首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dispersion relation is derived for acoustic-gravity waves propagating in a multiconstituent gas whose atoms and molecules are subject to relaxational exchanges of thermal energy between translational and internal forms. The relation employs a complex thermal capacitance, derived in a companion paper, which incorporates the relaxational effects. Approximations to this relation permit ready assessment of the attenuation of wave amplitude and energy that relaxation produces, both in absolute amount and relative to viscous attenuation.In Earth's upper atmosphere, relaxational attenuation is found to be of greatest potential consequence in the middle and upper E region. Both electronic relaxation in atomic oxygen and vibrational relaxation in molecular oxygen and nitrogen appear to be capable of playing a significant role, but it is found that the actual significance of their roles cannot be assessed adequately because of present uncertainties of governing parameters (and, in the case of vibrational relaxation, of governing collisional interactions). Similar uncertainties are found to surround the role that relaxation, notably in atomic oxygen, may play in the termination of turbulence near the 110 km level.  相似文献   

2.
Observations of Neptune were made in September 2009 with the Gemini-North Telescope in Hawaii, using the NIFS instrument in the H-band covering the wavelength range 1.477–1.803 μm. Observations were acquired in adaptive optics mode and have a spatial resolution of approximately 0.15–0.25″.The observations were analysed with a multiple-scattering retrieval algorithm to determine the opacity of clouds at different levels in Neptune’s atmosphere. We find that the observed spectra at all locations are very well fit with a model that has two thin cloud layers, one at a pressure level of ∼2 bar all over the planet and an upper cloud whose pressure level varies from 0.02 to 0.08 bar in the bright mid-latitude region at 20–40°S to as deep as 0.2 bar near the equator. The opacity of the upper cloud is found to vary greatly with position, but the opacity of the lower cloud deck appears remarkably uniform, except for localised bright spots near 60°S and a possible slight clearing near the equator.A limb-darkening analysis of the observations suggests that the single-scattering albedo of the upper cloud particles varies from ∼0.4 in regions of low overall albedo to close to 1.0 in bright regions, while the lower cloud is consistent with particles that have a single-scattering albedo of ∼0.75 at this wavelength, similar to the value determined for the main cloud deck in Uranus’ atmosphere. The Henyey-Greenstein scattering particle asymmetry of particles in the upper cloud deck are found to be in the range g ∼ 0.6–0.7 (i.e. reasonably strongly forward scattering).Numerous bright clouds are seen near Neptune’s south pole at a range of pressure levels and at latitudes between 60 and 70°S. Discrete clouds were seen at the pressure level of the main cloud deck (∼2 bar) at 60°S on three of the six nights observed. Assuming they are the same feature we estimate the rotation rate at this latitude and pressure to be 13.2 ± 0.1 h. However, the observations are not entirely consistent with a single non-evolving cloud feature, which suggests that the cloud opacity or albedo may vary very rapidly at this level at a rate not seen in any other giant-planet atmosphere.  相似文献   

3.
S.J. Peale 《Icarus》1978,36(2):240-244
If Hyperion's radius is near the upper limit of recent estimates, and tidal dissipation in Hyperion is reasonably well represented by a frequency-independent Q ? 2–300, finding Hyperion rotating in the 3:2 spin-orbit resonance like Mercury would imply a primordial origin for the Titan-Hyperion 4:3 orbital resonance. Independent of this test, observation of Hyperion's spin rate will place an upper bound on the average tidal effective Q for the satellite as a function of its assumed initial angular velocity.  相似文献   

4.
A study of the vertical cloud structure of oval BA and its red color change is presented in this third part of our complete analysis. A large interest in Jupiter’s anticyclone BA was created by its reddening that occurred between 2005 and 2006. In this work we quantify the color change in oval BA by using images taken with the Advanced Camera for Surveys (ACS) onboard the Hubble Space Telescope (HST) in six filters from the near ultraviolet (F250W) to the deep methane band in the near infrared (F892N). Reflectivity changes are noteworthy in nadir viewing geometry at the ultraviolet and blue wavelengths (F250W, F330W and F435W filters) but almost undetectable or inside error bars in the rest of filters (F550M, F658N and F892N). The observed reflectivity variations are discussed in terms of a commonly accepted vertical cloud structure model for jovian anticyclones in order to explore some causes for the color alteration. Our models of the observed reflectivity variation show that the vortex clouds did not change its vertical extension (top pressure) or its optical depth. We find that a change occurred in the absorbing properties of the particles populating the upper aerosols (single scattering albedo and imaginary refractive index). A discussion on the thermo-physical and dynamical properties of the vortex that could be in the origin of the color change is also presented.  相似文献   

5.
《Icarus》1986,68(2):344-365
Model atmosphere calculations are presented which simulate high-resolution maps of Jupiter's radio emission. They are compared with observations recently obtained at the Very Large Array at 1.3, 2.0, 6.1, and 20.5 cm with resolutions ranging from 0.075 to 0.218 Jovian radii (I. de Pater and J. R. Dickel (1986). Jupiter's zone-belt structure at radio wavelengths. I. Observations. Astrophys. J., in press). The models indicate that ammonia gas is strongly depleted in the upper atmosphere with respect to the solar value both in zones and belts. At very high levels in the atmosphere (P < 0.3−0.5 bar) the gas is undersaturated and distributed uniformly over the planet. In the cloud formation region (0.5 < P < 2 bar), the ammonia depletion is largest in the belts, where it extends down to depths corresponding to 1.8–2 bar. In the zones, the lower ammonia abundances are found down to pressures of 1 bar. Deeper into the Jovian atmosphere, at pressures ≥2.2 bar, the gas is overabundant relative to the solar value by nearly a factor of 2 in both zones and belts. The altitude distribution of the ammonia gas is explained in terms of chemistry, cloud physics, and atmospheric dynamics. The undersaturation at high levels in the atmosphere is attributed to photodissociation of ammonia gas under influence of solar UV photons, coupled with Jupiter's meteorology (up- and downward drafts in the atmosphere). The general depletion of this gas throughout Jupiter's upper atmosphere may be caused by trapping of the gas in a layer of NH4SH particles, and/or in an aqueous ammonia cloud. The cloud deck responsible for trapping ammonia gas is thicker above zones than belts. If the observed depletion of ammonia gas is entirely due to trapping in an NH4SH cloud, the difference in thickness of this cloud between zones and belts gives rise to a temperature difference of 3–4°K between the two regions. This temperature difference may trigger the zonal wind motions in Jupiter's atmosphere near the cloud tops.  相似文献   

6.
In a series of previous papers, a petrological model for the Moon has been developed based on the assumption that the Moon is a globe of differentiated terrestrial mantle material which fissioned from the Earth. One of the major constraints which this model matches is the hypothesis that the lunar upper mantle is dominated by pyroxene. However, it has been recently shown that olivine is most probably the major constituent of the lunar upper mantle and that, at least that part of the Moon has a composition which is very similar to that of pyrolite - the proposed composition of the Earth's mantle. As a result of this new model constraint, the previously proposed differentiation scheme for a Moon of fission origin is reviewed and found to be inadequate, despite modification, for explaining the near pyrolite composition of the lunar upper mantle. As a result, a solidification sequence, which has been proposed to explain the rhythmic banding in terrestrial ultra mafic complexes, is investigated and found to be able to account for the high olivine content of the upper mantle, assuming a pyrolite composition for the Moon.  相似文献   

7.
The seasonal variation of Titan's atmospheric structure with emphasis on the stratosphere is simulated by a three-dimensional general circulation model. The model includes the transport of haze particles by the circulation. The likely pattern of meridional circulation is reconstructed by a comparison of simulated and observed haze and temperature distribution. The GCM produces a weak zonal circulation with a small latitudinal temperature gradient, in conflict with observation. The direct reason is found to be the excessive meridional circulation. Under uniformly distributed opacity sources, the model predicts a pair of symmetric Hadley cells near the equinox and a single global cell with the rising branch in the summer hemisphere below about z = 230 km and a thermally indirect cell above the direct cell near the solstice. The interhemispheric circulation transports haze particles from the summer to the winter hemisphere, causing a maximum haze opacity contrast near the solstice and a smaller contrast near the equinox, contrary to observation. On the other, if the GCM is run under modified cooling rate in order to account for the enhancement in nitrites and some hydrocarbons in the northern hemisphere near the vernal equinox, the meridional cell at the equinox becomes a single cell with rising motions in the autumn hemisphere. A more realistic haze opacity distribution can be reproduced at the equinox. However, a pure transport effect (without particle growth by microphysics, etc.) would not be able to cause the observed discontinuity of the global haze opacity distribution at any location. The stratospheric temperature asymmetry can be explained by a combination of asymmetric radiative heating rates and adiabatic heating due to vertical motion within the thermally indirect cell. A seasonal variation of haze particle number density is unlikely to be responsible for this asymmetry. It is likely that a thermally indirect cell covers the upper portion of the main haze layer. An artificial damping of the meridional circulation enables the formation of high-latitude jets in the upper stratosphere and weaker equatorial superrotation. The latitudinal temperature distribution in the stratosphere is better reproduced.  相似文献   

8.
Properties of acoustic-gravity waves in the upper atmosphere of Venus are studied using a two-fluid model which includes the effects of wave-induced diffusion in a diffusively separated atmosphere. In conjunction with neutral mass spectrometer data from the Pioneer Venus orbiter, the theory should provide information on the distribution of wave sources in the Venus upper atmosphere. Observed wave structure in species density measurements should generally have periods ?30–35 min, small N2, CO, and O amplitudes, and highly variable phase shifts relative to CO2. A near resonance may exist between downward phase-propagating internal gravity and diffusion waves near the 165-km level at periods near 29 min. As a result, if very large He wave amplitudes are observed near this level, it will indicate that the wave source is below the 150- to 175-km level and that the exospheric temperature is close to 350°K. Wave energy dissipation may be an important mechanism for heating of the nightside Venus thermosphere. Large-density oscillations in stratospheric cloud layer constituents are also possible and may be detectable by the Pioneer Venus large probe neutral mass spectrometer.  相似文献   

9.
Boulder 1 at Station 2 is one of three boulders sampled by Apollo 17 at the base of the South Massif, which rises 2.3 km above the floor of a linear valley interpreted as a graben formed by deformation related to the southern Serenitatis impact. The boulders probably rolled from the upper part of the massif after emplacement of the light mantle. Orbital gravity data and photogeologic reinterpretation suggest that the Apollo 17 area is located approximately on the third ring of the southern Serenitatis basin, approximately 1.25 times larger than the analogous but fresher Orientale basin structure. The massif exposures are interpreted to represent the upper part of thick ejecta deposited by the southern Serenitatis impact near the rim of the transient cavity. Basin ring structure and the radial grabens that give the massifs definition were imposed on this ejecta at a slightly later stage in the basin-forming process. There is no clear-cut compositional, textural, or photogeologic evidence that Imbrium ejecta was collected at the Apollo 17 site.  相似文献   

10.
In the Earth's lower thermosphere and mesosphere, water vapor is photodissociated by absorption of Lyman alpha radiation. The hydrogen containing free radicals produced by this process lead to the formation of molecular hydrogen. Therefore, very small water vapor mixing ratios are expected at high altitudes, particularly in summer, when photolysis is especially rapid. We present one and two-dimensional model calculations regarding the distribution of H2O and H2 in the upper atmosphere.The ion chemistry of meteor ions in the lower thermosphere is also examined and it is shown that silicon ion densities can be used to infer water vapor concentrations near 100 km. The water vapor mixing ratios obtained are generally well below one part per million and are in good agreement with the model calculations.  相似文献   

11.
An observational program to study variations of the vertical distribution of CO in the Venus atmosphere is presented. Measurements of the J = 0 → 1 absorption line at 2.6 mm wavelength are reported for two phase angles in 1977, one near eastern elongation (Feb.) and the other near inferior conjunction (Apr.). The two spectra are significantly different, with the April absorption line being narrower and deeper. The results of numerical inversion calculations show that the CO mixing ratio increases a factor of ~ 100 between 78 and 100 km and that the CO abundance above ~ 100 km is greatest on the night-side hemisphere. These conclusions are in qualitative agreement with theoretical models. In addition to the CO observations, a search for other molecules was made to provide further information on the composition of the Venus middle atmosphere. The J = 0 → 1 transition of 13CO was detected and upper limits were derived for nine other molecules.  相似文献   

12.
The average rotation rate of the upper atmosphere can be found by analysis of the changes in the orbital inclinations of satellites, and results previously obtained have indicated that the atmospheric rotation rate appreciably exceeds the Earth's rotation rate at heights between 200 and 400 km.We have examined all such results previously published in the light of current standards of accuracy: some are accepted, some revised, and some rejected as inadequate in accuracy. We also analyse a number of fresh orbits and, adding these to the accepted and revised previous results, we derive the variation of zonal wind speed with height and local time. The rotation rate (rev/day) averaged over all local times increases from near 1.0 at 150 km height to 1.3 near 350 km (corresponding to an average west-to-east wind of 120 m/s), and then decreases to 1.0 at 400 km and probably to about 0.8 at greater heights. The maximum west-to-east winds occur in the evening hours, 18–24 h local time: these evening winds increase to a maximum of about 150 m/s at heights near 350 km and decline to near zero around 600 km. In the morning, 4–12 h local time, the winds are east to west, with speeds of 50–100 m/s above 200 km. We also tentatively conclude that, at heights above 350 km, the average rotation rate is greater in equatorial latitudes (0–25°) than at higher latitudes.  相似文献   

13.
The aurora and other phenomena in near Earth space are becoming a considerable part of the science curriculum in upper secondary school (high school) in Norway. Introducing scientific methods to the young students is an important objective of the education, but experimental experience is mainly restricted to simple laboratory exercises under controlled conditions; observations of uncontrollable natural phenomena are generally left to academic scientists and researchers. The Space Physics Group and The Science Education and Outreach Group at The Department of Physics and Technology, University of Bergen, are constructing a Space Science Suitcase with a set of simple versions of instruments for monitoring solar and geophysical activity in near Earth space. The instruments will be lent to physics classes in upper secondary schools.  相似文献   

14.
Six values of the rate of rotation of the Earth's upper atmosphere have been obtained by analysis of the orbital inclinations of four balloon satellites in the intervals just before the final decay of their orbits. The effective heights of these results range from about 350 to about 675 km. The values themselves range from 0·8 to 1·4 times the Earth's rotation and correspond to zonal wind speeds between 100 m/sec westward and 200 m/sec eastward. All the results correspond to fairly specific local times and are consistent with a diurnal wind pattern in low latitudes having a strong eastward maximum near local midnight and a lesser westward maximum near 10:00 LT. They argue against the contention of a sharp decrease in the rate with respect to that of the Earth, which is supposed to begin at about 360 km. The factors involved in the determination of these values and the method used are discussed in considerable detail.  相似文献   

15.
Infrared spectroscopy sensitive to thermal emission from Jupiter’s stratosphere reveals effects persisting 23 days after the impact of a body in late July 2009. Measurements obtained on 2009 August 11 UT at the impact latitude of 56°S (planetocentric), using the Goddard Heterodyne Instrument for Planetary Wind and Composition mounted on the NASA Infrared Telescope Facility, reveal increased ethane abundance and the effects of aerosol opacity. An interval of reduced thermal continuum emission at 11.744 μm is measured ∼60-80° towards planetary east of the impact site, estimated to be at 305° longitude (System III). Retrieved stratospheric ethane mole fraction in the near vicinity of the impact site is enhanced by up to ∼60% relative to quiescent regions at this latitude. Thermal continuum emission at the impact site, and somewhat west of it, is significantly enhanced in the same spectra that retrieve enhanced ethane mole fraction. Assuming that the enhanced continuum brightness near the impact site results from thermalized aerosol debris blocking contribution from the continuum formed in the upper troposphere and indicating the local temperature, then continuum emission by a haze layer can be approximated by an opaque surface inserted at the 45-60 mbar pressure level in the stratosphere in an unperturbed thermal profile, setting an upper limit on the pressure and therefore a lower limit on the altitude of the top of the impact debris at this time. The reduced continuum brightness east of the impact site can be modeled by an opaque surface near the cold tropopause, which is consistent with a lower altitude of ejecta/impactor-formed opacity. The physical extent of the observed region of reduced continuum implies a minimum average velocity of 21 m/s transporting material prograde (planetary east) from the impact.  相似文献   

16.
From 1958 to 1976 the degree and direction of polarization of the light at Saturn's disk center were measured in orange light over 74 nights and at five wavelenghts over 19 nights. Measurements were also recorded at limb, terminator, and pole. In addition, extensive regional polarization measurements were collected over Saturn's disk and several polarization maps were produced. These data were analyzed on the basis Mie scattering theory and of transfer theory in planetary atmospheres. A model of the Saturn upper atmosphere aerosol structure is derived in which the top part of the the main cloud layer is composed of spherical transparent particles of radius 1.4 μm and refractive index 1.44. Above this layer, a fine haze of submicron-sized grains was detected by its production of a component of polarization which is always directed poleward; this upper haze is interpreted as having nonspherical particles which are systematically oriented. This upper haze layer covers approximately the whole planet uniformly but varies in thickness from year to year. The clear gas above the cloud layer has an optical thickness of around 0.1.  相似文献   

17.
Abstract— Meteor science, aeronomy, and meteoritics are different disciplines with natural interfaces. This paper is an effort to integrate the chemistry and mineralogy of collected interplanetary dust particles (IDPs), micrometeorites, and meteorites with meteoric data and with atmospheric metal abundances. Evaporation, ablation, and melting of decelerating materials in the Earth's atmosphere are the sources of the observed metal abundances in the upper atmosphere. Many variables ultimately produce the materials and phenomena we can analyze, such as different accretion and parent‐body histories of incoming extraterrestrial materials, different interactions of meteors with the Earth's middle atmosphere, meteor data reduction, and complex chemical interactions of the metals and ions with the ambient atmosphere. The IDP‐like and unequilibrated ordinary chondrite matrix materials are reasonable sources for observed meteoric and atmospheric metals. The hypothesis of hierarchical dust accretion predicts that low, correlated refractory element abundances in cometary meteors may be real. It implies that the CI or cosmic standard is not useful to appreciate the chemistry of incoming petrologically heterogeneous cometary matter. The quasi steady‐state metal abundances in the lower thermosphere and upper mesosphere are derived predominantly from materials with cometary orbital characteristics and velocities such as comets proper and near‐Earth asteroids. The exact influence of atmospheric chemistry on these abundances still needs further evaluation. Metal abundances in the lower mesosphere and upper stratosphere region are mostly from materials from the asteroidal belt and the Kuiper belt.  相似文献   

18.
《Icarus》1986,67(3):456-483
The highest spatial resolution Voyager IRIS spectra are used to produce zonal averages of the temperature at the 150- and 270-mb pressure levels, of the para-hydrogen fraction at 270 mb, of the ammonia abundance near the 680-mb level, and of two infrared cloud optical depths, one near 5 μm and one near 45 μm wavelength. There are two cloud components, one uniformly distributed and only apparent at 5 μm, and another that correlates strongly with the ammonia abundance and that is apparent at both 5 and 45 μm. From the ratio of optical depths at the two wavelengths, the particles in the variable cloud are between 3 and 10 μm in radius. This cloud is located near the ammonia condensation level. The other particles are either smaller or deeper. The cloud and ammonia distribution is consistent with concentration by upward vertical motion at the equatorward edges of prograde atmospheric jets. The temperature field is also consistent with such vertical motion, with radiative heating balancing adiabatic expansional cooling. The para-hydrogen distribution also appears consistent, but noise levels are high. The thermal wind shear indicates decay of the jets with height within the upper troposphere, with a vertical scale of two or three scale heights. The entire set of upper troposphere data is consistent with a simple axisymmetric dynamical model with Coriolis acceleration of the zonal wind balanced by a linear drag. The meridional residual mean circulation in the model, if interpreted also as a Lagrangian mean circulation, would explain nicely the distribution of ammonia and para-hydrogen. The circulation is a response to a deeper tropospheric flow of unknown origin. However, the horizontal scale of jets is on the order of the deformation radius based on a scale height at the base of the upper troposphere. It is conjectured that the physics of the flow may require this to be true, and may also require that the relative vorticity gradient be of the same order as the planetary vorticity gradient, thereby fixing both the dimensions and amplitudes of the jets.  相似文献   

19.
Lunar seismic data from three Apollo seismometers are interpreted to determine the structure of the Moon's interior to a depth of about 100 km. The travel times and amplitudes ofP arrivals from Saturn IV B and LM impacts are interpreted in terms of a compressional velocity profile. The most outstanding feature of the model is that, in the Fra Mauro region of Oceanus Procellarum, the Moon has a 65 km thick layered crust. Other features of the model are: (i) rapid increase of velocity near the surface due to pressure effects on dry rocks, (ii) a discontinuity at a depth of about 25 km, (iii) near constant velocity (6.8 km/s) between 25 and 65 km deep, (iv) a major discontinuity at 65 km marking the base of the lunar crust, and (v) very high velocity (about 9 km/s) in the lunar mantle below the crust. Velocities in the upper layer of the crust match those of lunar basalts while those in the lower layer fall in the range of terrestrial gabbroic and anorthositic rocks.Lamant-Doherty Geological Observatory Contribution No. 1768.  相似文献   

20.
The average angular velocity of the upper atmosphere, which we take as Λ times the Earth's angular velocity, can be evaluated by analysing the changes in the orbital inclinations of satellites. In this paper the nine most suitable orbits now available are analysed and values of Λ are found for heights between 200 and 260 km. The results, which are more accurate than in our previous studies, confirm that Λ 1, i.e. that the atmosphere rotates faster than the Earth at these heights, and show that Λ increases with height, from 1.1 at 210 km to 1.4 at 260 km. This corresponds to mean west-to-east winds of 30 m/s at 210 km, increasing to 130 m/s at 260 km height. Results from one satellite indicate that the wind is probably strongest at times near sunset, with Λ = 1.5 ± 0.1 at 200 km height in August 1966. Comparisons are made with previous observational results and some of the suggested theoretical explanations are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号