首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
Volcanic-associated massive sulphide deposits in the Snow Lake area of Manitoba are related to mineralogically and chemically distinct alteration zones. It is generally accepted that these zones represent crosscutting, subconformable or conformable synvolcanic alteration zones, which were coeval with and have been metamorphosed with the massive sulphides. Metamorphism ranges from upper greenschist facies to middle amphibolite facies. Surface lithogeochemical anomalies led to the discovery of small massive sulphide lenses at a vertical depth of 250 m in the Raindrop Lake area, southwest of Snow Lake, Manitoba. Variations in mineral assemblages of middle amphibolite facies alteration zones and analysis of variations in major and trace element chemistry were used to guide deep drilling at Raindrop Lake. The massive sulphide lenses are stratigraphically underlain by a low angle crosscutting “pipe” and a conformable footwall “apron” alteration.The alteration zones are composed of assemblages of garnet, staurolite and chlorite, and, less significantly, biotite, muscovite and kyanite. They are characterized by loss of Na and Ca, and addition of Fe, Mg, Cu and Zn. Mapping the alteration is aided by the application of the metamorphic AFM phase diagram for the appropriate metamorphic facies. Increasing intensity of alteration can be identified by the first appearance of new mineral phases, which are represented on the AFM diagram. These mineral trends coincide with loss of Na and Ca relative to Al, and increased Mg and Fe. Chemical alteration indices ACNK (molecular proportion Al2O3/(CaO + Na2O + K2O) and AI = 100 × [(MgO + K2O)/(MgO + K2O + CaO + Na2O)] combined with Cu and Zn variation helped to quantify the intensity of alteration, despite being insensitive to Fe.The crosscutting pipe is dominantly Fe enriched, with a Cu-enriched core, Zn enriched margins and widespread Na and Ca depletion. Mineralogically it is identified by garnet, staurolite and chlorite and follows an iron and aluminum enrichment trend on the AFM diagram. The conformable alteration zone is characterized by local strong Mg enrichment, extensive Na and Ca depletion and variable Cu and Zn. Mineralogically it is characterized by the presence of chlorite and kyanite and follows a magnesium and aluminum enrichment trend on the AFM diagram.  相似文献   

2.
High pressure cognate inclusions in the Newer Volcanics of Victoria   总被引:6,自引:0,他引:6  
High pressure pyroxene- and amphibole-rich inclusions are found in a number of Victorian Newer Volcanics volcanoes. The host lavas range from nepheline basanite to nepheline hawaiite and nepheline mugearite. The wide variation in chemistry and mineralogy of the inclusions is explained by crystallization from basaltic magmas under varying P-T and PH2O conditions at depth. At moderate pressure wehrlite inclusions (ol+cpx) form, whereas at higher pressures pyroxenites (opx+cpx) and genetically related megacrysts form. Under relatively anhydrous conditions the clinopyroxene megacrysts show a trend of Ca enrichment whereas under hydrous conditions, when amphibole is also stable, the pyroxene shows a trend to greater iron enrichment. The trend nepheline basanite to nepheline mugearite has developed by extensive fractionation of amphibole at elevated pressures under hydrous conditions. Under less hydrous conditions where clinopyroxene assumes the dominant role during crystal fractionation, derivative liquids display a trend of increasing K2O/Na2O ratio, with little modification of their level of undersaturation. Olivine plays a decreasing role in crystal fractionation processes with increasing pressure. The available evidence indicates that the only magma which could have been parental to the observed basanites was a more picritic basanite.  相似文献   

3.
The granites of three areas of Sn mineralization in the New England Area of New South Wales have been analysed to determine whether geochemical discriminants may be used to distinguish between granites which produce Sn mineralization, and those which do not. Neutron activation analyses of Sn are consistent with reports elsewhere that Sn-mineralizing granites have Sn concentrations of 15–30 μg/g, whereas granites which do not produce mineralization typically have about 5 μg/g Sn. Furthermore, Sn-mineralizing granites form compact groups, distinct from granites not responsible for mineralization, when plotted on ternary diagrams of SiO2CaO+MgO+FeONa2O+K2O+Al2O3, Na + KFeMg and CaNaK. We conclude that the Sn-mineralizing granites can be geochemically characterized.  相似文献   

4.
High‐pressure granulites are generally characterized by the absence of orthopyroxene. However, orthopyroxene is reported in a few high‐pressure, felsic–metapelitic granulites, such as the Huangtuling felsic high‐pressure granulite in the North Dabie metamorphic core complex in east‐central China, which rarely preserves the high‐pressure granulite facies assemblage of garnet + orthopyroxene + biotite + plagioclase + K‐feldspar + quartz. To investigate the effects of bulk‐rock composition on the stability of orthopyroxene‐bearing, high‐pressure granulite facies assemblages in the NCKFMASHTO (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3) system, a series of PTX pseudosections based on the melt‐reintegrated composition of the Huangtuling felsic high‐pressure granulite were constructed. Calculations demonstrate that the orthopyroxene‐bearing, high‐pressure granulite facies assemblages are restricted to low XAl [Al2O3/(Na2O + CaO + K2O + FeO + MgO + Al2O3) < 0.35, mole proportion] or high XMg [MgO/(MgO + FeO) > 0.85] felsic–metapelitic rock types. This study also reveals that the XAl values in the residual felsic–metapelitic, high‐pressure granulites could be significantly reduced by a high proportion of melt loss. We suggest that orthopyroxene‐bearing, high‐pressure granulites occur in residual overthickened crustal basement under continental subduction–collision zones and arc–continent collision belts.  相似文献   

5.
辽冀地区(主要包括鞍山-本溪地区和冀东地区)位于华北克拉通东北部,产出有诸多BIFs型大型-特大型铁矿床。鞍山-本溪地区和冀东地区是我国最大的两个铁矿集区,其中鞍本地区铁矿储量占全国的24%左右,冀东地区铁矿资源储量占全国的10%以上。虽然辽冀地区BIFs大多为形成于新太古代绿岩带中的Algoma型BIFs,但不同矿区BIFs形成环境和受后期改造的程度不一致,鞍本地区BIFs变质级别为绿片岩相-角闪岩相,冀东地区BIFs经历了绿片岩相-麻粒岩相的变质作用,且辽冀地区普遍发育混合岩化。本文主要对比研究了辽冀地区28个铁矿床200件铁矿石的主量元素特征,为探讨辽冀地区BIFs的形成提供了更多的信息。BIFs样品主要由SiO2和Fe2O3T组成,其中鞍山-本溪地区SiO2+Fe2O3T平均为95.10%,冀东地区SiO2+Fe2O3T平均为88.06%,CaO和MgO含量仅次于SiO2和Fe2O3T,且大部分矿区具有正相关关系,Al2O3、TiO2、K2O、Na2O、MnO、P2O5含量很低,这暗示BIFs原岩为一种化学沉积岩,主要为含有少量碳酸盐泥的硅质和铁质的胶体沉积;辽冀地区Al2O3和TiO2均可见明显的正相关,这可能是由于BIFs沉积过程中有少量碎屑物质的加入,这种相关性在冀东地区更为明显,且除SiO2+Fe2O3T外,其它氧化物含量明显高于鞍本地区,说明冀东地区BIFs形成时沉积环境更为动荡,有更多的碎屑物质加入;虽然辽冀不同地区BIFs经历了不同级别的变质作用,形成了不同的矿物组合,但是氧化物含量却变化不大,这说明了变质反应主要为等化学反应;鞍本地区和冀东地区碱质含量也存在差异性,前者的Na2O和K2O含量均低于后者,且后者Na2OK2O,结合野外地质特征,可能暗示了混合岩化作用对冀东地区的影响更为显著。  相似文献   

6.
The system CaMgSi2O6CaAl2SiO6CaFeAlSiO6 has been studied in air at 1 atm. The phase assemblage at subsolidus temperatures in the CaMgSi2O6-rich portion is Cpx + An + Mel and that in the CaMgSi2O6-poor portion Cpx + An + Mel + Sp. At subsolidus temperatures the sigle-phase field of clinopyroxene increases with an increase in the CaFeAlSiO6 component of the system. The Al2O3 content of clinopyroxene, however, continues to increase beyond the single-phase field and attains at least 16.04 wt.% Al2O3 with 3.9 wt.% Fe2O3. The stability field of fassaite in the system over a range of pressures and oxygen fugacities has been estimated from data in the literature as well as the present data. The CaFeAlSiO6 content of fassaite is dependent on oxygen fugacity, but is not influenced by pressure. The stability field is strongly influenced by oxygen fugacity at low and high pressure, and decreases with decreasing oxygen fugacity. Clinopyroxenes in both volcanic and metamorphic rocks from various localities, when plotted on the CaMgSi2O6CaAl2SiO6CaFeAlSiO6 triangle, show that there is no compositional gap between diopside and fassaitic pyroxene in metamorphic rocks, and that the fassaitic pyroxene in alkalic rocks becomes richer in both CaAl2SiO6 and CaFeAlSiO5 components as crystallization proceeds. These results agree with those obtained in the experimental study.  相似文献   

7.
Characteristics and tectonic setting of the shoshonite rock association   总被引:6,自引:0,他引:6  
Gregg W. Morrison 《Lithos》1980,13(1):97-108
A review of the major occurrences of shoshonitic rocks suggests there is a group that is near-silica saturated, K-rich and has low iron enrichment that cannot be unambigously classified as part of calc-alkaline or alkali-basalt associations. This group is here referred to as the shoshonite rock association. The shoshonite rock association is characterised by: hypersthene-olivine normative basalts, low iron enrichment, high Na2O + K2O, high content of light ion lithophile elements, high but variable Al2O3, high Fe2O3/FeO and low TiO2. Mineralogical characteristics include: coexisting plagioclase and sanidine in the groundmass, K-feldspar rims on plagioclase phenocrysts, plagioclase An50?85 Ab40?15 Or10?0 and low TiO2 content and lack of iron enrichment in clinopyroxene. Shoshonitic rocks on continental margins are younger, stratigraphically higher and more distant from the oceanic trench than the high-K calc-alkaline or calc-alkaline suites, but there is a complete gradation between the suites. A similar zonation occurs in some island arcs. In other island arcs there is no spatial zonation of the suites but successively more K-rich lavas are produced above an ever steepening subduction zone. Steepening leads to ‘failure’ or flipping of the subduction zone and uplift and block faulting within the arc. Shoshonitic rocks are most commonly associated with this phase of island are development.  相似文献   

8.
Diorite plutons at Al Hadah Saudi Arabia, which constitute part of the pan-African magmatic sequence (ca. 600 Ma), exhibit extensive development of epidote. The epidote alteration is concentrated along veins and dyke margins, and is characterised by transformation of plagioclase (Ab 67)+hornblende+biotite+quartz to epidote+hornblende+tremolite−actinolite+plagioclase (Ab 99)±quartz. The reactions involve addition of CaO and total Fe2O3, depletion of MgO, Na2O and K2O, with variable gains or losses of SiO2. Epidotised alteration products are hydrated and oxidised relative to the diorite precursor. The whole rock δ18O of fresh diorite is + 8.2‰ to + 8.8‰, whereas epidote domains have δ18O whole rock of +9.8‰ to +10.48‰ and negative Δ18Oquartz-plagioclase, implying oxygen isotope exchange with fluids at low temperatures. Epidotisation is considered to have accompanied influx of fluids into plutons during cooling and contraction. The fluids were probably deep formation waters with relatively high Ca2+/Na+ ratios, moving up thermal gradient.  相似文献   

9.
The major and trace-element patterns in a set of 45 analyses of the Precambrian Chitradurga metabasalts have been interpreted by geochemical methods to classify the magma-types and to determine the tectonic environment of eruption.During amphibolitization of the tholeiites, the order of relative chemical stability is: SiO2 > MgO > Al2O3 > FeO > CaO > Na2O > K2O > P2O5. On the ACFN plot the Chitradurga amphibolites approximate the unaltered basalts in their N component, show considerable depletion in F and A, and enrichment in the C components. With respect to the Keweenawan metadomains (pumpellyite and epidote), the Chitradurga amphibolites show considerable enrichment in N and depletion in the C constituents. The calc-alkaline (mol.props.) index, SiO2 (wt.%) and “F”MA plots have shown the differentiation of the parent olivine normative tholeiite through the transitional calc-alkalic basalts to basaltic andesites; the ferrofemic index being 67.Discriminant functional analysis of the major-element patterns has classified the magma-types into ocean-floor basalts (9 analyses) and the volcanic arc series containing low-potassium tholeiites (24 analyses), calc-alkalic basalts (6 analyses) and basaltic andesites (6 analyses). The effective discrimination of the ocean-floor basalts from low-potassium tholeiites is accomplished due to the relatively low eigenvalues in functions F1 and F2 for SiO2, K2O and high values for MgO, TiO2 in the former as compared to the latter. The low-K tholeiites are discriminated from calc-alkalic and basaltic andesites by the gradational increase in eigenvalues for K2O, SiO2 and Al2O3 in functions F2 and F3. The discriminant analyses of the trace-element patterns have classified the ocean-floor basalts from low-K tholeiites on TiCr, TiZr and Ti(× 10?2)ZrY(× 3) plots. The TiO2K2OP2O5 plot has discriminated ocean-floor basalts, low-K tholeiites and the calc-alkalic group containing the basaltic andesite members. Thus the discriminant analysis of the major and trace-element patterns have shown noteworthy consistency, thereby attesting to the high success rate of classification.The Ca-Mg rich, low SiO2, K2O and alumina, olivine normative characteristics, and the normative pyroxene content of 36.15–45.88% of the ocean-floor basalts compare closely with those of the oceanic magma type of the Dalma volcanic suite of the north-eastern part of the Precambrian Indian shield of Bihar. These compositional features indicate their mantle origin, amphibolite and plagioclase—pyrolite assemblage of the upper mantle and relatively low-temperature, moderate pressure and hydrous environment of pyrolite.The presence of ocean-floor basalts at Chitradurga implies the existence of an oceanic rise and their eruption through its axial rift region. The mean Ti content (0.77%) of ocean-floor basalts compares closely with that of the Dalma suite (0.76%). The low-alumina content indicates faster spreading of the ocean floor.Identification of the magma-types of volcanic arc series containing a wide range of Zr and Y is attributed to quartz-normative fractionation of the magma and its differentiation to calc-alkalic and basaltic andesite members due to incorporation of sialic material by accretion in the marginal regions of the volcanic belt.Attention is focussed on the synonymous tectonic evolutionary trends of the two typical volcanic belts of the two geographically widely separated regions of the Indian Precambrian shield; the basis being: (1) low-alumina, enriched Ca-Mg and almost identical concentrations of Ti in the ocean-floor magma type, and (2) the presence of a pronounced volcanic arc magma type in the Chitradurga area and two analyses of a volcanic arc magma type in the Dalma area.  相似文献   

10.
The highly deformed c. 3800 Ma Isua supracrustal belt is a fragment of a more extensive Early Archaean sedimentary and volcanic succession intruded by and tectonically intercalated with tonalitic and granitic Amftsoq gneisses in the period 3800-3600 Ma. The supracrustal rocks recrystallised under amphibolite facies conditions between 3800 and 3600 Ma, in the Late Archaean and locally at c. 1800 Ma. Layered sequences of rock of sedimentary and probable volcanic origin form over 50% of the belt. Bodies of high MgAl basic rocks and ultramafic rocks were intruded into the layered sequences prior to isoclinal folding and intrusion of Amitsoq gneisses. The layered rocks which are < 1 km thick are divided into two sequences, that are in faulted contact with each other. The way-up of these sequences has been determined from facing-directions of locally-preserved graded layering in felsic metasediments at several localities. The overall upwards change in sedimentary succession is interpreted as showing change from dominantly basic to dominantly felsic volcanism which provided the major clastic component of the sediments. Clastic sedimentation took place against a background of chemical sedimentation, shown by interlayers of banded iron formation, metachert and calc-silicate rocks throughout the sequences. The felsic rocks locally preserve graded bedding and possible conglomerate structures, indicating deposition from turbidite flows and possibly as debris flows. Nodules in the felsic rocks contain structures interpreted as fiammé. There is an irregular enrichment in K2O/Na2O in many of the felsic rocks at constant SiO2 and Al2O3 content, interpreted as owing to alteration of original andesitic to dacitic volcanic rocks. Banded iron formations locally contain conglomeratic structures suggesting sedimentary reworking, possibly under shallow water conditions. Lithological and geochemical characters of the clastic components of the supracrustal sequences are consistent with derivation from felsic and basic volcanic rocks and do not require a continental source.  相似文献   

11.
This paper reports experiments carried out at 1-atm under conditions of controlled oxygen fugacity, using natural andesites and andesite mixed with augite+synthetic pigeonite or augite+orthopyroxene. The experimental results are used (1) to investigate the controls of Mg# (Mg/[Mg+Fe2+]) and temperature on low-Ca pyroxene stability (pigeonite vs orthopyroxene), (2) to quantify the effects of variations in bulk composition on the position of multiple saturation boundaries in mineral component projection schemes and (3) to develop a thermodynamic model for silica activity for melts saturated with olivine and pyroxene. Over the Mg# range of 0.80–0.30 the minimum temperature of pigeonite stability in natural compositions is equivalent to the Lindsley (1983) boundary determined for pure Ca-Mg-Fe pigeonites. For the low variance, 5-phase assemblage oliv-aug-low-Ca pyroxene-plag-liquid, expressions involving liquid (Na2O+K2O)/(Na2O+K2O+CaO),Mg# and TiO2 content predict temperature and the movement of multiple saturation boundaries in pseudoternary projections in response to changing melt composition. The equilibrium for the low pressure melting of low-Ca pyroxene to olivine+liquid is formulated as a geothermometer and monitor of silica activity. Equilibrium constants estimated from thermochemical data and activities calculated for experimentally produced olivine and pyroxenes are used to develop a model for silica activity in liquid.  相似文献   

12.
Pressure (P)–temperature (T) pseudosection analyses were carried out on metapelites from Sambagawa belt by using Perple_X 07 so as to determine mineral equilibria and the stability of sodic phases, in the model system MnO–Na2O–K2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–(CO2) under high‐pressure (HP) conditions (0.5–2.5 GPa/400–600 °C). A pressure–XNA [=Na/(Na+Al–2K–1.5Ca)] pseudosection at 500 °C is also calculated to examine the effect of Na/Al value of the bulk‐rock composition on the stabilities of sodic minerals. The bulk‐rock compositions of Sambagawa metapelite are variable in XNA values. The calculation results of stable assemblages in metapelites under the blueschist and eclogite facies conditions indicate that: (i) paragonite and glaucophane are stable throughout the wide XNA range of bulk‐rock compositions of host rocks; (ii) stable P–T conditions of sodic pyroxene enlarge with increasing XNA value; and (iii) the stability field of paragonite enlarges with the presence of CO2 in the metamorphic fluid. The suggested wide stability of paragonite in metapelites and the relationships between the stability of sodic pyroxene and the bulk‐rock compositions explain the reasons why (i) the occurrence of omphacite in metapelites from several subduction‐related terranes is rare; and (ii) paragonite commonly occurs as inclusions in garnet of metapelites from the Besshi region of the Sambagawa belt. Paragonite is an important sodic phase of HP metapelites, and a combination of paragonite and quartz with high residual pressure included in garnet may be a useful indicator to verify the evidence for the eclogite facies metamorphism recorded in metapelites.  相似文献   

13.
Major and minor element bulk compositions of 90 individual chondrules and 16 compound chondrule sets in unequilibrated (type 3) H-group chondrites were determined in polished thin sections by broad beam electron probe analysis and the chondrules were classified petrographically into six textural types (barred olivine, porphyritic olivine, porphyritic pyroxene, barred pyroxene, radiating pyroxene, fine-grained). Although analyses of individual chondrules scatter widely, the mean composition of each textural type (except barred pyroxene) is rather distinct, as verified by discriminant function analysis. Al2O3, TiO2 and Na3O are correlated in chondrules, but Al2O3 and CaO do not correlate. Compound chondrule sets were found to consist almost entirely of chondrules or partial chondrules of similar texture and composition.The data suggest that composition played a conspicuous role in producing the observed textures of chondrules, though other factors such as cooling rates and degrees of supercooling prior to nucleation were also important. If compound chondrules formed and joined when they were still molten or plastic, then the data suggest that chondrules of each textural type could have formed together in space or time. The correlation of Al2O3 and TiO2 with Na2O and not with CaO appears to rule out formation of chondrules by direct equilibrium condensation from the nebula. We conclude that the most reasonable model for formation of the majority of chondrules is that they originated from mixtures of differing fractions of high-, intermediate- and low-temperature nebular condensates that underwent melting in space. A small percentage of chondrules might have formed by impacts in meteorite parent-body regoliths.  相似文献   

14.
Systematic analysis and comparative study of the chemical compositons of rocks and ores from the main types of zeolite deposits in the surroundings of the Songliao Basic have shown that the process of formation of zeolite from volcanic and pyroclastic rocks is generally characterized by the relative purification of SiO2,i.e.,SiO2/Al2O3 ratios tend to increase,alkali eart elements (CaO MgO)and H2O are relatively enriched,and the alkali metals(K2O Na2O)are depleted in their total amount.The alkali metals K and Na follow different rules of migration and enrichment during the formation of mordenite and clinoptilolite.In the process of formation of mordenite more Na^ will be imported and K^ will be lost remarkably.On the contrary,in the process of formation clinoptilolite more K^ will be incorporated and Na^ will become obviously depleted.  相似文献   

15.
Phenocryst and groundmass pyroxenes in 24 rocks of the tholeiitic, alkalic, and nephelinic suites from Haleakala and West Maui volcanoes, Maui, Hawaii, were analyzed quantitatively by electron microprobe. Results and conclusions: i) Tholeiites contain augite, pigeonite, and bronzite; alkalic rocks contain salite, augite, and ferroaugite; and nephelinic rocks have salite, sometimes of Wo>50 mole %. ii) The three suites can be distinguished by Ca contents of pyroxenes: High-Ca pyroxenes of tholeiitic rocks have Wo30–40; those of alkalic rocks have Wo38–48; and those of the nephelinic rocks have Wo47–51; i.e. Wo in clinopyroxene increases from tholeiitic, to alkalic, to nephelinic suites, iii). In the alkalic suite, rock types can be distinguished on the basis of clinopyroxene composition: Alkalic olivine and alkalic basalts have Wo38–45, hawaiites and mugearites have Wo45–48. Trachytes can be distinguished from both groups by higher Fe (Fs22–30) and Ca contents (Wo43–47). iv) Pyroxenes in tholeiitic rocks show higher intrarock variability (e.g. Fs12Wo40-Fs37Wo30) than those of the alkalic and nephelinic suites, v) Na2O bulk-rock content affects Na2O content of the precipitating high-Ca pyroxene; e.g. Na2O in groundmass pyroxene increases from tholeiitic, to alkalic (mafic members only), to nephelinic suites; a similar relationship is present within the differentiated alkalic suite, vi) In tholeiites, changes in groundmass high-Ca pyroxene compositions are related to changes in bulk rock compositions, e.g. FeO/FeO+MgO+CaO in clinopyroxene increases as this ratio increases in the bulk rock; this is not true for alkalic and nephelinic rocks, vii) In groundmass high-Ca pyroxene, Al2O3, Na20, and TiO2 contents increase and MnO content decreases with increasing Wo content from tholeiitic, to alkalic (mafic members only), to nephelinic suites, viii) Groundmass high-Ca pyroxenes are richer in MnO and Na2O and poorer in Cr2O3 compared to coexisting phenocrysts. High-Ca pyroxene phenocrysts in nephelinic rocks and in one mugearite are depleted in SiO2 and enriched in Al2O3 relative to coexisting groundmass clinopyroxene, indicating increased SiO2 activity during crystallization. Some tholeiites show the reverse; this Si—Al relationship is not clear in other samples.  相似文献   

16.
The distribution of chemical elements in the Weinan loess section shows that: (1) carbonate is the critical constituent affecting loess chemistry. The leaching of carbonates may cause “apparent” enrichment of some other constituents. (2) CaCO3, SiO2, FeO, MgO, K2O and Na2O are mobile while Al2O3, Fe2O3 and TiO2 are inert components. The mobility sequence may follow the order of CaCO3>FeO>MgO>Na2O>K2O>SiO2>Al2O3>TiO2>Fe2O3. (3) No obvious migration is noticed of iron, except changes in valence and forms, during the pedogenic process. Little iron has been supplied to paleosol from precipitation. (4) Carbonates and, to a lesser extent, iron are most sensitive to, and can be therefore used as good indicators of, environmental changes. This research project was financially supported by the National Natural Science Foundation of China (Grant No. 49672137).  相似文献   

17.
18.
Thick horizons of iron formations including Banded Iron Formations (BIFs) and Banded Silicate Formations (BSFs) occur as E–W trending bands in the eastern part of Cauvery Suture Zone (CSZ) in the Sothern Granulite Terrane of India. Some of these occur in close association with the Neoarchean-Neoproterozoic suprasubduction zone complexes, where as some others are associated with metamorphosed accretionary sequences including pyroxene granulites and other high grade rocks. The iron formations are highly deformed and metamorphosed under amphibolite to granulite facies conditions and are composed of quartz–magnetite–hematite–goethite–garnet–pyrite together with grunerite and pyroxene. Here we report the geochemical characteristics of twenty representative samples from the iron formations that reveal a widely varying composition with Fe2O3(t) (22–65 wt.% as total iron) total- Fe2O3/TiO2 (205–6532), MnO/TiO2 (0.25–12.66) and SiO2 (33–85 wt.%), broadly representing the two types of iron formations. These formations also show very low Al/(Al + Fe + Mn) ratio (0.001–0.01), Al2O3 (0.07–0.76 wt.%), Al2O3/TiO2 ratio (2.7–21), MgO (0.01–4.41 wt.%), CaO (0.1–1.24 wt.%), Na2O (0.01–0.05 wt.%) and K2O (0.01 wt.%) together with low total REE (3.38–31.63 ppm). The trace and REE elemental distributions show wide variation with high Ni (274 ppm), and Zn contents (up to 87 ppm) when compared to mafic volcanics of the adjoining areas. Tectonic discrimination plots indicate that the iron formations of the Cauvery Suture Zone are of hydrothermal origin. Their chondrite normalized patterns show slight positive Eu anomaly (Eu/Eu* = up to 1.77) and relatively less fractionation of REE with slight LREE enrichment compared to HREE. However, the PAAS (Post Archean Average of Australian Sediments) normalized REE patterns display significant positive Eu anomaly (Eu/Eu* up to 2.32) with well represented negative Ce anomalies (Ce/Ce* = 0.66–1.28). The above results together with petrological characteristics and available geochronology of the associated lithologies suggest that the iron formations can be correlated to Algoma-type. The Fe and Si were largely supplied by medium to high temperature sub-marine hydrothermal systems in Neoarchean and Neoproterozoic convergent margin settings.  相似文献   

19.
Subsolidus phase relations have been determined in the systems SiO2-Cr-O and MgO-SiO2-Cr-O in equilibrium with metallic Cr, at 1100 to 1500℃ and 0 to 2.88 GPa. The results show that there are no ternary phases in the SiO2-Cr-O system at these conditions, i.e., only the assemblage eskolaite-Cr-metal-quartz (or tridymite) is found. In the MgO-containing system, however, extensive substitution of Cr2+ for Mg is observed in (Mg, Cr2+)2SiO4 olivine, (Mg, Cr2+)2Si2O6 pyroxene, and (Mg, Cr2+)Cr2O4 spinel. Cr3+ levels in olivine and pyroxene are below detection limits. The pyroxene is orthohombic at XCrPx2+ < 0.2, monoclinic at higher XCrPx2+ . Thestructure of the spinels becomes tetragonally distorted at XCr2+Sp >0.2. The experimental datahave been fitted to a thermodynamic model, and the authors obtained the mixing parameter (W) of Mg-Cr2+ in olivine, pyroxene and spinel, and the relation between temperatures and free energies of formation for the end-members: Cr2+-olivine (Cr2SiO4), Cr2+-pyroxene (Cr2Si2O6)  相似文献   

20.
The problem of comparison of the composition of crystalline rocks with the composition of the constituent minerals of these rocks is considered. It is proposed to present the composition of rocks and the compositions of the constituent minerals in the form of a triangle on the plane. The experience of presentation of compositions in phase diagrams was taken as a basis for the construction. Analysis of the crystallochemical characteristics of clinopyroxenes and garnets has shown that three parameters are enough for depicting the compositions of these and other minerals. For this purpose, similar composition components of rocks and their minerals are summarized in molecular proportions and are plotted on the triangle DO-1/2(R2O3)-XO2, where DO = (MgO + CaO + FeO + MnO + NiO + ...) + 1/4(Na2O + Al2O3) + 1/4(K2O + Al2O3), 1/2(R2O3) = 1/2(Al2O3 + Fe2O3 + Cr2O3 + ...) - (1/4(Na2O + Al2O3) + 1/4(K2O + Al2O3)), and XO2 = SiO2 + TiO2. The compositions of minerals are expressed as the sums of their components: Ol = Fo + Fa + Lar + Neph + ..., Px = Di + En + Wol + Ged + Gip + Jd + Eg + ..., Ga = Pyr + Gross + Alm + Spe + Ski + Knr + Mj + ..., etc. A step-by-step calculation algorithm is proposed, which permits evaluation of the contents of bi- and trivalent iron during probe microanalyses of garnets and pyroxenes. Comparison of the compositions of deep-seated rocks and their minerals shows their good consistency. The proposed schematic projection permits a visual comparison of the compositions of rocks with low contents of carbonates and water, from ultrabasic (e.g., dunites) to acid (e.g., granites) ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号