首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A high-resolution sunspot umbra spectrum recorded in National Solar Observatory, Kitt Peak in the visible and infrared wave number range 13, 600 – 25, 000cm−1 was taken in the present study for identifying the rotational lines of barium hydride (BaH) molecule. Number of chance coincidences was evaluated for the A 2Π1/2 – X 2Σ ((0,0), (1,1), (2,2), (1,0), (2,1)), A 2Π3/2 – X 2Σ ((0,0), (1,1), (2,2)), B 2Π1/2 – X 2Σ (0,0), B 2Π3/2 – X 2Σ (0,0), C 2Σ – X 2Σ ((1,1), (1,0), (2,2), (2,1), (3,2)) and D 2Σ – X 2Σ ((1,0), (2,0), (3,0), (4,0), (5,0), (8,0), (9,0)) band systems of BaH using line identification procedure. The obtained number of chance of coincidences was compared with I- parameter values. The highly resolved rotational lines were chosen to evaluate equivalent widths using triangle approximation method. The effective rotational temperatures were calculated for the bands (0,0), (1,1), (2,2) and (2,1) of A 2Π1/2 – X 2Σ, (0,0) (1,1) and (2,2) of A 2Π3/2 – X 2Σ, B 2Π1/2 – X 2Σ (0,0) and B 2Π3/2 – X 2Σ (0,0) of BaH molecule. The rotational temperature values calculated for these bands were found to be in the range 1185 – 3514 K. They were also compared with the already reported sunspot temperatures.  相似文献   

2.
J.R. Johnson  U. Fink  S.M. Larson 《Icarus》1984,60(2):351-372
Spectra of the four comets, Tuttle, Stephan-Oterma, Brooks 2, and Bowell, were taken with a prototype space telescope charge coupled device (CCD) camera using a 500 × 500 Texas Instruments chip. The spectra extended from 5600 to 10,400 Å at a resolution of ~25 A?. The spatial coverage along the slit was 180?; its resolution was defined by the seeing (2–3?). Both absolute flux scales and spectral albedos were determined with the data reduction procedure which included flat fielding and sky subtraction. Comet Tuttle displayed extensive emissions by NH2, the red system of CN, and the C2 Swan bands as well as emissions by the forbidden oxygen lines [OI] 1D at 6300 and 6364 Å, and the ionic species H2O+. A feature at 6851 Å has been tentatively identified as the 3-0 band of CS+. Notable is the absence of the C2 Phillips bands whose transitions are optimally placed in our spectrum. The much dustier comet, Stephan-Oterma showed emissions by CN, NH2, and [OI] while only [OI] could be discerned in the noisier Brooks 2 spectrum. The fresh comet Bowell exhibited an unusually extended coma with an albedo times cross section two orders of magnitude larger than the other comets, a very flat albedo spectrum, and no emission features. For Tuttle and Stephan-Oterma, CN and NH2 column densities using a number of bands were calculated. The CN band intensity ratios show good agreement with theoretical fluorescence models. The spatial profiles for CN and NH2 were compared to two step Haser model decay calculations. The scale lengths most consistent with the data were compared with values previously reported and with values expected for various photodissociation reactions. Production rates were calculated for CN and NH2. These should be less model dependent because of the simultaneous collection of spectral and spatial information. The production rate ratios of the parents of CN and NH2 to the parent of OH are several orders of magnitude smaller than the solar abundance ratios of C/O and N/O.  相似文献   

3.
A high-resolution spectrum clearly shows the presence of A 6Σ+X 6Σ+(0,0;0,1;1,0;2,0;2,1) and (2,2) bands system of CrH molecular lines in the spectral range 10,000 cm−1 to 14,050 cm−1. At least 3928 lines of the six bands, accounting for 57% of the lines registered in the laboratory can be identified with certainty in the sunspot spectrum. Most of the lines are found blended with TiO, CaH, MgH and other atomic species. These molecular lines are typically much more temperature sensitive than atomic lines, which make them ideal, complementary tool for studying cool stellar atmospheres as well as the internal structure of sunspots. Equivalent width for an adequate number of well identified molecular lines of these bands using the Gaussian-profile approximation method versus rotational quantum number J has been used to determine the effective rotational temperature of the CrH molecule. The range of effective rotational temperature value obtained from these bands is 1766 K to 2442 K. This range agrees well with the effective rotational temperatures derived for other molecules in sunspot umbrae.  相似文献   

4.
Medium-resolution (1.5-2.5 Å) spectrum has been obtained for SC star GP Ori in a wide range of wavelengths from 3730 to 6250 Å. It is characterised mainly by strong atomic lines, as well as moderately strong bands of the CN violet system and CH (0,0) and (0,1) bands at 4315 and 4890 Å. Weak bands of C2, C3, and ZrO molecules are observed, however, no evidence is found for the presence of either SiC2 (Merrill-Sanford bands) or YO. The most prominent atomic lines along with the NaID12 are those of CaII (K,H), CaI at 4227 Å, SrI at 4607 Å, SrII at 4077 and 4215 Å, and BaII at 4554 Å. H seems to be in emission.  相似文献   

5.
We present the results of the preliminary study of the comet Hale-Bopp spectrum obtained April 17, 1997 by K. Churyumov and F. Mussayev with the help of the 1-meter Zeiss reflector and the echelle spectrometer (spectral resolutionλ/Δ λ ≈ 50000), CCD and the long slit, oriented along the radius-vector(“Sun-comet direction”). Energy distributions for three selected regions including the C3, C2 (0-0) and CN(Δ ν = 0) molecules emissions of the comet Hale-Bopp spectrum were built. The rotational lines of the CN(Δ ν = 0) band were identified. The nature of the high emission peak near λ 4020 Å in the C3 band is discussed. The presence of the cometary continuum of the nonsolar origin is assumed.  相似文献   

6.
High-resolution Fourier transform spectrometer sunspot umbral spectra obtained at the National Solar Observatory/Kitt Peak were used to identify molecular rotational lines arising from the infrared band systems of CrH and CrD molecules. Measurement of the equivalent width used the Gaussian-profile approximation method, which is suitable especially for faint lines. Equivalent widths are measured for an adequate number of best lines of the A – X (0,0) band of CrH and the A – X (0,0;1,0) bands of CrD and, thereby, the effective rotational temperatures are estimated.  相似文献   

7.
Based on our high-spectral-resolution observations performed with the NES echelle spectrograph of the 6-m telescope, we have studied the peculiarities of the spectrum and the velocity field in the atmosphere and envelope of the cool supergiant V1027 Cyg, the optical counterpart of the infrared source IRAS 20004+2955. A splitting of the cores of strong absorptions of metals and their ions (Si II, Ni I, Ti I, Ti II, Sc II, Cr I, Fe I, Fe II, BaII) has been detected in the stellar spectrum for the first time. The broad profile of these lines contains a stable weak emission in the core whose position may be considered as the systematic velocity V sys = 5.5 km s?1. Small radial velocity variations with an amplitude of 5–6 km s?1 due to pulsations have been revealed by symmetric low- and moderate-intensity absorptions. A long-wavelength shift of the Hα profile due to line core distortion is observed in the stellar spectrum. Numerous weak CN molecular lines and the KI 7696 Å line with a P Cyg profile have been identified in the red spectral region. The coincidence of the radial velocities measured from symmetric metal absorptions and CN lines suggests that the CN spectrum is formed in the stellar atmosphere. We have identified numerous diffuse interstellar bands (DIBs) whose positions in the spectrum, V r (DIBs) = ?12.0 km s?1, correspond to the velocity of the interstellar medium in the Local Arm of the Galaxy.  相似文献   

8.
The 5ν1 absorption band of NH3 is displayed from 6418 to 6550 Å. The total band intensity has been measured: SB = 0.66 cm?1m?1amagat?1. Line intensities and self-broadening coefficients have been measured for some of the prominent lines. Our line intensities are in good agreement with those of Rank et al. (1966), but are about 2 times greater than those of Mason (1970). The spectrum displayed was obtained photoelectrically at a pressure of 0.061 atm, and shows many more lines than the spectrum obtained by McBride and Nicholls (1972a) at a pressure of 0.39 atm. Therefore, our new measurements can provide the basis for making a more complete rotational analysis than those of McBride and Nicholls (1972a).Since the total band absorption has previously been measured by others on moderate resolution photoelectric scans of the spectra of Jupiter and Saturn, we can use the band intensity to derive the NH3 abundance in the atmospheres of these two planets. The NH3 abundances in a single vertical path obtained by this method are about 10m amagat for Jupiter and 2m amagat for Saturn. These results are in agreement with previous results obtained from higher resolution photographic spectra.  相似文献   

9.
Ground-based observations of Venus were made with a 5-cm drive Michelson interferometer during December 1970 and December 1973. The thermal emission spectrum of the central portion of the apparent disk was recorded from 450–1250 cm?1 with an apodized spectral resolution of 0.25 cm?1. All statistically significant sharp line absorption features in the spectrum have been identified with gaseous CO2. Comparison between the observed spectrum and a synthetic spectrum computed from a model atmosphere, assuming gaseous CO2 and a sulfuric acid haze as opacity sources, indicates good agreement. A broad diffuse absorption feature associated with the sulfuric acid haze is evident in the 870- to 930 cm?1 region. With the exception of the rotational lines of the 927-cm?1 CO2 band, the above feature appears as a continuum down to 0.25 cm?1 resolution. In the 750- to 1250-cm?1 range, the spectrum exhibits moderate thermal contrast with maximum brightness temperatures of 234–238°K occurring near 825 cm?1. These temperatures are in general agreement with previous measurements.  相似文献   

10.
The unidentified absorption feature at 9730±5 Å observed in the spectra of pure S stars is provisionally identified with the predicted 9732 Å (0,0) band of thee 1II-c 1 transition of ZrO molecule. Relative band strengths and band head positions ofthis transition in the 8300–12 500 Å region are presented to assist both laboratory and stellar spectral studies. The insistent need for the laboratory study of gas phase infrared spectrum of ZrO is accentuated.  相似文献   

11.
Laboratory investigations of CN radical formation by photodissociation of parent molecules have suggested the possibility of observing emission lines in cometary spectra from newly formed CN radicals. These laboratory studies have shown that high initial internal excitation of CN is the rule with excitation of rotational levels N up to 70. In the collisionless environment of the cometary atmosphere this initial excitation would yield a corresponding distribution for the lowest vibrational level of the ground X2Σ+ state. Our calculations show that it is feasible with present observational techniques to detect photochemically excited lines with N ~ 30 in the 0-0 band of the violet system.  相似文献   

12.
The spectroscopic observations of comet C/2009 R1 (McNaught) were carried out with the 2 m Zeiss-RCC Telescope of Pik Terskol Observatory operated by the International Center for Astronomical and Medico-Ecological Research (Ukraine, Russia). The Multi Mode Cassegrain spectrometer was used to obtain spectra of moderate spectral resolving power with a wavelength coverage from 4140 to 5240 Å. The spectrum is characterized by the extremely low continuum level and strong molecular features. 192 emission lines of C2, CN, CH, NH2, CO+, and CH+ have been identified by the comparison of the observed and theoretical spectra of the molecules. The ratios of the gas production rates of Q(C2)/Q(CN)=1.32, Q(CH)/Q(CN)=0.49, and Q(NH2)/Q(CN)=0.81 were derived using a Haser model.  相似文献   

13.
High resolution FTS sunspot umbral spectra from NSO/Kitt Peak were used to detect rotational lines due to 11 electronic transitions of the molecule AlF, in the wavelength region 4400 – 9000 Å. The presence of lines due to bands C – A (0,0), (0,1), (0,2) and (1,2), D – A (0,0) and (0,1), F – A (0,0), G – A (0,0), and F – B (0,0) is confirmed. Further, the presence of lines due to C – A (1,0) and (1,1) transitions is treated as doubtful because of heavy blending in the region, by rotational lines of TiO. Among the identified lines, those which are well resolved were selected for measurement of equivalent widths. The measured values for the bands D – A (0,0) and F – A (0,0) were used to estimate the respective effective rotational temperatures to be 1240 ± 120 K and 2390 ± 400 K.  相似文献   

14.
An attempt is made to detect the lines of Mg25H and Mg26H in the photospheric spectrum, using calculated isotope shifts. From comparisons with the Mg24H lines of the 2 2 transition in the (0, 0) band the ratios Mg25/Mg24 = 0.12 ± 0.04 and Mg26/Mg24 = 0.12 ± 0.02 are derived. These are essentially the same as the terrestrial ratios. The profile of one line of Mgi confirms these values.The wavelengths of MgH and C2 lines, when corrected for the gravitational red shift, indicate that macroturbulent (or streaming) velocities die out near log 0 = – 1.0. From the equivalent widths of the MgH lines a rotational temperature of 5132 ± 200 K is obtained and compared to predictions from various model atmospheres. The band oscillator strength is found to be 0.024 ± 0.002, in serious disagreement with the single laboratory determination.The profiles of MgH, C2, CN and some weak atomic lines are used to derive the variation of the radial component of microturbulence with optical depth, on the assumption of streaming velocities of 2.5–3.0 km/sec. A slow increase with increasing height in the photosphere is found, over the range –1.5 < log0< 0.2.The center-limb variation of the equivalent widths of MgH and C2 lines for a wholly inhomogeneous model is found to be the same as for a model which is homogeneous above log 0 = - 1.0. With such a model as the latter, the center-limb variation of the profiles of the selected molecular and atomic lines is moderately-well reproduced by an anisotropic microturbulent velocity with a tangential component of 3 km/sec which seems to be constant with height over the range considered.  相似文献   

15.
Aluminium monoxide (AlO) is widely known for its astrophysical significance. An analysis of the prominent lines of the (2,3;3,2;3,4;4,5;4,3;5,6;6,7) bands of the B 2Σ+?X 2Σ+ transition with those of sunspot umbral spectral lines suggests that the AlO molecule appears to be a non-negligible component of sunspot umbrae. Results of a recent (2008) rotational analysis were used to carry out the study. The effective rotational temperature determined for the above lines in the sunspot umbral spectrum is found to be of the order of 2900 K. The radiative-transition parameters that include Franck–Condon (FC) factors, r-centroids, electronic-transition moment, Einstein coefficient, absorption–band oscillator strength, and radiative lifetime have been estimated for the experimentally known vibrational levels using the Rydberg–Klein–Rees (RKR) potential.  相似文献   

16.
The paper presents the results of the spectral observations of comet C/2001 Q4 (NEAT) acquired with the Zeiss-600 telescope of the Andrushevka astronomical observatory in May 2004. The spectrum of the comet was obtained in the range of 3600–8200 Å. We identified a number of emission features in the spectrum of comet C/2001 Q4 (NEAT). The emission bands of C2, C3, CN, CH, NH2, H2O+ were detected in the spectrum of the comet, and their intensities were determined. The ratios of gas-production rates Q(C2)/Q(CN) = 0.23, Q(C3)/Q(CN) = ?0.79, and Q(NH2)/Q(CN) = ?0.029 were determined with the Haser model.  相似文献   

17.
We have carried out an analysis of the (0, 0) vibrational band of the CN molecule in Comet Mrkos 1957d, including the effect of collisions. We found that the sum of the squares of the residuals can be reduced by a factor of ten, if collisions account for 46±3% of the population of the lower level. A rotational temperature can be assigned to the cometary gas. The best value found was 410±40 K. The best fit for the constantR 1 was (1.07±0.10)×10–4. The velocity of the comet was left as a free parameter. We found for it a value of 34.38±0.10 km s–1. This result is in disagreement with the nuclear orbital velocity of 34.74 km s–1. The discrepancy can be explained, if the CN molecules are ejected from the cometary nucleus preferentially in the sunward direction, with a mean velocity that corresponds to the above temperature.  相似文献   

18.
A high resolution spectrum of a sunspot umbra is used for identification of rotational lines due to (0, 0) band of the A 2Π–X 2Σ+ system and (0, 0), (1, 1), and (2, 2) bands of the B 2Σ+X 2Σ+ system of the molecule SrF. The published sunspot umbral spectrum obtained with Fourier Transform Spectrometer and solar telescope of National Solar Observatory/National Optical Astronomy Observatory at Kitt Peak was used for the study. The new identification of more than 200 SrF lines in the umbral spectrum confirms that this molecule accounts for the majority of lines in the spectral range 15050 to 15360 cm−1 and 17240 to 17300 cm−1. Equivalent widths have been measured for well-resolved lines of these bands and the effective rotational temperatures have been estimated for which the presence is confirmed.  相似文献   

19.
We demonstrate, using a sample of high quality spectra, that the average equivalent width ratio of the unsaturated R(0) and R(1) lines of the CN B2Σ+ – X2Σ+ (0, 0) band near 3875 Å equals π instead of 3.73 – calculated for the CMBR temperature T = 2.725 K and the already published oscillator strengths of both transitions, i.e. the excitation temperature of CN is slightly higher than it should be expected if CMBR is the only excitation mechanism. Taking into account the saturation effects by means of profile fitting during the column density calculations does not remove the revealed temperature excess. Possible interpretations of the effect are discussed (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We report on simultaneous optical and infrared observations of the Halley Family comet 8P/Tuttle performed with the ESO Very Large Telescope. Such multi-wavelength and coordinated observations are a good example of what can be done to support space missions. From high resolution optical spectroscopy of the CN (0,0) 388 nm and NH2 (0,9,0) 610 nm bands using UVES at UT2 we determined 12C/13C = 90 ± 10 and 14N/15N = 150 ± 20 in CN and we derived a nuclear spin temperature of NH3 of 29 ± 1 K. These values are similar to those found in Oort-Cloud and Jupiter Family comets. From low resolution long slit spectroscopy with FORS1 at UT2 we determined the CN, C3 and C2 production rates and the parent and daughter scale lengths up to 5.2 105 km tailward. From high resolution IR spectroscopy with CRIRES at UT1 we measured simultaneously the production rates and mixing ratios of H2O, HCN, C2H2, CH4, C2H6, and CH3OH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号