, a relatively high oxygen fugacity of 10–10.66 (ΔNNO + 1.28), a temperature of 896°C, and a pressure of 2.75 kbar.  相似文献   

17.
Actinolite-actinolitic hornblende and actinolitic hornblende-hornblende pairs are described from gabbroic amphibolites and epidote amphibolites formed by dynamic metamorphism during uplift of gabbroic rooks in the Hidaka Metamorphic Belt, Hokkaido. Electron microprobe analyses indicate that coupled substitutions involved in the transition from actinolite to hornblende are essentially those of edenite and tschermakite-ferritschermakite together with smaller amounts of glaucophane-riebeckite, i.e. AlIV, AlVI, Fe3+, A-site occupancy and NaM4 increase with replacement of Mg by Fe2++ Mn and Si by AlIV. During metamorphism the amount of deformation due to shearing has affected the degree of compositional discontinuity in the actinolite-hornblende series and the compositional gap is most pronounced in the epidote amphibolite. The coexisting actinolite-hornblende do not represent an equilibrium pair as textural relations indicate that the actinolitic amphiboles are relics. It is suggested that shearing deformation during uplift has caused an overstepping of the changing physico-chemical conditions of metamorphism so that compositional readjustment of amphiboles was not achieved. Equilibrium-disequilibrium actinolite-hornblende pairs are discussed from other localities where rocks of basaltic composition have been metamorphosed.  相似文献   

18.
Experiments from 640 to 680?°C, 200 MPa H2O at?f O2?≈?NNO, employing a natural?F-rich?vitrophyric rhyolite from Spor Mountain, Utah, assessed the effect of variable Mg′ [100Mg/(Mg?+?Mn?+?Fe)] on the partitioning of fluorine and chlorine between biotite (Bt) and melt. Over this temperature interval, Bt (?±?fluorite, ?±?quartz) is the sole liquidus phase. Partition coefficients for fluorine between biotite and glass (DF Bt/melt) show a strong dependence on the Mg′ of Bt.?DF Bt/melt varies from???1.5 to 7.2 over the range of Mg′ from 21 to 76. A strong linear correlation between?DF Bt/melt?and Mg′ has a slope of 9.4 and extrapolates through the origin (i.e., DF Bt/melt?≈?0 at Mg′?=?0, an annite-siderophyllite solid solution in these experiments). DCl Bt/melt values (???1 to 6) in the same experiments vary inversely with Mg′. The Al-content of biotite does not vary with the aluminum saturation index (ASI?=?molar Al2O3/Σ alkali and alkaline earth oxides) of melt, but two exchange mechanisms involving Al appear to operate in these micas: (1) Alvi?+?Aliv?? Siiv?+?Mgiv, and Mgiv?+?2Aliv? 2Siiv?+?□iv. The effects of other components such as Li or other intensive parameters including f O2 have yet to be evaluated?systematically. At comparable Mg′ of Bt, however, the Spor Mountain rhyolite yields higher DF Bt/melt values than an Li-rich, strongly peraluminous melt previously investigated. The results indicate that the Mg′ of Bt exerts the principal control on halogen partitioning, with ASI and T as second-order variables. The experimental partition coefficients compare well with other experimental results but not with most volcanic rocks. Magmatic Bt from most rhyolites records higher DF Bt/melt due to reequilibration with degassed (H2O-depleted) magma and perhaps with F2O?1 exchange that may accompany oxidation ([Fe3+O] [Fe2+OH]?1). This behavior is evident in magmatic biotite from a zoned peraluminous rhyolite complex near Morococala, Bolivia: Bt is sharply zoned with F-rich rims, but Bt(core)-melt inclusion pairs fall on our experimental curve for DF Bt/melt. These experimental data can be used in part to assess the preservation of magmatic volatile contents in plutonic or volcanic silicic rocks. For plutonic rocks, the actual F-content of melt, not a relative activity ratio involving HF species, can be reasonably estimated if the mica has not undergone subsolidus reequilibration. This information is potentially useful for some shallow-level Ca-poor magmas that are thought to be rich in F (e.g., A- and S-type granites) but do not conserve F well as rocks.  相似文献   

19.
The precambrian postorogenic pluton of the Fort-Trinquet area (Northern Mauretania) is composed by a series of granitic rocks in which amphiboles are the characteristic mafic minerals. Twenty six amphiboles have been separated and chemically analysed; the optical properties and the unit-cell data are also given.The crystallographic and chemical differences between these minerals reflect the variations in bulk composition of the host-rocks. In the plutonic suite, two igneous trends have been recognized: 1) a granitic trend (quartz monzonite-adamellite-granite) and 2) a syenitic trend (syenite-quartz bearing syenite-alkali granite). The amphiboles of the first trend belong to the tremolite-hastingsite series; they become richer in hastingsite mole with increasing proportion of quartz and decreasing Mg/(Mg+Fe) ratio in the rocks. The granitoids of the second trend are characterized by the occurrence of two amphiboles: a primary prismatic green-coloured actinolitic hornblende generally surrounded by a dark blue rim of riebeckite composition; the riebeckite may also form some acicular crystals associated to needles of stilpnomelane. These coexisting amphiboles would result from autometasomatic reactions which affected the rocks of the syenitic trend and which gave rise to the late alkali pegmatites where the constituent is a low arfvedsonitic riebeckite. The major substitutions involved in that amphibole transformation are Nax R3+Cax R2+ and NaxSiCaxAlIV.Comparison with experimental data allows to estimate the physical conditions during the emplacement and the tardimagmatic evolution of this granitoid series.  相似文献   

20.
本文通过研究青海尕林格矽卡岩型铁矿床内成矿阶段富Cl角闪石的矿物学特征,来反演岩浆-流体-矿物三者间的演化关系。尕林格富Cl角闪石应属于镁绿钙闪石亚族,化学成分特征显示:0.3Mg/(Mg+Fe2+)0.69,Si6.25apfu,0.681%Cl3.161%。XCl与XMg显示具有很好的负相关性,而XK和X2+Fe则与XCl显示具有正相关性。这些阴阳离子间的线性关系与角闪石的晶体结构特征密切相关。对于Cl-交代OH-进入角闪石分子结构可以用经验公式表示为ln(XCl/XOH)amp=ln(fCl/fOH)fluid+A·[4]Al·Fe2+/RT+B/RT,其中A和B为常数。因此,当所有富Cl角闪石的成分与流体在同一温度和相对不变fCl/fOH下平衡时,则角闪石中的ln(XCl/XOH)对其成分[4]Al·Fe2+投影应为线性关系,这一特点可理解为阳离子成分对Cl的加入的影响随流体成分的改变而改变。尕林格富Cl角闪石环带成分从核部到边部具有XCl先降低后升高的特点,这与OH-比Cl-更易交代进入分子结构有关。当角闪石和与之平衡的流体进入相对封闭环境时,随着角闪石的结晶,流体中Cl的含量逐渐增加导致角闪石环带边缘XCl明显比核部高。晶体和液体间的微量元素分异不仅受到晶体结构的控制,而且流体中的挥发分也是控制微量元素分异的主要因素。富Cl角闪石中Cl的含量对REE的分异同样也有影响,REE元素的分配系数随着流体中Cl含量的降低而升高。通常认为硅酸质岩浆早期结晶分异出来的高温高盐度流体是重要的载矿流体,因其含有大量的Cl-并且pH值较低,有利于Fe的Cl络合物进行长期迁移。当流体遇到偏碱性的碳酸盐地层导致流体pH值升高,或与天水混合形成低温低盐度流体时,Fe的Cl络合物就会发生解离沉淀。而此时流体中fOH升高,从而导致OH-交代进入早期矽卡岩矿物中形成角闪石等退化蚀变矿物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号