首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genesis of massif-type anorthosites in general is discussed on the basis of data obtained on the Capivarita massif, a labradorite-type anorthosite from Southern Brazil. Massif anorthosites are thought to have originated by fractional crystallization of magmas of suitable compositions (essentially high-alumina basalt and andesite melts) that underwent extremely slow cooling under high-grade metamorphic conditions. Plagioclase is the dominant liquidus phase in the melt only over a very restricted temperature interval (10–20 °C) in which water pressure (PH2O<P total) is maintained more or less constant at a critical value. Plagioclase accumulation by gravitational sinking is operative only under a set of critical conditions that are statistically unlikely to occur or to be maintained for any length of time. Hence, anorthosites would be relatively rare. The possible influence of the total pressure on anorthosite composition is discussed.At present, Chief Research Worker of the Brazilian CNPq.  相似文献   

2.
大庙斜长岩的40Ar/39Ar年龄测定呈现出一条典型的马鞍型年龄谱,在中温阶段有二个明显的坪年龄1656±15 Ma和1029±7 Ma,结合其构造位置和全球斜长岩分布来看,它们分别代表了侵位年龄和后期热扰动的时代。密云奥长环斑花岗岩中角闪石的40Ar/39Ar坪年龄为1716±21 Ma。两者时空上密切相关,代表了裂谷作用初期非造山环境中双模式岩浆作用产物。斜长岩类和苏长岩之间稀土配分模式的相似性表明,它们明显为同一成因的岩浆分异系列的产物。  相似文献   

3.
The abundance and significance of nickel in high-alumina basalts in island-arc environments is discussed in the light of comments by Hedge (1971). We conclude
1.
(1) that the low Ni and Mg contents of many high-alumina basalts preclude the possibility of deriving orogenic andesites from these rocks by fractional crystallisation; and  相似文献   

4.
斜长岩呈长条带出露于朝鲜半岛南部,侵入到年代约为2.0Ga的Yeongnam前寒武纪基底岩石中,虽然岩石类型简单(斜长岩和辉长岩质斜长岩),但可以同世界已知块状类型斜长岩相对比。这些斜长岩具有几个重要的差别,例如呈层状构造,镁铁相成分是角闪石而不是辉石,并且不具斜方辉石巨晶。应用Rb-Sr和Sm-Nd同位素系统研究这些岩石的年龄和成因,测定出一种页理化辉长岩质斜长岩矿物的Sm-Nd等时线年龄为1678±90Ma,推断其为侵位年龄,因为中生代绿岩相变质期间这些岩石的Sm-Nd同位素体系呈封闭状态。这一年龄和过去曾报道的元古宙块状斜长岩的年龄范围(1.1~1.7Ga)相吻合。认为斜长岩成因可以用所谓元古宙斜长岩事件来解释。斜长岩的岩浆活动对朝鲜半岛南部前寒武纪基底岩石的构造历史有重要意义。全岩εNd(t)值范围-1.6~-5.2,而87Sr/86Sr初始值变化于0.704~0.706之间,据此可解释地幔成因的斜长岩岩浆是在其结晶作用期间吸收了地壳物质的结果。然而不能排除是下地壳源的可能性。  相似文献   

5.
Thirteen Cr-bearing spinels from major horizons of magma replenishment in the open-system Rum Layered Suite have been analysed by X-ray single crystal diffraction and electron microprobe analyses. On the basis of the structural parameters and the chemistry of these spinels the so-called Rum trend, in which Al-content increases at the expense of Cr and Fe3+, has been easily recognised. In addition, natural spinels with Fe3+ content similar to synthetic spinels on the MgCr2O4?CMgFe2O4 join have been analysed for the first time. Layers of chromitite, anorthosite and peridotite situated within several cm of one another have yielded different intracrystalline exchange temperatures using an intercrystalline spinel-olivine thermometer. The Rum anorthosite Cr-spinels are interpreted as having crystallised within the cumulus pile following rejuvenation of the crystal mush. Their low Al-content is a function of simultaneous plagioclase crystallisation, reducing the amount of Al3+ present for the Cr-spinel. By contrast, Cr-spinels in well-known Archean anorthosites (e.g. Ujaragssuit nunat and Fisken?sset, western Greenland) and Sittampundi (southern India) are very aluminous in composition, attributed to crystallisation of Cr-spinel from high-alumina basalts in lower crustal magma chambers and linked to the control exerted by plagioclase crystallisation on Al content of the melt, in the absence of clinopyroxene crystallisation. The compositional differences between the Rum anorthosite Cr-spinels and the Fisken?sset and Sittampundi Cr-spinels suggest that postcumulus reaction of Cr-spinel and melt to low (800?C900°C) temperatures, as invoked for the Rum crystals, may not have been as important a process in the Archean anorthosites.  相似文献   

6.
Bulk analyses of 157 lithic fragments of igneous origin and analyses of their constituent minerals (plagioclase, pyroxene, olivine, Mg-Al spinel, chromite, ilmenite, armalcolite, baddeleyite, zirkelite, K-feldspar, interstitial glass high in SiO2 and K2O) have been used to characterize the lunar highland rock suites at the Luna 20 site. The predominant suite is composed of ANT (anorthositic-noritic-troctolitic) rocks, as found at previous Apollo and Luna sites. This suite consists of an early cumulate member, spinel troctolite, and later cumulate rocks which are gradational from anorthosite to noritic and troctolitic anorthosite to anorthositic norite and troctolite; anorthositic norite is the most abundant rock type and its composition is close to the average composition for the highland rocks at this site. Spinel troctolite is a distinctive member of this suite and is characterized by the presence of Mg-Al spinel, magnesian olivine (average, Fo83), and plagioclase. High-alumina basalt with low alkali content is another important rock type and melt of this composition may be parental to the cumulate ANT suite. Alkalic high-alumina basalt (KREEP) was not found in our sample, but may be genetically related to the ANT suite in that it may have formed by partial melting of rocks similar to those of the ANT suite. Fractional crystallization of low alkali, high-alumina basalt probably cannot produce alkalic high-alumina basalt because the enrichment in KREEP component is many times greater than the simultaneous change in major element components. Formation of alkalic high-alumina basalt by mechanical mixing of ANT rocks with very KREEP-rich components is not likely because the high-alumina basalt suite falls on a cotectic in the anorthiteolivine-silica system. Mare basalts may also be genetically related in that they may have been derived by remelting of rocks formed from residual liquids of fractional crystallization of parental low-alkali, high-alumina basalt, plus mafic cumulate crystals; the resultant melt would have a negative Eu anomaly and high FeMg and pyroxeneplagioclase ratios.  相似文献   

7.
The paper presents data on the geochemical and geochronological characteristics of zircons from mafic rocks of part of the Monchegorsk layered complex represented by the Vurechuaivench massif. Ages of zircons (SHRIMP-II) from samples V-l-09 (anorthosite) and V-2-09 (gabbronorite) are dated back to 2508 ± 7 and 2504 ± 8 Ma, respectively. The chondrite-normalized REE patterns confirm the magmatic nature of zircons. The data unequivocally indicate that the U–Pb age of zircon from both gabbronorite and anorthosite corresponds to the age of melt crystallization in a magmatic chamber. The mantle origin of gabbroic rocks of the Vurechuaivench massif is confirmed by the REE patterns of three zircon generations with different crystallization sequences. The wide range of the Ce/Ce* ratio (9.96–105.24) established for zircons from gabbroic rocks of the Vurechuaivench massif indicates sharply oxidative conditions of zircon crystallization. For deepseated mantle rocks, these data can only be explained by significant contamination of the melt with country rock material.  相似文献   

8.
The Rogaland anorthosite province (S. Norway) contains numerous Fe-Ti oxide deposits, including the second most important ilmenite deposit in the world, the Tellnes deposit. The largest deposits are located in the Åna-Sira anorthosite massif. Others occur in the Håland-Helleren anorthosite massif, particularly along the deformed contact with the Egersund-Ogna massif, where they were previously considered formed by metasomatic processes. All deposits are now regarded as magmatic. The structure, mineralogy and geochemistry of 11 selected Fe-Ti deposits (Tellnes, Storgangen, Blåfjell, Laksedal, Kydlandsvatn, Kagnuden, Rødemyr, Hestnes, Eigerøy, Svånes, and Jerneld) are discussed in light of recent models proposed for the origin of Rogaland anorthosites and related rocks. Massif-type anorthosites result from the diapiric uprise of a plagioclase crystal mush which crystallized along a large PT interval. Except for Tellnes, which is related to a post-deformation dyke, the Fe-Ti deposits in anorthosite massifs have been deformed by this movement during and after their crystallization. The differentiation process of the jotunitic parental magma has built up cumulates in the Bjerkreim-Sokndal layered intrusion and liquids in the Tellnes dyke and other jotunitic intrusions. Ilmenite is a liquidus mineral immediately after plagioclase in the sequence of crystallization of these jotunites, its interstitial character in the rocks resulting from subsolidus recrystallization. Ilmenite can thus accumulate early in the evolution of jotunitic magmas. This feature, together with high contents in Cr, V, Mg and Ni, links the Jerneld, Blåfjell and Svånes deposits (type?1) to the early evolution of a jotunitic magma. In the Bjerkreim-Sokndal intrusion, magnetite can appear with ilmenite at the very beginning of the sequence of crystallization, but normally crystallizes after orthopyroxene and before clinopyroxene and apatite. The early appearance of magnetite is a characteristic feature of type 2 deposits (Tellnes, Storgangen, Kydlandsvatn, Rødemyr I) and suggests conditions similar to the early magnetite cumulates in the Bjerkreim-Sokndal intrusion. Evidence of layering further favours gravity-controlled sorting processes to concentrate the oxides. Large-scale subsolidus segregation of the oxides due to high-temperature deformation can further concentrate these minerals in silicate-absent meter-sized masses. Type 3 deposits (Rødemyr II, Kagnuden, Hestnes and Eigerøy) could be derived from the more evolved stages of differentiation, as indicated by high REE in apatite, high Ti and Zn in magnetite and relatively low Cr, V, Mg, Ni contents in both oxides. The Cr content in both oxide minerals is however higher than in the equivalent cumulates of the Bjerkreim-Sokndal intrusion. Although immiscibility as the mechanism of enrichment leading to silicate-absent oxide-apatite veins, as in Hestnes and Eigerøy, cannot be precluded, there is no direct evidence in the veins, nor has any structural or geochemical evidence of immiscibility ever been found in jotunite dykes and Fe-Ti-P-rich rocks. Further investigations on the influence of subsolidus exchange of elements between the two oxides are needed to improve the use of trace elements as differentiation indexes.  相似文献   

9.
John Longhi   《Lithos》2005,83(3-4):183-198
Calculations of fractional crystallization (FC) and assimilation fractional crystallization (AFC) at 11 kb for a variety of primitive magmatic compositions and a mafic assimilant demonstrate that none of them has a bulk composition suitable to be parental to massif anorthosites. Mafic compositions thought to be parental to massif anorthosites have Mg′ values of 0.6 to 0.4 and form coherent arrays with moderately steep slopes on plots of TiO2, K2O, and P2O5 versus Mg′. The calculated liquid lines of descent (LLD) of basaltic magmas undergoing FC or AFC processes pass through the arrays of anorthosite parent magma compositions with much shallower slopes than the natural arrays, which indicates that the arrays of natural parental magmas were produced by a process other than FC/AFC. Also, by the time most crystallizing basaltic magmas with or without assimilation reach plagioclase saturation, their residual liquids have Mg′ values that are too low to be parental to anorthosites. MORB-like olivine tholeiites and high-aluminum olivine tholeiites (HAOT) from convergent plate margins do reach plagioclase saturation while sufficiently magnesian, but their Wo (Wollastonite) contents are too high such that they reach plagioclase saturation coexisting only with augite and do not reach orthopyroxene saturation (if at all) until Mg′ is too low. Calculations show it is not possible to produce a high-Al melt from typical mantle peridotites that has sufficient TiO2 to make andesine-type anorthosite.

Calculation of partial melting for an average mafic crustal composition at 11 kbar provides a much closer match to the array of natural parental compositions in terms of minor element concentrations and proportions of mineral components. However, accounting for the entire array requires a more magnesian source composition. Such compositions exist in several crustal xenolith localities. Similar results were obtained using the bulk composition of the Stillwater Complex, which is used as a model mafic source (here the premise is that overdense crustal intrusions might sink back into the mantle). As with the terrain composition, this particular layered intrusion composition is not sufficiently magnesian, however, the fit improves when mixtures of early and late stage portions of the complex (i.e., the denser portions) were run as potential source regions.  相似文献   


10.
陈伟  赵太平  魏庆国  徐勇航 《岩石学报》2008,24(10):2301-2312
铁钛磷灰岩仅由磷灰石和铁钛氧化物组成,常赋存于岩体型斜长岩中,成因上有不混溶和分异堆晶两种不同的认识。本文从磷灰石角度讨论河北大庙铁钛磷灰岩的形成机制。大庙铁钛磷灰岩常产出于浸染状Fe—P矿体内部,有时与块状铁矿石交互出现形成韵律条带状矿石,为岩浆结晶分异的产物。铁钛磷灰岩中磷灰石呈浑圆状,含量变化于15%-34%。铁钛磷灰岩的全岩和磷灰石微量元素分析显示,磷灰石比全岩相对富集稀土元素达2.96—6.93倍,但两者的配分型式基本平行。质量平衡计算(Rocl/F)的结果表明,铁钛磷灰岩中几乎100%的稀土元素赋存于磷灰石中。综合上述特征,反映磷灰石为结晶分离的堆晶矿物,铁钛磷灰岩应为堆晶成因。因为如果磷灰石结晶于铁钛磷灰岩不混溶熔体,它的稀土元素分配系数也不会变化达2.3倍(变化于2.96—6.93)。计算出该磷灰石的母岩浆稀土元素组成,与浸染状Fe.P矿石最为相似,结合它与铁钛磷灰岩之间紧密共生的野外特征以及相似的全岩及磷灰石稀土元素配分型式,认为磷灰石最可能是在浸染状Fe.P矿浆中,经结晶分离作用形成铁钛磷灰岩。  相似文献   

11.
The petrology and ore potential of the Talazhin massif located in northwestern East Sayan are studied. The internal structure of the intrusion, the petrographic composition of its rocks, and their metallogenic, petrostructural, and petrogeochemical features are considered. The probable temperature and chemical composition of the parental magma of the pluton were computed using the KOMAGMAT-3.52 program on the modeling of equilibrium crystallization. The obtained data indicate that the Talazhin massif is a rhythmically layered plagiodunite–troctolite– anorthosite–gabbro intrusion formed from low-Ti high-alumina olivine–basalt melt. It is promising for Cu–Ni–PGE mineralization.  相似文献   

12.
Recent detailed field studies in several anorthosite complexes have shown that anorthosites are frequently associated with weakness zones in the crust which may have favoured their emplacement at mid-crust levels. Recent experimental data have shown that the parent magma compositions of various anorthosite massifs lie on thermal highs in the relevant phase diagrams at 10–13 kbar, indicating that these magmas cannot be derived by fractionation of peridotitic mantle melts but by melting of gabbronoritic sources in the lower crust at 40–50 km depths. In the Sveconorwegian Province terne boundaries have been traced in deep seismic profiles to Moho offsets or to tongues of lower crustal material underthrust to depths higher than 40 km. In Southern Norway, we suggest that a lithospheric-scale weakness zone (the Feda transition zone?) has channelled the Rogaland anorthosites through linear delamination, asthenospheric uprise and melting of a mafic lower crustal tongue.  相似文献   

13.
Geological investigation in recent years reveals that the anorthosite-leuconorite massif (81 sq km) is much larger than known from previous studies. The massif is bordered by a suite of garnetiferous felsic rocks comprising quartz monzonite gneiss, granite gneiss and megacrystic K-feldspar-bearing granite. Ferrodiorites, hitherto unknown from this area, occur as veins at the massif-felsic suite interface, and as rare apophyses within leuconorites at the massif margin. The massif and the bordering felsic rocks were presumably emplaced during the earliest of the three phases of folding documented by the metasedimentary gneisses that host the massif. The petrographic and geochemical characteristics suggest that the low-K anorthosite-leuconoriteferrodiorite suite does not share a common parentage with the bordering high-K felsic intrusives. The anorthosites and leuconorites were derived by polybaric fractionation of mantle-derived melts. The ferrodiorites are anorthosite residual melts that were not entirely segregated from the host solids. By contrast, the granite gneisses and granites originated by incongruent melting of crustal rocks. The chemical differences between quartz monzonite and granite gneisses point to their derivation from different crustal precursors.  相似文献   

14.
New U?Pb (SHRIMP II) data on the age (2661.8 ± 7.1 Ma) and isotopic (Sm?Nd) composition of the Patchemvarek gabbro?anorthosite massif located in the junction zone between the Neoarchean Kolmozero-Voron’ya greenstone belt and Keivy paragneiss structure are discussed. The established age and geological?tectonic position of gabbro?anorthosites allow the prognostic metallogenic estimate of Ti?V?Fe mineralization to be extended to the entire Kolmozero-Voron’ya?Keivy infrastructural zone of the Kola?Norwegian province of the Fennoscandian shield.  相似文献   

15.
The Labrieville anorthosite massif (LBV) is found in the Central Granulite Terrain of the Grenville Structural Province, but it displays no evidence of post-emplacement deformation or metamorphism, implying intrusion following peak Grenvillian metamorphic conditions. We report U---Pb zircon dates of 1008±3.4 Ma for border leucogabbro and 1010±5.6 Ma for a cogenetic jotunite dike intruding anorthosite. We interpret these dates as igneous crystallization ages, and regard 1010 Ma as a reasonable estimate of the emplacement age for LBV. LBV is thus the youngest massif anorthosite yet recognized in North America, and its age is consistent with late-tectonic emplacement relative to the 1.1-1.0 Ga Grenville Orogeny. We also report a U---Pb date of 1015±1.8 Ma for metamorphic zircon in a country rock amphibolite. This could reflect the age of Grenvillian regional metamorphism, or perhaps a later heating episode resulting from the intrusion of numerous “late” felsic plutons in this area.

Rb---Sr, Sm---Nd and U---Th---Pb isotopic compositions for four rock types (anorthosite, jotunite, leucogabbro and a plagioclase megacryst) span narrow ranges in each case, consistent with comagmatism among these units. ISr (T=1010 Ma) range from 0.7032–0.7034 and are among the lowest yet reported for anorthosite in the Grenville Province. Initial εNd-values are positive (+0.8 to +2.5), like other Grenville anorthosites. Pb-isotopic compositions lie near the model mantle evolution curve of Zartman and Doe (1981), implying no involvement of significantly older crust in the petrogenesis of these rocks. Collectively, these data suggest a source for LBV in the mantle or mafic lower crust. LBV is a compositionally extreme anorthosite characterized by alkalic plagioclase (An32Or12) and high levels of Sr (2000 ppm) and Ba (1000 ppm). These properties cannot be attributed to simple crustal contamination of mantle-derived basalt. We suggest, alternatively, that LBV's compositional features may be linked with its late-tectonic character, perhaps reflecting partial melting of mafic lower crust brought about by crustal thickening during the Grenville Orogeny.  相似文献   


16.
Three linear zones of active andesite volcanism are present in the Andes — a northern zone (5°N–2°S) in Colombia and Ecuador, a central zone (16°S–28°S) largely in south Peru and north Chile and a southern zone (33°S–52°S) largely in south Chile. The northern zone is characterized by basaltic andesites, the central zone by andesite—dacite lavas and ignimbrites and the southern zone by high-alumina basalts, basaltic andesites and andesites. Shoshonites and volcanic rocks of the alkali basalt—trachyte association occur at scattered localities east of the active volcanic chain,The northern and central volcanic zones are 140 km above an eastward-dipping Benioff zone, while the southern zone lies only 90 km above a Benioff zone. Continental crust is ca. 70 km in thickness below the central zone, but is 30–45 km thick below northern and southern volcanic zones. The correlation between volcanic products and their structural setting is supported by trace element and isotope data. The central zone andesite lavas have higher Si, K, Rb, Sr and Ba, and higher initial Sr isotope ratios than the northern or southern zone lavas. The southern zone high-alumina basalts have lower Ce/Yb ratios than volcanics from the other zones. In addition, the central zone andesite lavas show a well-defined eastward increase in K, Rb and Ba and a decrease in Sr.Andean andesite magmas are a result of a complex interplay of partial melting, fractional crystallization and “contamination” processes at mantle depths, and contamination and fractional crystallization in the crust. Variations in andesite composition across the central Andean chain reflect a diminishing degree of partial melting or an increase in fractional crystallization or an increase in “contamination” passing eastwards. Variations along the Andean chain indicate a significant crustal contribution for andesites in the central zone, and indicate that the high-alumina basalts and basaltic andesites of the southern zone are from a shallower mantle source region than other volcanic rocks. The dacite-rhyolite ignimbrites of the central zone share a common source with the andesites and might result from fractional crystallization of andesite magma during uprise through thick continental crust. The occurrence of shoshonites and alkali basalts eat of the active volcanic chain is attributed to partial melting of mantle peridotite distant from the subduction zone.  相似文献   

17.
Seventeen trace elements (Ag, Au, Bi, Br, Cd, Cs, Ge, Ir, Ni, Rb, Re, Sb, Se, Te, Tl, U, Zn) were analyzed by radiochemical neutron activation and 13 other elements (Ce, Co, Cr, Eu, Fe, Hf, La, Lu, Na, Sc, Sm, Tb, Yb) by instrumental neutron activation in a total of 12 rocks from the layered anorthositic complex at Fiskenaesset, West Greenland and in the plagioclase-rich unbrecciated eucrite, Serra de Magé.Garnet anorthosite 84428, which has an unusually sodic plagioclase, is spectacularly enriched in Cs, K, Rb. Tl and, to a lesser degree, Te. This appears to be the result of later metasomatism and not a reflection of fractionation trends within the anorthositic complex. For the remaining Fiskenaesset rocks, a factor analysis yields 5 principal factors for linear data for 22 elements and 6 factors for data transformed (log, 3√, √) to give approximately normal distributions. Linear correlations are controlled by high values, whereas the logarithmic transform increases the influence of the lowest values. Enrichment of several elements in chromitite 132022 underlies linear Factor 1. Six of these elements Co, Cr, Fe, Ir, Ni, Zn and possibly Re are probably hosted by chromite. In other zones of the intrusion, different fractionation trends may be more important, since in the transformed analysis these elements divide between Factor 1 (Co, Zn, Ni, Fe) and Factor 4 (Ir, Cr and also Au). Linear Factor 2 reflects the strong mutual correlation between Tl, Rb and An, the anorthite content of plagioclase. Transformed Factor 3 emphasizes the anticorrelation of Na and Sm with An. The positive correlations of Cs, U and Ge (linear Factor 3; transformed Factor 2) are largely due to their concentration in later crystallizates, but enrichment in lower zone gabbros of high An content perhaps indicates concentration in minor or accessory cumulate minerals. Flat chondrite-normalized rare earth element patterns in several anorthosites (except for a small positive Eu anomaly) suggests that the Fiskenaesset magma was relatively unfractionated.Factor 4 (linear) and Factor 5 (transformed) reflects the geochemical coherence of Se and Te. The sympathetic enrichment of Sb and Cd in 3 rocks, resulting in Factor 5 (linear) and Factor 6 (transformed) may be due to the lack of a suitable Zn sulfide host for Cd.In 3 rocks of true anorthosite composition, 8 volatile elements show rather constant abundance when normalized to Cl chondrites (mean 4.2 ± 0.4% Cl), possibly suggesting that volatile-rich material was accreted late in the Earth's formation, perhaps after core segregation. These anorthosites are higher than lunar anorthosite 15415 by a factor of 58 ± 9 in volatile elements. Siderophile and chalcophile elements are much more variable in Cl-normalized abundances in both lunar and terrestrial anorthosites, but surprisingly give somewhat similar Earth/Moon abundance ratios.Volatile elements in terrestrial oceanic basalts and lunar mare basalts are not as uniformly abundant as in anorthosites. but nevertheless yield a similar Earth/Moon ratio of 44 ± 8.Volatile elements in Serra de Magé are more abundant than in lunar anorthosites, but lower than in terrestrial equivalents, averaging (3.6 ± 0.8) × 10?3C1.  相似文献   

18.
The formation of anorthosites in layered intrusions has remained one of petrology's most enduring enigmas. We have studied a sequence of layered chromitite, pyroxenite, norite and anorthosite overlying the UG2 chromitite in the Upper Critical Zone of the eastern Bushveld Complex at the Smokey Hills platinum mine. Layers show very strong medium to large scale lateral continuity, but abundant small scale irregularities and transgressive relationships. Particularly notable are irregular masses and seams of anorthosite that have intrusive relationships to their host rocks. An anorthosite layer locally transgresses several 10 s of metres into its footwall, forming what is referred to as a "pothole" in the Bushveld Complex. It is proposed that the anorthosites formed from plagioclase-rich crystal mushes that originally accumulated at or near the top of the cumulate pile. The slurries were mobilised during tectonism induced by chamber subsidence, a model that bears some similarity to that generally proposed for oceanic mass flows. The anorthosite slurries locally collapsed into pull-apart structures and injected their host rocks. The final step was down-dip drainage of Fe-rich intercumulus liquid, leaving behind anorthosite adcumulates.  相似文献   

19.
Massif type anorthosites at Bolangir, eastern India are emplaced at the vicinity of the proto-Indian craton—Eastern Ghats Granulite belt contact. Micro- and meso-structural evidences indicate that the emplacement of the anorthosite pluton and the adjoining granitoids was syn-tectonic with respect to the D3 deformation phase (950–1,000 Ma) in the host gneiss. Anisotropy of magnetic susceptibility confirms that magnetic fabrics within anorthosite were dominantly developed during D3 deformation. Emplacement of felsic melts in the N-S trending dilatant shear zones in the granitoids, Fe-Ti-Zr-REE rich melt bands along N-S trending shear zones and localized N-S magnetic foliation in anorthosite near the Fe-Ti-Zr-REE rich melt bands indicate change in the stress field from NNW-SSE (D3) to E-W (D4). Available geochronological and paleogeographic data coupled with the structural analyses of the intrusive and the host gneiss indicate that the emplacement of massif type anorthosite in the EGP is not related to the accretion of Eastern Ghats Granulite Belt over proto-Indian continent during late Neoproterozoic.  相似文献   

20.
The Bad Vermilion Lake anorthosite complex (2,700 m.y.) is exposed over an area of about 100 km2 near Rainy Lake, Ontario. As is typical of other Archean anorthosites, it is composed of coarse (1–30 cm across), equidimensional, euhedral to subhedral, calcic (An80) plagioclase, in a finer grained mafic matrix. The amount of mafic matrix in individual samples ranges from none to about 70% by volume. The complex has been variably metamorphosed to greenschist facies. Zoisite, chlorite, and hornblende are abundant, but primary plagioclase is preserved in many places. The anorthosite complex is associated with gabbro and with mafic to felsic metavolcanic rocks, and is cut by tonalite plutons and by mafic dikes. Some gabbros contain local concentrations of Fe-Ti oxides and/or apatite, but no chromite. The mafic groundmass of the anorthositic rocks is similar in major and trace element chemistry, including rare earth elements, to the associated basaltic metavolcanics, suggesting that the anorthositic complex may have accumulated from a subvolcanic magma chamber which fed mafic lavas to the surface during its crystallization. Mafic flows and dikes chemically similar to the mafic metavolcanics contain plagioclase megacrysts akin to those of the anorthositic rocks, and thus may represent a link between the anorthosite complex and associated mafic lavas. Elongate pretectonic tonalite intrusions were comagmatic with the felsic metavolcanics, but not with the anorthosites or metabasalts. These silicic rocks may represent low-pressure partial melts of the mafic rocks. There is no direct or indirect evidence for significant volumes of ultramafic material at the present exposure level of the complex. An estimate of the bulk composition of all rocks presumed to be comagmatic with the anorthosites, including gabbros and mafic metavolcanics, is an aluminous basalt with about 20 wt.% Al2O3. This composition has REE abundances unlike those of typical Archean high-Al basalts and probably does not represent that of a primary or evolved melt. The possibility must be considered, therefore, that a substantial fraction of material comagmatic with the anorthosites has been separated from the complex, either by magmatic or tectonic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号