首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neogene (N 1 2 -N 2 1 ?) K-Na alkaline rocks were found in western Kamchatka as a subvolcanic basanite body at Mount Khukhch. The basanites have a microphyric texture with olivine phenocrysts in a fine-grained doleritic groundmass. The olivine contains inclusions of Al-Cr spinel. The microlites consist of clinopyroxene, plagioclase, magnetite, and apatite, and the interstitial phases are leucite, nepheline, and analcime. The Mount Khukhch basanites are characterized by elevated concentrations of MgO, TiO2, Na2O, and K2O, high concentrations of Co, Ni, Cr, Nb, Ta, Th, U, LREE (LaN/YbN = 10.8?12.6, DyN/YbN = 1.4?1.6) at moderate concentrations of Zr, Hf, Rb, Ba, Sr, Pb, and Cu. The values of indicator trace-element ratios suggest that basanites in western Kamchatka affiliate with the group of basaltoids of the within-plate geochemical type: Ba/Nb = 10?12, Sr/Nb = 17?18, Ta/Yb = 1.3?1.6. The basanites of western Kamchatka show many compositional similarities with the Miocene basanites of eastern Kamchatka, basanites of some continental rifts, and basalts of oceanic islands (OIB). The geochemistry of these rocks suggests that the basanite magma was derived via the ~6% partial melting of garnet-bearing peridotite source material. The crystallization temperatures of the first liquidus phases (olivine and spinel) in the parental basanite melt (1372–1369°C) and pressures determined for the conditions of the “mantle” equilibrium of the melt (25–26 kbar) are consistent with the model for the derivation of basanite magma at the garnet depth facies in the mantle. The geodynamic environment in which Neogene alkaline basaltic magmas occur in western Kamchatka was controlled by the termination of the Oligocene—Early Miocene subduction of the Kula oceanic plate beneath the continental margin of Kamchatka and the development of rifting processes in its rear zone. The deep faulting of the lithosphere and decompression-induced magma generation simultaneous with mantle heating at that time could be favorable for the derivation of mantle basite magmas.  相似文献   

2.
In the North Bavarian Basement (FR Germany) as well as in the Thuringian Forest (GDR) both of which belonging to the Saxothuringian Zone antimony mineralizations have been worked up to the early fifties. Mineralogical and geological investigations led to the following classification of antimony ore deposits and -concentrations:
  1. Stratabound and stratiform fahlore (Fahlerz) mineralization in Silurian and Lower Devonian black shales.
  2. Sulphosalt- and stibnite-bearing veins (partly associated with native gold) in wall rocks of the Late Variscan granites.
  3. Monometallic and monomineralic antimony lodes along anticlinal structures.
  4. Sulphosalt-bearing lead-zinc veins.
Antimony in the black shales was concentrated during late diagenetic cementation along with copper. The sulpho-salt-bearing stibnite veins in the metamorphic country rocks of the granites are genetically associated with the granitic intrusions nearby. This is proved by trace element chemistry and structural as well as mineralogical features of those veins. U/Pb age dating of contemporaneous pitchblende from the »polymetallic uranium paragenesis« from Hoehensteinweg uranium deposit yielded a late Variscan age of formation for these veins of type 2. Early Paleozoic rocks (metavolcanics) are suggested to have been the parent material for these granite-related Sb concentrations. However the monotonous Sb veins are more akin to the basic protore in deeper crustal sections. The thermal aureole of a deep-seated heat source is preserved by the Ag/Sb ratio of galena in Pb-Zn veins (type 4), which shows a marked variation along the SW plunging Berga Anticline from increased Ag/Sb ratios near the core of the anticline towards reduced values in mining sites more peripheral to this fold structure. Pb isotopes of stibnite as well as Pb sulphides point to a crustal derivation of both elements. An in-situ re-deposition and leaching of Sb from the wall rocks as well as antimoniferous black shales may be ruled out. It has to be emphasized that intra-crustal mass movements (A subduction) and the late Vanscan igneous activity are the major factors controling release of Sb from the Early Paleozoic low metal concentrations within metavolcanic rocks and subsequent discharge of Sb-bearing fluids within joints and fractures related to late Variscan tectonic movements. A schematic exploration concept is outlined.  相似文献   

3.
Germanium geochemistry and mineralogy   总被引:1,自引:0,他引:1  
  相似文献   

4.
This paper discusses mineralogy of Ca-rich inclusions in ultra-deep (sublithospheric) diamonds. It was shown that most of the Ca-rich majoritic garnets are of metabasic (eclogitic) affinity. The observed variation in major and trace element composition is consistent with variations in the composition of the protolith and the degree of enrichment or depletion during interaction with melts. Major and trace element compositions of the inclusions of Ca minerals in ultra-deep diamonds indicate that they crystallized from Ca-carbonatite melts that were derived from partial melting of eclogite bodies in deeply subducted oceanic crust in the transition zone or even the lower mantle. The occurrence of merwinite or CAS inclusions in ultra-deep diamonds can serve as mineralogical indicators of the interaction of metaperidotitic and metabasic mantle lithologies with alkaline carbonatite melts. The discovery of the inclusions of carbonates in association with ultra-deep Ca minerals can not only provide additional support for their role in the diamond formation process but also help to define additional mantle reservoirs involved in global carbon cycle.  相似文献   

5.
Summary The Jinchuan deposit is a platinum group element (PGE)-rich sulfide deposit in China. Drilling and surface sampling show that three categories of platinum group element (PGE) mineralization occur; type I formed at magmatic temperatures, type II occurs in hydrothermally altered zones of the intrusion, and type III in sheared dunite and lherzolite. All ore types were analyzed for Os, Ir, Ru, Rh, Pd, Pt and Au, as well as for Cu, Ni, Co and S. Type I ore has (Pt + Pd)/(Os + Ir + Ru + Rh) ratios of <7 and relatively flat chondrite-normalized noble metal patterns; the platinum group minerals (PGM) are dominated by sperrylite and moncheite associated with chalcopyrite, pyrrhotite and pentlandite. Type II has (Pt + Pd)/(Os + Ir + Ru + Rh) ratios from 40 to 330 and noble metal distribution patterns with a positive slope; the most common PGM are sperrylite and Pd bismuthotelluride phases concentrated mostly at the margins of base metal sulfides. Type III ores have the highest (Pt + Pd)/(Os + Ir + Ru + Rh) ratios from 240 to 710; the most abundant PGM are sperrylite and phases of the Pt–Pd–Te–Bi–As–Cl system. It is concluded that the Jinchuan deposit formed as a result of primary magmatic crystallization followed by hydrothermal remobilization, transport, and deposition of the PGE.  相似文献   

6.
Pallasites are highly differentiated meteorites and provide a unique sample from the deep interiors of solar system parent bodies. They contain evidence of the former existence of one or more residual melts. Olivine is a major phase. Its primary shape is rounded; the angular crystals in many pallasites are secondary. Tubular inclusions are widespread. They perhaps are the residence of CO2, released during laboratory heating experiments. Phosphoran olivine, a new variety of olivine containing 4–5 wt% P2O5, occurs in a few pallasites. Its Fe/Mg ratio is apparently independent of the host olivine composition.Pyroxene (not previously described from pallasites) occurs in symplectic intergrowths in seven meteorites. Compositionally, it lies in the gap between pyroxenes in chondrites and most irons. There are two groups: Fs11.6 ± 0.2 and Fs16.7 ± 0.2 The pyroxene contains exceptionally low Ca (< 0.1–0.2 wt%) and there is an indication of an inverse relation between Fe and Ca.Modal analyses and density measurements were made on all available specimens and bulk compositions were calculated. The ‘average’ pallasite contains 65 vol. % olivine and 50.5 wt % total Fe. Many of the densities of pallasites cluster around that calculated for close-packed olivine.Pallasites are exotic cumulates. Their textures resemble terrestrial cumulates, as does the presence of olivine and chromite. The metal texture resembles a solidified intercumulus liquid. Those pallasites containing olivine in excess of close-packing were subjected to adcumulus growth, thereby also explaining the widespread mutual borders.There is abundant evidence of deformation. For olivines this includes their fragmental shape and kink banding. Troilite formed a eutectic-like melt with kamacite: pieces of spalled olivine and schreibersite were injected into and captured by this melt. Troilite polycrystallinity resulted from the deformation. This deformation occurred while the pallasites were still deeply buried, resulting in incipient spheroidization of olivine fragments, including the formation of elongate, rounded crystals. A later, lower temperature deformation disrupted plessite.Pallasites formed in multiple parent bodies by processes that recurred in several places within the solar system, as shown by the mineralogical and textural similarities between pallasites that differ in their isotopic and trace element compositions. Type IIIB irons still seem the most likely associated meteorites.Two new pallasites, Dora and Rawlinna, are described briefly.  相似文献   

7.
地幔矿物中CO2流体包裹体的微量元素特征   总被引:6,自引:2,他引:6  
本文在镜下观测基础上,挑选富含CO2包裹体的地幔橄榄岩的橄榄石、斜方辉石和单斜辉石样品,运用热爆法提取和ICP—MS技术,直接测定了单矿物中CO2流体包裹体的稀土和微量元素含量。在同样条件下,采用四极质谱法测定了CO2等气相成分,并以CO2含量为参考值,得出流体中的微量元素相对含量。热爆样品的显微镜观测表明,靠近颗粒表面的较大的CO2包裹体在1000℃爆裂时均已破裂,所测定的REE和其他微量元素主要来自CO2包裹体。CO2流体/球粒陨石标准化的REE数据表明,地幔CO2流体相对于地幔岩或地幔矿物而言,富集稀土元素,特别是轻稀土元素,LREE/HREE为1.53~11.96,REE分馏程度较大,(La/Yb)N一般大于1。CO2流体/上地幔岩石标准化值研究表明,除Co、Ni外,铁族元素在地幔流体中趋于贫化;Cu、Mo、W、Bi、Ag等热液矿床的重金属成矿元素在地幔CO2流体中富集。  相似文献   

8.
The iron mineralization is hosted in carbonate beds of the Garagu Formation (Early Cretaceous) at Gara Mountain, Duhok Governorate, Kurdistan Region, NE Iraq. The Garagu Formation is composed of a series of limestone and siltstone beds with iron-rich beds in the middle part. The iron-rich limestones are iron-rich oolitic grainstone and bioclastic wackestone with hematite and goethite minerals. Geochemical results drawn from this study indicate that the percentage of iron in these beds reaches 19.73 %. Moreover, petrographical investigation of thin and polished sections reveals the presence of different types of fossils, indicating an open marine interior platform depositional environment. Different iron minerals, including hematite, goethite, siderite, pyrite and magnetite, were identified in the sections, and their geneses were related to syngenetic and diagenetic processes. The geochemical distribution of major and trace elements, as well as the V/Ni, V/(V+Ni), V/Cr and Sr/Ba ratios, indicates a reducing environment during the precipitation of carbonate sediments and a subsequent oxidizing condition during the concentration of iron minerals via diagenesis.  相似文献   

9.
Two weathering profiles developed over disseminated Cu mineralization hosted by granodiorites (porphyry type) and felsic volcanics respectively, in a savannah tropical environment (Burkina Faso) have been studied in detail. A mineralogical and geochemical study was carried out in order to determine the characteristics of both profiles and the behaviour of Cu in such deeply weathered environments. Our investigation was focused on the upper part of the weathering profile, respectively 4.0 and 10.5 m below the surface.The mineralogical study reveals that in the first case (profile A) the predominant clay minerals are smectites and kaolinite while in the second (profile B) a more kaolinitic composition is indicative of more severe leaching. In fact, field observations seem to demonstrate that the latter situation is more clearly related to an ancient lateritic-type weathering while the first one results from more recent processes.In both cases the Cu contents through the profiles are high (several thousands of ppm) and in good agreement with the grades obtained in depth, in the mineralized rock. Nevertheless, some leaching can be observed in the upper soil horizons, but the contents still remain highly anomalous, in the 1000 ppm range.It is shown that Cu is distributed in the main secondary minerals constituting the weathering products, whether they are silicates (smectites, phyllites, kaolinites) or oxides (goethite, hematite, Mn oxides).The main stable Cu-bearing mineral seems to be the kaolinite: indeed, smectites turn into kaolinite in the upper part of the profiles while goethite seems to be depleted in Cu under the same conditions.As concerns geochemical exploration, two observations can be noted. Firstly, Cu is very stable in such supergene environments, and secondly, the best size fraction in which to detect the Cu secondary dispersion haloes in soil or stream sediment samples is the <63 μ fraction, in terms of anomaly intensity or contrast.  相似文献   

10.
11.
安徽黄山花岗岩岩石学、矿物学及地球化学研究   总被引:10,自引:4,他引:10  
安徽黄山复式岩体位于扬子板块东南缘,江南陆内造山带内。黄山复式岩体由太平花岗闪长岩岩体和黄山花岗岩岩体组成。根据岩体的接触关系和各期次岩石的矿物学及岩石学特征,可以将黄山花岗岩岩体分为4个期次:第一期为中粒二长花岗岩;第二期为粗粒似斑状花岗岩;第三期为中细粒斑状花岗岩;第四期为粗粒含斑花岗岩。从矿物的组成上来看,各期次的岩石均为广义的花岗岩类,主要矿物以石英和长石为主,太平岩体和黄山岩体中的斜长石均表现出钠长石的特点,同时黄山岩体特征的出现条纹长石。各期次岩体均含有少量的铁白云母,显示出过铝质的特点。各期次岩石总体具有高硅(SiO2含量大于75%)、高碱(ALK含量大于7.9%)、低钙(CaO含量小于1%)及高FeOT/MgO比值(13~37)的特点。同时岩石强烈富集稀土元素(除Eu出现明显的负异常)、Zr、Hf、Nb等高场强元素,贫Ba、Sr、Ni,高10000×Ga/Al(比值大于2.6),这些特征均指示黄山复式岩体具有A型花岗岩的特点。通过Eby的判别图解将其进一步划分为A2型花岗岩,代表其形成于拉张的构造背景之下。结合Sm-Nd同位素特征(εNd(t)= -4. 2 ~ -5.6),确定黄山复式岩体的源区物质可能为一套元古宙的火山岩。同时稀土模拟结果表明,黄山岩体的原始岩浆是这种源区大约20%部分熔融的产物。岩体形成于斜向俯冲引发的陆内剪张环境内。  相似文献   

12.

胶东是我国最大的金矿集中区, 累计探明金资源量5000余吨, 焦家式蚀变岩型金矿床提供了80%以上的金资源量, 钾长石化和黄铁绢英岩化蚀变是该类矿床的重要找矿标志, 但对其成因与形成时限缺乏有效约束。为探究两类蚀变的成因并限定其形成年龄, 本文对典型蚀变岩型金矿床中钾长石化花岗岩与黄铁绢英岩化碎裂岩进行锆石和磷灰石LA-ICP-MS U-Pb地质年代学、磷灰石微区原位微量元素地球化学测试。结果表明, 钾长石化玲珑花岗岩的锆石U-Pb年龄为155.0±1.1Ma~155.8±1.3Ma, 代表了其岩浆侵位年龄; 钾长石化玲珑花岗岩蚀变弱的A1型磷灰石没能得到有效年龄, 而蚀变较强的A2型磷灰石U-Pb年龄为146±7Ma~147±6Ma, 代表了钾长石化蚀变作用发生的时间; 黄铁绢英岩化碎裂岩蚀变较弱的B1型磷灰石数量较少未形成协和年龄, 强蚀变B2型磷灰石U-Pb年龄为125±6Ma, 代表了黄铁绢英岩化蚀变作用发生的时间。A1型磷灰石的稀土配分曲线与未蚀变玲珑花岗岩较为一致, A2型磷灰石显示更高的轻稀土含量和更明显的Eu负异常, 随着钾长石化蚀变程度增强, La/Yb比值逐渐增大, Sr含量和Sr/Y比值同步降低, 暗示蚀变流体相对富轻稀土, 蚀变过程磷灰石的Sr被活化迁移; B1型磷灰石的稀土配分曲线与未蚀变玲珑花岗岩相似, B2型磷灰石和未蚀变郭家岭花岗岩较为一致, 轻重稀土分异明显, 且Eu异常不明显, 在黄铁绢英岩化蚀变过程中Sr含量、Sr/Y比值和La/Yb比值显著增高。本文认为与焦家式蚀变岩型金矿成矿相关的蚀变作用与区域岩浆作用有关, 晚侏罗世玲珑花岗岩的自交代作用形成了钾长石化蚀变, 早白垩世郭家岭花岗岩分异的热液沿区域性断裂迁移, 导致断裂带内发生黄铁绢英岩化。

  相似文献   

13.
In the nearshore area of northwestern Lake Victoria a thin strip of quartzarenite sand occurs which grades lakeward into silty clay consisting of quartz with subordinate amounts of K-feldspar, plagioclase, kaolinite, illite, vermiculite and organic matter. Varimax matrix determinations of the element concentrations in the lake-bottom sediments extractable by aqua regia indicate that: (1) there is a strong association of Cr, Cu, Zn and Ni; (2) there is a strong association of Fe, Mn and Co; (3) Cu and Ni show moderate to slight associations with organic matter; (4) Ca is relatively independent of the other elements. The general decrease in the pH values of the surface and bottom waters outward from the lake shore, with consistently higher values for the surface water relative to the bottom waters, results from decreasing levels of photosynthetic activity.  相似文献   

14.
15.
16.
17.
The Goushti iron deposit from Dehbid area located in the Sanandaj-Sirjan metamorphic Belt (SSB), SW Iran is hosted by the Early Mesozoic silicified dolomite. Mineralized zones are lithostructurally controlled and oriented NW-SE parallel to the Zagros Orogenic Belt (ZOB). Magnetite, the major ore mineral, occurs as open space fillings and is accompanied by the secondary mineral phases hematite, goethite and martite. Gangue minerals mainly include quartz, dolomite and K-feldspar are associated with minor hydrosilicates. Calc-silicates such as wollastonite and diopside, minerals typical of skarns, are virtually absent from the ore zones. Fe2O3 content in the mineralized zones varies in the range of 38–75 wt%. The concentrations of Au, Cu, P, Ti, Cr and V as well as Co/Ni, Cr/V, (LREE)/(HREE), Eu/Sm and La/Lu values and Eu-Ce anomalies of the studied ores indicate that the Goushti deposit is a hydrothermal magnetite type. The subvolcanic rhyolite and basalt in this area are regarded as the source of iron and heat in the mineralizing system. The fluid inclusion data showed that magnetite deposited from the ore-bearing fluid with salinities 1–7 wt% NaCl equivalent at temperatures of 130–200 °C. A decrease in temperature and pressure, supplemented by fluid mixing, is the major controlling factor in iron oxide precipitation. The field relationships and mineralogical–geochemical characteristics of iron ores indicate that the Goushti hydrothermal deposit could not be classified as a member of the IOCG (Iron Oxide-Copper-Gold) deposits.  相似文献   

18.
A laterite profile on serpentinite at Greenvale, Australia, has been investigated in order to elucidate the formation of the secondary minerals and the trace element behaviour during tropical weathering. Mineralogical and chemical studies indicate that the serpentine alters to montmorillonite, aluminous goethite, and quartz. Chromiferous chlorite, a stable component, becomes concentrated in the weathering profile. No members of the kaolin group or bauxite group were identified, and the alumina occurs chiefly in solid solution with the goethite. In the upper levels of the profile serpentine and mont-morillonite disappear completely, and the amount of alumina substituting in the goethite increases. With increasing depth the Fe2O3 and Al2O3 content falls, whereas SiO2 and MgO increase. This is in accordance with the usual trends of lateritic weathering. The trace elements Ni, Co, Mn, Cu and Cr are all concentrated during the weathering process. Evidence suggests that Ni is associated with goethite, and possibly is incorporated in the lattice of this mineral. No appreciable nickel is associated with the manganese minerals. The concentration of Cr takes place mainly through the increase of the stable chromiferous chlorite.
Ein Lateritprofil des Serpenitis von Greenvale, Australien, wurde hinsichtlich seines Mineral- und Spurengehaltes untersucht. Ausschlaggebend waren die durch die tropische Verwitterung entstandenen Sekundärmineralien. Mineralogische und chemische Untersuchungen lassen erkennen, daß aufgrund der Verwitterung die Serpentingesteine Umwandlungen in Montmorillonit, aluminiumhaltigen Goethit und Quarz zeigen. Minerale der Kaolin- oder Bauxitgruppen ließen sich nicht feststellen, da Aluminiumgehalte in Form fester Lösung im Goethit gebunden wurden; in höher gelegenen Profilen kommen Serpentine und Montmorillonit zum völligen Verschwinden. Mit zunehmender Tiefe nehmen Fe2O3- und Al2O3-Gehalte ab, während SiO2 und MgO ansteigen, analog zu Beobachtungen an bekannten lateritischen Verwitterungsprofilen. Im Zuge der Entstehung neuer Verwitterungsmineralien erfahren Elemente wie Nickel, Kobalt, Mangan, Kupfer und Chrom eine partielle Anreicherung. Z. B. wird Nickel in Eisenmineralien gebunden (Goethit), während chromhaltige Chlorite sich als stabil erweisen und sich bei der Verwitterung anreichern.
  相似文献   

19.
The Devonian Lake Boga Granite in northern Victoria, while almost entirely under thin Murray Basin cover, is one of the largest plutons in the western Lachlan Fold Belt. Its only exposure is a quarry penetrating the Cenozoic sediments. In the quarry, prominent pod pegmatites and miarolitic cavities suggest a high level of emplacement. The granite, a non-magnetic, fractionated S-type, contains a large range of accessory minerals, including primary uranium- and REE-bearing phosphates and oxides, and primary copper sulfides. Monazite-series minerals show an exceptionally wide range of compositions, from normal monazite-(Ce) through cheralite (Ca – Th-rich) to rare huttonitic monazite (Th-rich) and brabantite; U contents in monazite also vary widely (0 – 7.9 wt%). Primary low-Ca uraninites are well preserved and are unusual in having low Th/U and LREE. Late-stage cavity fluorapatite crystals up to several centimetres across show intricate elemental zoning patterns with extreme U gradients (<10 – 6900 ppm) in some crystals. New 40Ar – 39Ar ages for magmatic biotite, muscovite and K-rich feldspar average 365 ± 3 Ma, which approximates the emplacement age of the granite. This is supported by a 377 ± 12 Ma U – Th – Pb (CHIME) age for primary uraninite. New whole-rock geochemical data support earlier observations: the granite is strongly fractionated (SiO2 70.7 – 76.0 wt%; 4.2 – 0.6 wt% FeOt) and peraluminous (ASI = 1.23 – 1.45), and has slightly elevated Na2O and P2O5 (0.30 wt%) contents compared with other fractionated S-type granites from the Lachlan Fold Belt. Trace-element abundances are typical of fractionated granites, although U and Cu concentrations vary strongly and reach >60 and ≈1400 ppm, respectively. REE patterns also vary strongly, from LREE-enriched with moderate Eu depletion, to flat with strong Eu depletion. The flattest of the REE patterns, in samples with FeOtotal < 1%, are characterised by M-type tetrad effects. These and other samples also show low (subcrustal average) and variable Zr/Hf (35 – 16) and Nb/Ta (8 – 4) ratios; these and other unusual elemental fractionations are related to changes in elemental partitioning during the late magmatic stage, when felsic peraluminous magma and high-temperature magmatic fluid coexisted.  相似文献   

20.
Detailed mineralogical and chemical examination of some hundred rock samples representing the Permian red bed sequence of Southwest England has been carried out. Mineral—element correlations are presented and factor analysis of the chemical data shows that 80% of the variance can be explained by seven factors. Among these are recognised a clay factor; detrital minerals versus carbonate factor; halide and sulphate factors and a volcanic enrichment factor. The behaviour of elements in the strong oxidising environment associated with red bed deposition is discussed. In particular, zirconium is shown to be enriched in red bed clays, reflecting solution from the source area. Cerium, in its oxidised state as Ce4+ is shown to be strongly correlated with the carbonate phase, indicating its tendency to form relatively stable carbonate complexes. Strontium is positively correlated with the clays and negatively correlated with carbonate, while sulphur (as SO42?) is associated with carbonate usually in the form of barytes. The origin of the red pigment is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号