首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exploration for and exploitation of deep Lower Rotliegend gasfields onshore in North Germany often suffers from poor surface seismic imaging. This is owing to the depth of the reservoirs and a thick and complex Zechstein salt overburden. RWE Dea conducted a 3D vertical seismic profile (VSP) survey in a low‐performing production well after the borehole was plugged near total depth. Our main objective was to improve the seismic image of the reservoir zone in the vicinity of the well to determine a new landing point for a planned sidetrack. Because acquisition was in a densely populated and also partially environmentally protected area, there were surface restrictions concerning source deployment. Additionally, due to the complex geological setting, we conducted two 2D VSP field tests and thorough pre‐survey modelling to achieve the best results in terms of seismic imaging, environmental impact and reasonable cost. Deformation bands in the drill core suggest that the initial well was drilled close to a major fault, which was regarded as the main reason for the disappointing production rate. Therefore, we put special emphasis on fault detection in our processing and interpretation. Our interpretation approach used an enhanced structural mapping workflow that helped to design a sidetrack. When the sidetrack was drilled two years later, it ended up being one of the most productive wells in the field.  相似文献   

2.
We have developed a straightforward and ray based methodology to estimate both the maximum offset and reflection imaging radius for multi‐layered velocity models, which can be used for a 2D/3D VSP survey design. Through numerical examples, we demonstrate that the presence of a high‐velocity layer above a target zone significantly reduces the maximum offset and reflection imaging radius. Our numerical examples also show that including in a migration VSP data acquired beyond a recommended maximum offset, radically degrades the quality of the final VSP image. In addition, unlike the conventional straight‐line based approximation that often produces an incorrect large reflection imaging radius, our methodology predicts the VSP imaging radius with more accuracy than does the conventional approximation.  相似文献   

3.
Monitoring of induced seismicity is gaining importance in a broad range of industrial operations from hydrocarbon reservoirs to mining to geothermal fields. Such passive seismic monitoring mainly aims at identifying fractures, which is of special interest for safety and productivity reasons. By analysing shear‐wave splitting it is possible to determine the anisotropy of the rock, which may be caused by sedimentary layering and/or aligned fractures, which in turn offers insight into the state of stress in the reservoir. We present a workflow strategy for automatic and effective processing of passive microseismic data sets, which are ever increasing in size. The automation provides an objective quality control of the shear‐wave splitting measurements and is based on characteristic differences between the two independent eigenvalue and cross‐correlation splitting techniques. These differences are summarized in a quality index for each measurement, allowing identification of an appropriate quality threshold. Measurements above this threshold are considered to be of good quality and are used in further interpretation. We suggest an automated inversion scheme using rock physics theory to test for best correlation of the data with various combinations of fracture density, its strike and the background anisotropy. This fully automatic workflow is then tested on a synthetic and a real microseismic data set.  相似文献   

4.
Borehole seismic addresses the need for high‐resolution images and elastic parameters of the subsurface. Full‐waveform inversion of vertical seismic profile data is a promising technology with the potential to recover quantitative information about elastic properties of the medium. Full‐waveform inversion has the capability to process the entire wavefield and to address the wave propagation effects contained in the borehole data—multi‐component measurements; anisotropic effects; compressional and shear waves; and transmitted, converted, and reflected waves and multiples. Full‐waveform inversion, therefore, has the potential to provide a more accurate result compared with conventional processing methods. We present a feasibility study with results of the application of high‐frequency (up to 60 Hz) anisotropic elastic full‐waveform inversion to a walkaway vertical seismic profile data from the Arabian Gulf. Full‐waveform inversion has reproduced the majority of the wave events and recovered a geologically plausible layered model with physically meaningful values of the medium.  相似文献   

5.
Most sedimentary rocks are anisotropic, yet it is often difficult to accurately incorporate anisotropy into seismic workflows because analysis of anisotropy requires knowledge of a number of parameters that are difficult to estimate from standard seismic data. In this study, we provide a methodology to infer azimuthal P‐wave anisotropy from S‐wave anisotropy calculated from log or vertical seismic profile data. This methodology involves a number of steps. First, we compute the azimuthal P‐wave anisotropy in the dry medium as a function of the azimuthal S‐wave anisotropy using a rock physics model, which accounts for the stress dependency of seismic wave velocities in dry isotropic elastic media subjected to triaxial compression. Once the P‐wave anisotropy in the dry medium is known, we use the anisotropic Gassmann equations to estimate the anisotropy of the saturated medium. We test this workflow on the log data acquired in the North West Shelf of Australia, where azimuthal anisotropy is likely caused by large differences between minimum and maximum horizontal stresses. The obtained results are compared to azimuthal P‐wave anisotropy obtained via orthorhombic tomography in the same area. In the clean sandstone layers, anisotropy parameters obtained by both methods are fairly consistent. In the shale and shaly sandstone layers, however, there is a significant discrepancy between results since the stress‐induced anisotropy model we use is not applicable to rocks exhibiting intrinsic anisotropy. This methodology could be useful for building the initial anisotropic velocity model for imaging, which is to be refined through migration velocity analysis.  相似文献   

6.
This paper presents a new explicit method for the estimation of layered vertical transverse isotropic (VTI) anisotropic parameters from walkaway VSP data. This method is based on Dix‐type normal moveout (NMO) inversion. To estimate interval anisotropic parameters above a receiver array, the method uses time arrivals of surface‐related double‐reflected downgoing waves. A three‐term NMO approximation function is used to estimate NMO velocity and a non‐hyperbolic parameter. Assuming the vertical velocity is known from zero‐offset VSP data, Dix‐type inversion is applied to estimate the layered Thomsen anisotropic parameters ?, δ above the receivers array. Model results show reasonable accuracy for estimates through Dix‐type inversion. Results also show that in many cases we can neglect the influence of the velocity gradient on anisotropy estimates. First breaks are used to estimate anisotropic parameters within the walkaway receiver interval. Analytical uncertainty analysis is performed to NMO parameter estimates. Its conclusions are confirmed by modelling.  相似文献   

7.
The geological storage of carbon dioxide is considered as one of the measures to reduce greenhouse gas emissions and to mitigate global warming. Operators of storage sites are required to demonstrate safe containment and stable behaviour of the storage complex that is achieved by geophysical and geochemical monitoring, combined with reservoir simulations. For site characterization, as well as for imaging the carbon dioxide plume in the reservoir complex and detecting potential leakage, surface and surface‐borehole time‐lapse seismic monitoring surveys are the most widespread and established tools. At the Ketzin pilot site for carbon dioxide storage, permanently installed fibre‐optic cables, initially deployed for distributed temperature sensing, were used as seismic receiver arrays, demonstrating their ability to provide high‐resolution images of the storage formation. A vertical seismic profiling experiment was acquired using 23 source point locations and the daisy‐chained deployment of a fibre‐optic cable in four wells as a receiver array. The data were used to generate a 3D vertical seismic profiling cube, complementing the large‐scale 3D surface seismic measurements by a high resolution image of the reservoir close to the injection well. Stacking long vibro‐sweeps at each source location resulted in vertical seismic profiling shot gathers characterized by a signal‐to‐noise ratio similar to gathers acquired using geophones. A detailed data analysis shows strong dependency of data quality on borehole conditions with significantly better signal‐to‐noise ratio in regions with good coupling conditions.  相似文献   

8.
A two-dimensional walkaway vertical seismic profiling survey using distributed acoustic sensing was conducted at an onshore site in Japan. The maximum depth and the deviation of the observation well were more than 4,000 m and 81 degrees, respectively. Among the several methods for installing fibre optic cables, we adopted the inside coiled tubing method, in which coiled tubing containing a fibre optic cable is deployed. The signal-to-noise ratio of the raw shot gather was low, possibly due to poor coupling between the fibre optic cable and the subsurface formation resulting from the fibre optic cable deployment method and the existence of considerable tubewave noise. Nevertheless, direct P-wave arrivals, P–P reflections and P–S converted waves exhibited acceptable signal-to-noise ratios after careful optimization of gauge length for distributed acoustic sensing optical processing and the application of carefully parameterized tubewave noise suppression. One of the challenges in current distributed acoustic sensing vertical seismic profile data processing is the separation of P- and S-waves using only one-component measurements. Hence, we applied moveout correction using two-dimensional ray tracing. This process effectively highlights only reflected P-waves, which are used in subsequent subsurface imaging. Comparison with synthetic well seismograms and two-dimensional surface seismic data confirms that the final imaging result has a sufficiently high quality for subsurface monitoring. We acquired distributed acoustic sensing vertical seismic profile data under both flowing conditions and closed conditions, in which the well was shut off and no fluid flow was allowed. The two imaging results are comparable and suggest the possibility of subsurface imaging and time-lapse monitoring using data acquired under flowing conditions. The results of this study suggest that, by adopting the inside coiled tubing method without drilling a new observation well, more affordable distributed acoustic sensing vertical seismic profile monitoring can be achieved in fields such as CO2 capture and storage and unconventional shale projects, where monitoring costs have to be minimized.  相似文献   

9.
The study of seismic anisotropy in exploration seismology is gaining interest as it provides valuable information about reservoir properties and stress directions. In this study we estimate anisotropy in a petroleum field in Oman using observations of shear‐wave splitting from microseismic data. The data set was recorded by arrays of borehole geophones deployed in five wells. We analyse nearly 3400 microearthquakes, yielding around 8500 shear‐wave splitting measurements. Stringent quality control reduces the number of reliable measurements to 325. Shear‐wave splitting modelling in a range of rock models is then used to guide the interpretation. The difference between the fast and slow shear‐wave velocities along the raypath in the field ranges between 0–10% and it is controlled both by lithology and proximity to the NE‐SW trending graben fault system that cuts the field formations. The anisotropy is interpreted in terms of aligned fractures or cracks superimposed on an intrinsic vertical transversely isotropic (VTI) rock fabric. The highest magnitudes of anisotropy are within the highly fractured uppermost unit of the Natih carbonate reservoir. Anisotropy decreases with depth, with the lowest magnitudes found in the deep part of the Natih carbonate formation. Moderate amounts of anisotropy are found in the shale cap rock. Anisotropy also varies laterally with the highest anisotropy occurring either side of the south‐eastern graben fault. The predominant fracture strikes, inferred from the fast shear‐wave polarizations, are consistent with the trends of the main faults (NE‐SW and NW‐SE). The majority of observations indicate subvertical fracture dip (>70° ). Cumulatively, these observations show how studies of shear‐wave splitting using microseismic data can be used to characterize fractures, important information for the exploitation of many reservoirs.  相似文献   

10.
In this paper, we present results from the analysis of a multicomponent VSP from a fractured gas reservoir in the Bluebell-Altamont Field, Utah. Our analysis is focused on frequency-dependent anisotropy. The four-component shear-wave data are first band-pass filtered into different frequency bands and then rotated to the natural coordinates so that the fast and slow shear-waves are effectively separated. We find that the polarisations of the fast shear-waves are almost constant over the whole depth interval, and show no apparent variation with frequency. In contrast, the time delays between the split shear-waves decrease as the frequency increases. A linear regression is then applied to fit the time-delay variations in the target and we find that the gradients of linear fits to time delays show a decrease as frequency increases. Finally, we apply a time-frequency analysis method based on the wavelet transform with a Morlet wavelet to the data. The variation of shear-wave time delays with frequency is highlighted in the time-delay and frequency spectra. We also discuss two mechanisms giving rise to dispersion and frequency-dependent anisotropy, which are likely to explain the observation. These are scattering of seismic waves by preferentially aligned inhomogeneneities, such as fractures or fine layers, and fluid flow in porous rocks with micro-cracks and macro-fractures.  相似文献   

11.
Azimuthal anisotropy in lithosphere on the Chinese mainland from observations of SKS at CDSN(郑斯华)(高原)Azimuthalanisotropyinlit...  相似文献   

12.
冯力理  陈运泰  雷军 《地震学报》2014,36(6):981-996
利用非洲台阵(Africa Array)最新的地震记录,通过测量远震SKS震相的分裂参数,详细分析了非洲中东部地区地球介质各向异性可能的成因,包括随应力场变化定向排布的裂隙和岩浆透镜体,以及橄榄石晶格的定向排布等. 结果表明,现今上地幔流动导致的橄榄石晶格定向排布是其各向异性的主要成因,该结果与250 km深度的地幔流动模型一致. 对于少数台站出现的异常结果,则尝试用D″各向异性和双层各向异性模型来解释,并在此基础上讨论了D″各向异性的研究意义.   相似文献   

13.
At the CO2CRC Otway geosequestration site, the abundance of borehole seismic and logging data provides a unique opportunity to compare techniques of Q (measure of attenuation) estimation and validate their reliability. Specifically, we test conventional time-domain amplitude decay and spectral-domain centroid frequency shift methods versus the 1D waveform inversion constrained by well logs on a set of zero-offset vertical seismic profiles. The amplitude decay and centroid frequency shift methods of Q estimation assume that a seismic pulse propagates in a homogeneous medium and ignore the interference of the propagating wave with short-period multiples. The waveform inversion explicitly models multiple scattering and interference on a stack of thin layers using high-resolution data from sonic and density logs. This allows for stable Q estimation in small depth windows (in this study, 150 m), and separation of the frequency-dependent layer-induced scattering from intrinsic absorption. Besides, the inversion takes into account band-limited nature of seismic data, and thus, it is less dependent on the operating frequency bandwidth than on the other methods. However, all considered methods of Q estimation are unreliable in the intervals where subsurface significantly deviates from 1D geometry. At the Otway site, the attenuation estimates are distorted by sub-vertical faults close to the boreholes. Analysis of repeated vertical seismic profiles reveals that 15 kt injection of the CO2-rich fluid into a thin saline aquifer at 1.5 km depth does not induce detectable absorption of P-waves at generated frequencies 5–150 Hz, most likely because the CO2 plume in the monitoring well is thin, <15 m. At the Otway research site, strong attenuation Q ≈ 30–50 is observed only in shaly formations (Skull Creek Mudstone, Belfast Mudstone). Layer-induced scattering attenuation is negligible except for a few intervals, namely 500–650 m from the surface, and near the injection interval, at around 1400–1550 m, where Qscat ≈ 50–65.  相似文献   

14.
Permanent downhole sensors provide the eyes and ears to the reservoir and enable monitoring the reservoir conditions on a real‐time basis. In particular, the use of sensors and remotely controlled valves in wells and on the surface, in combination with reservoir flow models provide enormous benefits to reservoir management and oil production. We suggest borehole radar measurements as a promising technique capable to monitor the arrival of undesired fluids in the proximity of production wells. We use 1D modelling to investigate the expected signal magnitude and depth of investigation of a borehole radar sensor operating in an oilfield environment. We restrict the radar applicability to environments where the radar investigation depth can fit the reservoir size necessary to be monitored. Potential applications are steam chamber monitoring in steam assisted gravity drainage processes and water front monitoring in thin oil rim environments. A more sophisticated analysis of the limits of a radar system is carried out through 2D finite‐difference time‐domain simulations. The metal components of the wellbore casing can cause destructive interference with the emitted signal. A high dielectric medium surrounding the production well increases the amplitude of the signal and so the radar performance. Other reservoir constraints are given by the complexity of the reservoir and the dynamic of the fluids. Time‐lapse changes in the heterogeneity of the background formation strongly affect the retrieval of the target reflections and gradual fluid saturation changes reduce the amplitudes of the reflections.  相似文献   

15.
汶川地震余震序列的地震各向异性   总被引:18,自引:17,他引:18       下载免费PDF全文
利用2008年5月12日汶川地震震源区及周边地震台站记录的余震序列资料,使用剪切波分裂系统分析法,分析了汶川地震发震构造龙门山断裂带及周边地区的地壳各向异性特征,推断了地壳最大主压应力方向及空间分布特征.研究结果表明:大致以安县为界,位于龙门山北东段的台站快剪切波的偏振方向为北东向,与断裂带走向一致;而位于龙门山西南段的台站快剪切波的偏振方向为北西向,与断裂带走向垂直;这个特征同样揭示出龙门山断裂带西南段逆冲、北东段带有明显走滑性质的特征.研究还显示,靠近龙门山与鲜水河、安宁河小江断裂交汇区附近的台站快剪切波的偏振方向表现比较离散,这可能是由震源区局部的复杂地质构造引起,与该地区复杂的主压应力方向特点一致.  相似文献   

16.
Two-dimensional elastic full waveform inversion was applied to two lines extracted from a spiral three-dimensional vertical seismic profile data acquired in an oilfield offshore, Abu Dhabi, in the United Arab Emirates. The lines were selected to be parallel and perpendicular to the plane defined by the deviated borehole. The purpose of the inversion was to derive high-resolution elastic properties of the subsurface. After pre-processing, the data were band-pass filtered with a minimum frequency of 3.5 Hz and a maximum frequency of 30 Hz. A sequential inversion approach was used to mitigate non-linearity. The pre-processing of the data consisted in the removal of bad traces, followed by amplitude and phase corrections. High-resolution P- and S-wave velocity models that show good correlations with the available sonic logs were obtained. The results of the inversion suggest that the oilfield consists of a stack of layers with varying lithology, porosity and possibly fluid content.  相似文献   

17.
We present a seismic Test Line, provided by Saudi Aramco for various research teams, to highlight a few major challenges in land data processing due to near‐surface anomalies. We discuss state‐of‐the‐art methods used to compensate for shallow distortions, including single‐layer, multilayer, plus/minus, refraction and tomostatics methods. They are a starting point for the new technologies presented in other papers, all dealing with the same challenging data described here. The difficulties on the Test Line are mostly due to the assumption of vertical raypaths, inherent in classical applications of near‐surface correction statics. Even the most detailed velocity/depth model presents difficulties, due to the compleX‐raypath. There is a need for methods which are based on more complex models andtheories.  相似文献   

18.
本研究收集了中国东北地区2008—2016年九年时间内207个固定地震台站和127个NECESSArray流动地震台站的波形资料,利用SKS波分裂的最小切向能量网格搜索方法获得了243个台站的有效分裂结果.研究结果显示,尽管研究区各向异性快波方向基本以NW-SE向为主,但无论是在快波方向上还是快慢波时间延迟上不同构造单元内部与不同构造单元之间均存在着较大差别.大兴安岭造山带北部的各向异性快波方向自北向南由NNE-SSW向转变为NNW-SSE向,在中部以NW-SE向为主,而南部自北而南由NE-SW向逐渐转变为近E-W向;松辽盆地的各向异性快波方向在北部自西向东主要表现为由NNW-SSE向逐渐转变为NW-SE向,在中部自西向东由NE-SW向转变为近E-W向,而在南部既有NE-SW向又有NW-SE向;佳木斯地块各向异性方向由西部的NW-SE转变为东部的NNW-SSE,同时快慢波时间延迟逐渐变大;长白山造山带北部自北向南由NW-SE向逐渐转变为近E-W向,中部各向异性快波方向为NNW-SSE向,且快慢波时间延迟较大,而南部以NW-SE向为主;燕山造山带的各向异性快波方向主要沿E-W向分布,基本平行于燕山造山带的走向.这些结果说明,尽管复杂的各向异性快波方向与局部岩石圈拆沉和热物质上涌有关,但更重要是与"大地幔楔"中物质水平流等动力过程密切相关,也有待将来结合更多地震资料如面波不同深度的特征各向异性进行分析.在阿巴嘎火山群、哈拉哈火山群、长白山火山、龙岗火山和镜泊湖火山区及五大连池火山区等特殊构造区的周边地区,各向异性快波方向围绕这些构造区随方位均发生明显变化,暗示了火山区下方热物质上涌可能影响了"大地幔楔"中的软流圈物质水平流方向.  相似文献   

19.
Rock typing and flow unit detection are more challenging in clastic reservoirs with a uniform pore system. An integrated workflow based on well logs, inverted seismic data and rock physics models is proposed and developed to address such challenges. The proposed workflow supplies a plausible reservoir model for further investigation and adds extra information. Then, this workflow has been implemented in order to define different rock types and flow units in an oilfield in the Persian Gulf, where some of these difficulties have been observed. Here, rock physics models have the leading role in our proposed workflow by providing a diagnostic framework in which we successfully differentiate three rock types with variant characteristics on the given wells. Furthermore, permeability and porosity are calculated using the available rock physics models to define several flow units. Then, we extend our investigation to the entire reservoir by means of simultaneous inversion and rock physics models. The outcomes of the study suggest that in sediments with homogeneous pore size distribution, other reservoir properties such as shale content and cementation (which have distinct effects on the elastic domain) can be used to identify rock types and flow units. These reservoir properties have more physical insights for modelling purposes and can be distinguished on seismic cube using proper rock physics models. The results illustrate that the studied reservoir mainly consists of rock type B, which is unconsolidated sands and has the characteristics of a reservoir for subsequent fluid flow unit analysis. In this regard, rock type B has been divided into six fluid units in which the first detected flow unit is considered as the cleanest unit and has the highest reservoir process speed about 4800 to 5000 mD. Here, reservoir quality decreases from flow unit 1 to flow unit 6.  相似文献   

20.
张慧 《中国地震》2015,31(2):362-371
基于海南省地震台网2000~2013年的区域地震波形数据,用剪切波分裂系统分析方法(SAM)获得了海南琼东北部地区"九五"数字台网中2个台站的剪切波分裂参数。结果表明,快剪切波偏振优势方向代表了原地最大主压应力方向。七星岭台NE方向的快剪切波偏振优势方向与区域水平主压应力场方向不一致,与NE走向的断裂一致,体现了局部构造和局部应力场的复杂性;青山岭NNE向的快剪切波偏振优势方向揭示了NNE走向断裂的构造意义。同时,本研究证实,位于活动断裂上或几条活动断裂交汇部位的台站的快剪切波偏振优势方向与对所选用的小地震起控制作用的活动断裂走向一致,而快剪切波偏振优势方向较为离散则反映了该区域复杂的断裂构造和应力分布特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号