首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large channels on the Martian surface have been variously attributed to erosional, volcanic, and tectonic processes. Morphometric information shows that large braided Martian channels and islands between those channels are similar in their dimensions to channels and islands of large braided fluvial features on Earth. The information also suggests that braided fractures in solid materials are fundamentally different in morphometry from braided channels of Earth and Mars. Braided tension fractures have characteristically low braiding indices and are much narrower than their irregularly shaped “midchannel” islands. Terrestrial and Martian channels, in contrast, have high braiding indices, and they are wider than their streamlined midchannel islands. Braided volcanic features are known from the earth and the moon, but the absence of volcanic constructs near the large braided channels on Mars indicates that volcanic origin is unlikely. The morphometric information suggests that braided Martian channels are probably of fluvial origin.  相似文献   

2.
Positive isolated features or knobs have been observed on Mars since Mariner 9 first photographed the planet in 1972. More recently, the Viking Orbiters photographed the surface at increased resolution. With the use of Viking photomosaics, a systematic search for knobs was completed. The knobs were characterized by length, width, geographic location, proximity to streaks and geologic surroundings. Similar isolated features on Earth eroded by fluvial, glacial, and eolian processes were studied and measured. Comparison of length-to-width ratios of Martian knobs to isolated hills on Earth indicate that the Martian knobs are most similar to the isolated hills formed in a hyper-arid environment. The terrestrial features were probably formed initially when solid rock was fractured, then wind erosion, starting at the fractures, continued to sweep away sediments leaving isolated hills. Such hills in fluvial and glacial environments have length-to-width ratios significantly higher than those of the Martian knobs. Other diagnostic features associated with such environments are absent in the case of the Martian knobs. Moreover, streaks, splotches, dunes and pitted and fluted rocks, all indicative of a eolian regime, are associated with the Martian knobs.  相似文献   

3.
On Earth, glacial and periglacial features are common in areas of cold climate. On Mars, the temperature of the present-day surface is appropriate for permafrost, and the presence of water is suspected from data relating to the outgassing of the planet, from remote-sensing measurements over the polar caps and elsewhere on the Martian surface, and from recognition of fluvial morphological features such as channels. These observations and the possibility that ice could be in equilibrium with the atmosphere in the high latitudes north and south of ±40° latitude suggest that glacial and periglacial features should exist on the planet. Morphological studies based mainly on Viking pictures indicate many features that can be attributed to the action of ice. Among these features are extensive talus aprons; debris avalanches; flows that resemble glaciers or rock glaciers; ridges that look like moraines; various types of patterned ground, scalloped scarps, and chaotically collapsed terrain that could be attributed to thermokarst processes; and landforms that may reflect the interaction of volcanism and ice.  相似文献   

4.
The discovery of microbiota in the Dry Valleys of Antarctica has encouraged the construction of new models of Martian ecosystems in order to determine if life could have once existed on Mars. The Antarctic cyanobacteria reside just below the surface of sandstone rocks where they are protected from the extreme cold and dry environment. Analogy with the Antarctic Dry Valleys supports speculation that hypothetical micro-organisms existed on Mars in the early history of the planet and could have migrated into suitable rocks as the availability of liquid water decreased. Although evidence for sandstone layers on Mars has not been substantiated, the palaeohydrology of Martian fluvial valleys (MFVs) reveals the evidence of lake bed sediment depositions which have formed consolidated sediments. As the MFVs formation may result from underground drainage processes, the sediment material would be expected to contain debris such as pumice washload, and pumilith of volcanic and meteoritic origin. These materials may have formed consolidated porous terrains similar to the Antarctic sandstone. Therefore, the endolithic model is consistent with the Martian liquid water habitat model of perenially ice-covered lakes.  相似文献   

5.
Paul D. Komar 《Icarus》1979,37(1):156-181
Comparisons are undertaken between the hydraulics of channelized water flows on Mars, large terrestrial rivers, deep-sea turbidity currents, and the catastrophic flow of Lake Missoula floods. Expected bottom shear stresses, velocities and discharges, flow powers, and other parameters are computed for each. Sand transport rates and the times required for channel erosion are estimated for Mangala Channel. These calculations indicate that the turbidity currents and Lake Missoula floods were similar to channelized water flow on Mars in their flow characteristics and in their abilities to erode and transport sediments. Like the Lake Missoula floods, deep-sea turbidity currents are catastrophic in character, being formed by the slumping of large masses of sediment trapped in submarine canyons or deposited on the continental slope. The repeated flows originating from submarine canyons have formed deep-sea channels similar in scale and overall morphology to the Martian outflow channels. The submarine canyon can be viewed as the counterpart of the chaotic terrain or crater which serves as sources for many Martian channels. Like most Martian outflow channels, the deep-sea channels generally lack tributaries or have only minor tributaries, instead consisting of a single pronounced channel extending for several hundred kilometers from its origin at the submarine canyon to deep abyssal depths. The channels vary considerably in dimensions, but most commonly have widths in the range 2 to 15 km with reliefs of 50 to 450 meters, again similar in scale to the Martian channels. Other similarities include sections of anastomosing channels, a general lack of pronounced meandering, and a lack of an apparent “delta” where the transported sediments are deposited. The similarities of channel morphology and flow hydraulics indicate the deep-sea channels and turbidity currents can be useful in furthering our understanding of the Martian outflow channels. Physical processes in the deep-sea occur under a reduced effective gravity because of the overlying water with its buoyancy. The deep-sea channels provide another set of Earth-based channels which can be studied to determine the effects of gravity on such factors as channel meandering and anastomosing characteristics.  相似文献   

6.
A number of Martian volcanoes, especially Ceraunius Tholus, Uranius Tholus, Uranius Patera, and Hecates Tholus, show morphological features strikingly different from those of shield volcanoes but analogous to those of terrestrial cones and composite volcanoes such as Barcena Volcano, Mexico. The most distinguishing overall features are steep slope angles, and Krakatoa-type caldera morphologies. Erosional features comprise numerous radial channels which extend from below the rim toward the base of the dome, and in some cases, patterns of anastamosing gullies which contribute to the main radial channels. Constructional features include blanketed flanks interpreted as dune or fan-like deposits of ash, and perhaps lava deltas. A possible explanation for the morphological features associated with these volcanoes is that they were formed by explosive volcanic density currents. Such eruptions would be expected on Mars where a rising magma came in contact with a thick layer of permafrost generating a base surge or after a Vulcanian explosion of a separate gas phase producing a nuée ardente. Crater age data from the surface of Martian domes and shields indicate that such explosive activity occurred more frequently early in Martian geologic history. This is more consistent with the view that the volcanic density flows were base surges rather than nuées ardentes, the melting of permafrost supplying the water required in base surge generation. If atmospheric conditions were more clement at the time, allowing the recycling of water back to the ground water, then the length of duration of phreatic activity would have been longer, not being limited by depletion time of the local permafrost reservoir.  相似文献   

7.
William K. Hartmann 《Icarus》1977,31(2):260-276
Dynamical histories of planetesimals in specified orbits, calculated by Wetherill (1975) and others, have estimates of relative numbers of impacts on different planets. These impact rates, F, are converted to crater production rates, F, by means of tables developed in this paper. Conversions are dependent on impact velocity and surface gravity. Crater retention ages can then be derived from (crater density)/(crater production rate). Such calculations of impact rates and their histories give the only basis, independent of sample dating, for establishing absolute geologic histories of the planets, contrary to published implications that this can be done by comparison of photos alone. A survey of the results, from orbits of interplanetary objects studied to date, indicates that the terrestial planets have crater production rates within a factor ten of each other, and that planet's crater retention ages can probably be determined with a factor of ±3. Further calculations of orbital histories of additional interplanetary bodies are suggested to put photogeologic analyses from spacecraft imagery on a firmer basis.Applications to Mars, as an example, using least-squares fits to crater-count data, suggest an average age of 0.3 to 3 b.y. for two types of channels. The Tharsis volcanics are found to be slightly younger than the channels (strongly confirmed by photomorphology since they are not cut by channels) and Olympus Mons is about 0.06 to 0.6 b.y. old, contrary to recent assertions that Olympus Mons is 2.5 b.y. old and most Martian volcanic provinces older than 3 b.y. Data strongly support the hypothesis that Martian channels formed in a fluvial climate that persisted on Mars until the Tharsis volcanism caused a change in the Martian obliquity state, as outlined by Toon, Ward, and Burns (1977).  相似文献   

8.
Paul D. Komar 《Icarus》1980,42(3):317-329
Depending on their grain sizes (settling velocities), sediments are transported in rivers as bed load, in suspension, or as wash load. The coarsest material rolls or bounces along the bottom as bed load whereas finer material is placed into suspension by the water turbulence. The finest sediments are transported as wash load, evenly distributed through the water depth and effectively moving at the same rate as the water. The criteria for quantitatively determining which grain-size ranges are being transported in terrestrial rivers as bed load, suspended load and wash load are applied to an analysis of sediment transport in the large Martian outflow channels, assuming their origin to have been from water flow. Of importance is the balance of the effects of the reduced Martian gravity on the water flow velocity versus the reduction in grain settling velocities. Analyses were performed using grain densities ranging from 2.90 g/cm3 (basalt) to 1.20 g/cm3 (volcanic ash). The results show that the Martian flows could have transported cobbles in suspension and that nearly all sand-size material and finer would have been transported as wash load. Wash-load transport requires little or no net expenditure of the water-flow power, so the sands and finer could have been carried in nearly unlimited quantities. A comparison with terrestrial rivers indicates that concentrations as high as 60–70% by weight of wash-load sediment could have prevailed in the Martian flows, resulting in the very rapid erosion of the channels.  相似文献   

9.
The shergottites are the largest group of Martian meteorites, and the only group that has not been found to contain definitive evidence of Martian aqueous alteration. Given recent reports of current liquid water at the surface of Mars, this study aimed to investigate in detail the possibility of Martian phyllosilicate within shergottite Dhofar 019. Optical and scanning electron microscopy, followed by transmission electron microscopy, confirmed the presence of alteration orangettes, with a layered structure consisting of poorly ordered Mg‐phyllosilicate and calcite. These investigations identified maskelynite dissolution, followed by Mg‐phyllosilicate and calcite deposition within the dissolution pits, as the method of orangette production. The presence of celestine within the orangette layers, the absence of shock dislocation features within calcite, and the Mg‐rich nature of the phyllosilicate, all indicate a terrestrial origin for these features on Dhofar 019.  相似文献   

10.
David Wallace  Carl Sagan 《Icarus》1979,39(3):385-400
The evaporation rate of water ice on the surface of a planet with an atmosphere involves an equilibrium between solar heating and radiative and evaporative cooling of the ice layer. The thickness of the ice is governed principally by the solar flux which penetrates the ice layer and then is conducted back to the surface. These calculations differ from those of Lingenfelter et al. [(1968) Science161, 266–269] for putative lunar channels in including the effect of the atmosphere. Evaporation from the surface is governed by two physical phenomena: wind and free convection. In the former case, water vapor diffuses from the surface of the ice through a lamonar boundary layer and then is carried away by eddy diffusion above, provided by the wind. The latter case, in the absence of wind, is similar, except that the eddy diffusion is caused by the lower density of water vapor than the Martian atmosphere. For mean Martian insolations the evaporation rate above the ice is ~ 10?8 g cm?2 sec?1. Thus, even under present Martian conditions a flowing channel of liquid water will be covered with ice which evaporates sufficiently slowly that the water below can flow for hundreds of kilometers even with quite modest discharges. Evaporation rates are calculated for a wide range of frictional velocities, atmospheric pressures, and insolations and it seems clear that at least some subset of observed Martian channels may have formed as ice-choked rivers. Typical equilibrium thicknesses of such ice covers are ~ 10 to 30 m; typical surface temperatures are 210 to 235°K. Ice-covered channels or lakes on Mars today may be of substantial biological interest. Ice is a sufficiently poor conductor of heat that sunlight which penetrates it can cause melting to a depth of several meters or more. Because the obliquity of Mars can vary up to some 35°, the increased polar heating at such times seems able to cause subsurface melting of the ice caps to a depth which corresponds to the observed lamina thickness and may be responsible for the morphology of these polar features.  相似文献   

11.
This review is intended to summarize the current observations of reduced carbon in Martian meteorites, differentiating between terrestrial contamination and carbon that is indigenous to Mars. Indeed, the identification of Martian organic matter is among the highest priority targets for robotic spacecraft missions in the next decade, including the Mars Science Laboratory and Mars 2020. Organic carbon compounds are essential building blocks of terrestrial life, so the occurrence and origin (biotic or abiotic) of organic compounds on Mars is of great significance; however, not all forms of reduced carbon are conducive to biological systems. This paper discusses the significance of reduced organic carbon (including methane) in Martian geological and astrobiological systems. Specifically, it summarizes current thinking on the nature, sources, and sinks of Martian organic carbon, a key component to Martian habitability. Based on this compilation, reduced organic carbon on Mars, including detections of methane in the Martian atmosphere, is best described through a combination of abiotic organic synthesis on Mars and infall of extraterrestrial carbonaceous material. Although conclusive signs of Martian life have yet to be revealed, we have developed a strategy for life detection on Mars that can be utilized in future life‐detection studies.  相似文献   

12.
Geological mapping of Elysium Planitia has led to the recognition of five major surface units, in addition to the three volcanic constructs Elysium Mons, Hecates Tholus, and Albor Tholus. These units are interpreted to be both volcanic and sedimentary or erosional in origin. The volcano Elysium Mons is seen to have dominated constructional activity within the whole region, erupting lava flows which extend up to 600km from the summit. A major vent system, covering an area in excess of 75 000 km2, is identified within the Elysium Fossae area. Forty-one sinuous channels are visible within Elysium Planitia; these channels are thought to be analogous to lunar sinuous rilles and their formation in this region of Mars is attributed to unusually high regional topographic slopes (up to ~ 1.7). Numerous circumferential graben are centered upon Elysium Mons. These graben, located at radial distances of 175, 205–225, and 330km from the summit, evidently post-dated the emplacement of the Elysium Mons lava flows but pre-dated the eruption of extensive flood lavas to the west of the volcano. A great diversity of channel types is observed within Elysium Fossae. The occurrences of streamlined islands and multiple floor-levels within some channels suggests a fluvial origin. Conversely, the sinuosity and enlarged source craters of other channels suggests a volcanic origin. Impact crater morphology, the occurrence of chaotic terrain, probable pyroclastic deposits upon Hecates Tholus and fluvial channels all suggest extensive volcano-ground ice interactions within this area.NASA Summer Intern.  相似文献   

13.
Abstract— We have detected three unusual, low-relief circular features, 1.2 to 2.1 km in diameter, in the northwest Noachis highlands, which may be craters that have undergone isostatic deformation. They may shed light on the existence, nature, and timing of suspected widespread Martian erosion/obliteration events, and offer clues to a type of Martian terrain softening. In the surrounding area, we find an anomalous deficiency of craters in the 3–11 km diameter range and evidence that larger, older craters have undergone relief softening and infill. We discuss three different hypotheses to explain these features, two of which involve Martian ice. This region may have undergone a transient event in which a near-surface permafrost layer (several hundred meters deep) underwent partial melting or softening. This would allow relaxation of kilometer-scale craters and softening of larger craters. Crater data presented here suggest that this event happened some time in mid-Martian history. Whether the event was regional or related to global-scale events is uncertain, though it may represent a class of events that also happened in other Martian areas.  相似文献   

14.
Abstract— Understanding the origin of carbonate minerals in the Martian meteorite Allan Hills (ALH) 84001 is crucial to evaluating the hypothesis that they contain traces of ancient Martian life. Using arguments based on chemical equilibria among carbonates and fluids, an origin at >650 °C (inimical to life) has been proposed. However, the bulk and stable isotopic compositions of the carbonate minerals are open to multiple interpretations and so lend no particular support to a high-temperature origin. Other methods (possibly less direct) will have to be used to determine the formation temperature of the carbonates in ALH 84001.  相似文献   

15.
Detailed examination of large extensions of polygonal terrains on the surface of Mars and extraction of some characteristic geometric and topological parameters is made possible by the application of image analysis methods to scenes of the Martian surface acquired from orbit. This is illustrated by the analysis of a set of diverse Martian networks, clearly visible in MOC/MGS images with high spatial resolution. It is shown that these networks present, in average, a hexagonal habit, and that they verify two classic laws relative to 2D random networks (those of Lewis and Aboav-Weaire). This research can, through the quantified analysis of the differences and similarities between networks, lead into a much better understanding of the origin and dynamics of this type of features.  相似文献   

16.
Abstract— One of the five lines of evidence used by McKay et al. (1996) for relic life in the Martian meteorite Allan Hills (ALH) 84001 was the presence of objects thought to be microfossils. These ovoid and elongated forms are similar to structures found in terrestrial rocks and described as “nanobacteria” (Folk, 1993; McBride et al, 1994). Using the same procedures and apparatus as McKay et al. (1996), we have found structures on internal fracture surfaces of lunar meteorites that cannot be distinguished from the objects described on similar surfaces in ALH 84001. The lunar surface is currently a sterile environment and probably always has been. However, the lunar and Martian meteorites share a common terrestrial history, which includes many thousands of years of exposure to Antarctic weathering. Although we do not know the origin of these ovoid and elongated forms, we suggest that their presence on lunar meteorites indicates that the objects described by McKay et al. (1996) are not of Martian biological origin.  相似文献   

17.
A debris flow mechanism is proposed to account for the formation of chaos and the large channels debouching into Chryse Planitia from the adjacent southern uplands of Mars. The debris is thought to have originated through a mechanism of collapse in the chaotic terrains which exist at the head of these channels as well as locally along the channels. This proposition is based on the detailed morphologic similarities between Martian channel source areas and the heads of both subaerial and subaqueous terrestrial debris flows. The downslope movement of the debris produced the channels through (a) modification of earlier collapse areas, (b) active bed erosion, and (c) loading-induced collapse. The large-scale channel geometry and the assemblage of related morphologic features on Mars correspond tto that observed in subaqueous debris flow chutes on the Mississippi delta front. Through various mechanisms of strain-dependent viscosity decrease the debris flow gained mobility downstream, turned into a debris avalanche, and moved onto Chryse Planitia at very high velocities. This high-velocity avalanche eroded a series of streamlined remnants near the channel mouths and deposited its load as a thin blanket over a large area of the basin creating virtually no depositional relief.  相似文献   

18.
The hydrogen isotopic composition of planetary reservoirs can provide key constraints on the origin and history of water on planets. The sources of water and the hydrological evolution of Mars may be inferred from the hydrogen isotopic compositions of mineral phases in Martian meteorites, which are currently the only samples of Mars available for Earth‐based laboratory investigations. Previous studies have shown that δD values in minerals in the Martian meteorites span a large range of ?250 to +6000‰. The highest hydrogen isotope ratios likely represent a Martian atmospheric component: either interaction with a reservoir in equilibrium with the Martian atmosphere (such as crustal water), or direct incorporation of the Martian atmosphere due to shock processes. The lowest δD values may represent those of the Martian mantle, but it has also been suggested that these values may represent terrestrial contamination in Martian meteorites. Here we report the hydrogen isotopic compositions and water contents of a variety of phases (merrillites, maskelynites, olivines, and an olivine‐hosted melt inclusion) in Tissint, the latest Martian meteorite fall that was minimally exposed to the terrestrial environment. We compared traditional sample preparation techniques with anhydrous sample preparation methods, to evaluate their effects on hydrogen isotopes, and find that for severely shocked meteorites like Tissint, the traditional sample preparation techniques increase water content and alter the D/H ratios toward more terrestrial‐like values. In the anhydrously prepared Tissint sample, we see a large range of δD values, most likely resulting from a combination of processes including magmatic degassing, secondary alteration by crustal fluids, shock‐related fractionation, and implantation of Martian atmosphere. Based on these data, our best estimate of the δD value for the Martian depleted mantle is ?116 ± 94‰, which is the lowest value measured in a phase in the anhydrously prepared section of Tissint. This value is similar to that of the terrestrial upper mantle, suggesting that water on Mars and Earth was derived from similar sources. The water contents of phases in Tissint are highly variable, and have been affected by secondary processes. Considering the H2O abundances reported here in the driest phases (most likely representing primary igneous compositions) and appropriate partition coefficients, we estimate the H2O content of the Tissint parent magma to be ≤0.2 wt%.  相似文献   

19.
《Icarus》1986,68(2):366-369
Thermal inertia is inversely proportional to porosity for Hawaiian basalts. Extreme porosities (>80%) are required if the observed low thermal inertias on the Martian shield volcanoes are the result of pristine lava flow surface properties. Such volcanic surfaces are anticipated to have a short lifetime in the Martian environment, and an aeolian origin appears to be the most likely interpretation of the thermal measurements on Mars.  相似文献   

20.
Martian meteorites can provide valuable information about past environmental conditions on Mars. Allan Hills 84001 formed more than 4 Gyr ago, and owing to its age and long exposure to the Martian environment, and this meteorite has features that may record early processes. These features include a highly fractured texture, gases trapped during one or more impact events or during formation of the rock, and spherical Fe‐Mg‐Ca carbonates. In this study, we have concentrated on providing new insights into the context of these carbonates using a range of techniques to explore whether they record multiple precipitation and shock events. The petrographic features and compositional properties of these carbonates indicate that at least two pulses of Mg‐ and Fe‐rich solutions saturated the rock. Those two generations of carbonates can be distinguished by a very sharp change in compositions, from being rich in Mg and poor in Fe and Mn, to being poor in Mg and rich in Fe and Mn. Between these two generations of carbonate is evidence for fracturing and local corrosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号