共查询到20条相似文献,搜索用时 13 毫秒
1.
Study of 10 volatile elements (and non-volatile Co) in co-existing light and dark portions of 5 gas-rich chondrites indicates patterns of distinct but non-uniform enrichment of volatile elements. Only Cs is enriched in all samples; Hi and Tl enrichments covary. The observed enrichments are inconsistent with prior suggestions of admixture of C1 or C2 chondritic matter, whether pristine or partly devolatilized, but suggest that both light and dark portions of each chondrite represents a compositionally more extended sampling of parental nebular material than hitherto known. 相似文献
2.
We have determined metallographic cooling rates of 9 IVB irons by measuring Ni gradients 3 μm or less in length at kamacite-taenite boundaries with the analytical transmission electron microscope and by comparing these Ni gradients with those derived by modeling kamacite growth. Cooling rates at 600-400 °C vary from 475 K/Myr at the low-Ni end of group IVB to 5000 K/Myr at the high-Ni end. Sizes of high-Ni particles in the cloudy zone microstructure in taenite and the widths of the tetrataenite rims, which both increase with decreasing cooling rate, are inversely correlated with the bulk Ni concentrations of the IVB irons confirming the correlation between cooling rate and bulk Ni. Since samples of a core that cooled inside a thermally insulating silicate mantle should have uniform cooling rates, the IVB core must have cooled through 500 °C without a silicate mantle. The correlation between cooling rate and bulk Ni suggests that the core crystallized concentrically outwards. Our thermal and fractional crystallization models suggest that in this case the radius of the core was 65 ± 15 km when it cooled without a mantle. The mantle was probably removed when the IVB body was torn apart in a glancing impact with a larger body. Clean separation of the mantle from the solid core during this impact could have been aided by a thin layer of residual metallic melt at the core-mantle boundary. Thus the IVB irons may have crystallized in a well-mantled core that was 70 ± 15 km in radius while it was inside a body of radius 140 ± 30 km. 相似文献
3.
Shergottites contain cumulus pigeonite and augite, probably without cumulus plagioclase and crystallized under relatively oxidizing conditions. Shergotty and Zagami may differ in the relative proportions of cumulus pyroxenes and crystallized intercumulus liquid, but the compositions of pyroxenes and liquid are similar in both meteorites. Absence of olivine in melting experiments suggests that the shergottites crystallized from fractionated derivatives of primary liquids. Low-Ca pyroxene and augite apparently began to crystallize from these primary liquids prior to plagioclase. Shergottites can be readily distinguished from other achondrite groups by their mineralogies, crystallization sequences and inferred source region compositions. However, the source regions of the shergottites may be related to those of other achondrite types by addition or loss of volatile components.The bulk composition of the Earth's upper mantle overlaps that of permissible shergottite source regions. Shergottites and terrestrial basalts display similarities in oxidation state and concentrations of trace and minor elements with a wide range of cosmochemical and geochemical affinities. Accretion of similar materials to produce the terrestrial upper mantle and the shergottite parent body or accretion of the Earth's upper mantle from planetesimals similar to the shergottite parent body may account for many of their similarities. Models of the origin of the Earth's upper mantle which attribute its oxidation state, its siderophile element abundances and its volatile element abundances to uniquely terrestrial processes or conditions, or to factors unique to the origin and differentiation of large bodies, are unattractive in light of the similarities between shergottites and terrestrial basalts. 相似文献
4.
We review the crystallization of the iron meteorite chemical groups, the thermal history of the irons as revealed by the metallographic cooling rates, the ages of the iron meteorites and their relationships with other meteorite types, and the formation of the iron meteorite parent bodies. Within most iron meteorite groups, chemical trends are broadly consistent with fractional crystallization, implying that each group formed from a single molten metallic pool or core. However, these pools or cores differed considerably in their S concentrations, which affect partition coefficients and crystallization conditions significantly. The silicate-bearing iron meteorite groups, IAB and IIE, have textures and poorly defined elemental trends suggesting that impacts mixed molten metal and silicates and that neither group formed from a single isolated metallic melt. Advances in the understanding of the generation of the Widmanstätten pattern, and especially the importance of P during the nucleation and growth of kamacite, have led to improved measurements of the cooling rates of iron meteorites. Typical cooling rates from fractionally crystallized iron meteorite groups at 500–700 °C are about 100–10,000 °C/Myr, with total cooling times of 10 Myr or less. The measured cooling rates vary from 60 to 300 °C/Myr for the IIIAB group and 100–6600 °C/Myr for the IVA group. The wide range of cooling rates for IVA irons and their inverse correlation with bulk Ni concentration show that they crystallized and cooled not in a mantled core but in a large metallic body of radius 150±50 km with scarcely any silicate insulation. This body may have formed in a grazing protoplanetary impact. The fractionally crystallized groups, according to Hf–W isotopic systematics, are derived originally from bodies that accreted and melted to form cores early in the history of the solar system, <1 Myr after CAI formation. The ungrouped irons likely come from at least 50 distinct parent bodies that formed in analogous ways to the fractionally crystallized groups. Contrary to traditional views about their origin, iron meteorites may have been derived originally from bodies as large as 1000 km or more in size. Most iron meteorites come directly or indirectly from bodies that accreted before the chondrites, possibly at 1–2 AU rather than in the asteroid belt. Many of these bodies may have been disrupted by impacts soon after they formed and their fragments were scattered into the asteroid belt by protoplanets. 相似文献
5.
Noble gases in three meteoritic samples were examined by stepwise heating, in an attempt to relate peaks in the outgassing curves to specific minerals: NeKrXe in Allende (C3V) and an Allende residue insoluble in HF-HCl, and Xe in Abee (E4). In Allende, chromite and carbon contain most of the trapped Ne (20Ne/22Ne ≈ 8.7) and anomalous Xe enriched in light and heavy isotopes, and release it at ~850°C (bulk meteorite) or 1000°C (residue). Mineral Q, containing most of the trapped Ar, Kr, Xe as well as some Ne (20Ne/22Ne ≈ 10.4), releases its gases mainly between 1200 and 1600°C, well above the release temperatures of organic polymers (300–500°) or amorphous carbon (800–1000°). The high noble-gas release temperature, ready solubility in oxidizing acids, and correlation with acid-soluble Fe and Cr all point to an inorganic rather than carbonaceous nature of Q.All the radiogenic 129Xe is contained in HCl, HF-soluble minerals, and is distributed as follows over the peaks in the release curve: Attend 1000° (75%), 1300° (25%); Abee (data of Hohenberg and Reynolds, 1969) ~850° (15%), 1100° (60%), 1300° (25%). No conclusive identifications of host phases can yet be given; possible candidates are troilite and silicates for Allende, and djerfisherite, troilite and silicates for Abee.Mineral Q strongly absorbs air xenon, and releases some of it only at 800–1000°C. Dilution by air Xe from Q and other minerals may explain why temperature fractions from bulk meteorites often contain less 124–130Xe for a given enrichment in heavy isotopes than does xenon from etched chromitecarbon samples, although chromite-carbon is the source of the anomalous xenon in either case. Air xenon contamination thus is an important source of error in the derivation of fission xenon spectra. 相似文献
6.
The composition of the metal phase is traced through an idealized, traditional history from condensation, oxidation and accretion in the nebula to melting, segregation and freezing in a parent body. Fifteen elements are considered: Au, Co, Cu, Fe, Ga, Ge, Ir, Mo, Ni, Os, Pd, Pt, Re, Rh and Ru. All are strongly siderophile but differ in volatility and melting-freezing behavior. This simplifies the problem yet provides a means to resolve chemical trends which evolve at different stages in the metal's history.The parent bodies of 5 (IC, IIAB, IIC, IID and IIIAB) of the 12 iron meteorite groups resolved by Scott and Wasson (1975) seem to have had a traditional history. That is condensation, oxidation to various levels, accretion, melting, segregation and fractional crystallization during freezing, presumably in cores. The others seem to have had more unusual histories. The composition of the metal in group IVB matches that predicted for the metal condensate at 1270°K (at). This implies accretion at high temperatures; no other combination of the processes can produce this composition. It does not rule out secondary processing, however. The metal in group IVA, whose members have different cooling rates (7–200°/myr), has a composition indicative of aggregates in a body undergoing progressive stages of partial melting. This is consistent with a model in which molten metal collects into pods or raisins at various depths. The composition of the metal in group IAB is indicative of a partial melt which refroze during the initial stages of segregation, before it had managed to aggregate into a single mass. The physical setting implied is consistent with observed inhomogeneities in the metal and abundant inclusions.Three of the 12 groups are deficient in volatiles (IIIF, IVA and IVB) implying a high accretion temperature. In all three cases, cooling rates are comparatively rapid, indicating small bodies or low radioactive element contents. Conceivably all three were deficient in K. 相似文献
7.
《Geochimica et cosmochimica acta》1986,50(5):725-732
New neutron activation data on 10 elements in 12 IIE and IIE-related irons lead to a reclassification of several irons. Seymchan and Lonaconing are removed from IIE, and Leshan added. Four IIE members are designated IIE-An to call attention to some anomalous properties. The eight normal IIE members define element-Ni trends generally similar to those in the nonmagmatic group IAB; the small negative slopes on W-Ni and Ir-Ni diagrams are strongly indicative of a nonmagmatic origin of the IIE irons. We propose that IIE irons like IAB irons originated as individual pools of impact-produced melt in the near-surface region of a chondritic parent body. The positive As-Ni and Au-Ni trends are the only evidence suggesting fractional crystallization, but their slopes are lower than those in magmatic group IIIAB, and only slightly higher than those of Cu and Sb in IAB. We suggest that the S and C contents of the IIE precursor materials were much lower than those of the IAB precursors, thus higher temperatures were required to generate enough metallic melt to segregate into pools. These higher temperatures are also reflected in the nonchondritic compositions of the silicate inclusions. 相似文献
8.
We have determined the metallographic cooling rates for 13 IVA irons using the most recent and most accurate metallographic cooling rate model. Group IVA irons have cooling rates that vary from 6600 °C/Myr at the low-Ni end of the group to 100 °C/Myr at the high-Ni end of the group. This large cooling rate range is totally incompatible with cooling in a mantled core which should have a uniform cooling rate. Thermal and fractional crystallization models have been used to describe the cooling and solidification of the IVA asteroid. The thermal model indicates that a metallic body of 150 ± 50 km in radius with less than 1 km of silicate on the outside of the body has a range of cooling rates that match the metallographic cooling rates in IVA irons in the temperature range 700-400 °C where the Widmanstätten pattern formed. The fractional crystallization model for Ni with initial S contents between 3 and 9 wt% is consistent with the measured variation of cooling rate with bulk Ni and the thermal model. New models for impacts in the early solar system and the evolution of the primordial asteroid belt allow us to propose that the IVA irons crystallized and cooled in a metallic body that was derived from a differentiated protoplanet during a grazing impact. Other large magmatic iron groups, IIAB, IIIAB, and IVB, also show significant cooling rate ranges and are very likely to share a similar history. 相似文献
9.
《Chemie der Erde / Geochemistry》2019,79(4):125539
Ureilite meteorites contain iron silicide minerals including suessite (Fe,Ni)3Si, hapkeite (Fe2Si) and xifengite (Fe5Si3). Despite occurring mostly in brecciated varieties presumed to be derived from the regolith of the ureilite parent asteroid, suessite has also been confirmed in one lithology of a dimict ureilite (NWA 1241). In contrast, Si-bearing Fe-metals occur in both brecciated and unbrecciated ureilites, implying that they were formed throughout the ureilite parent asteroid. We examined major, minor and trace element data of Fe-metals in seven brecciated ureilites (DaG 319, DaG 999, DaG 1000, DaG 1023, DaG 1047, EET 83309, and EET 87720) in addition to the dimict ureilite NWA 1241.In this study we show that the silicides and Si-bearing metals in ureilites have similar siderophile trace element patterns; therefore, the precursors to the silicides were indigenous to the ureilite parent body. Si-free kamacite grains in brecciated ureilites show flatter, more chondritic siderophile element patterns. They may also be derived from the interior of the ureilite parent body, but some may be of exogenous origin (impactor debris), as are rare taenite grains.On Earth, iron silicides are often formed under high-temperature and strongly reducing conditions (e.g. blast furnaces, lightning strikes). On the Moon, hapkeite (Fe2Si) and other silicides have been found in the regolith where they were formed by impact-induced space weathering. In the Stardust aerogel, iron silicides derived from comet Wild2 were also formed by an impact-related reduction process. Silicides in ureilite regolith breccias may have formed by similar processes but ureilites additionally contain abundant elemental carbon which probably acted as a reducing agent, thus larger and more abundant silicide grains were formed than in the lunar regolith or cometary material. The origin of suessite in NWA 1241 may be analogous to that of reduced lithologies in the terrestrial mantle, although a regolith origin may also be possible since this sample is shown here to be a dimict breccia. 相似文献
10.
Swarajranjan Biswas Thomas Walsh Gerhard Bart Michael E. Lipschutz 《Geochimica et cosmochimica acta》1980,44(12):2097-2110
We report neutron activation data for Ag, As, Bi, Cd, Co, Cs, Cu, Ga, In, Rb, Se, Te, Tl and Zn in samples of Abee heated at temperatures of 1000–1400°C in a low-pressure environment (initially ~ 10?5 atm H2) and in 9 enstatite achondrites (aubrites) and the silicate portion of the unique stony-iron, Mt Egerton. Trace element losses in heated Abee progress with temperature, the lowest retention being 2.4 × 10?6 of initial contents. These data indicate trace element loss above 1000°C via diffusion-controlled processes having apparent activation energies of 8–55 kcal/mol ; only Co exhibits a significantly higher energy. These trace element data and those for aubrites, Mt Egerton and E4–6 chondrites, and mineralogic and isotopic evidence link all enstatite meteorites to a common parent body. Volatile, mobile elements vary inversely with cobalt content in aubrites and Mt Egerton but directly in E4–6 chondrites; this is inconsistent with all genetic models positing fractionation of such elements during nebular condensation and accretion. However, the data are consistent with the idea that aubrites and Mt. Egerton reflect fractional crystallization of a magma produced from enstatite chondrite-like parent material (probably E6) and late introduction of chalcophiles and mobile elements transported by FeS-Fe eutectic from an E4–6 region experiencing open-system metamorphism. As suggested earlier, the only primary process that affected enstatite meteorites involved fractionation of non-volatile lithophiles from sulfides and metal during condensation and accretion of chondritic parent material from the nebula. If, as seems likely, volatile/mobile elements reflect secondary processes, they can only be used to establish alteration conditions within the enstatite parent body and not to estimate temperatures during primary nebular condensation and accretion. 相似文献
11.
Isotopic concentrations of the noble gases have been measured in several different phases of Elephant Moraine A79001 and in whole rock samples of Zagami and Allan Hills A77005, three meteorites which belong to the rare group of SNC achondrites that may have originated from the planet Mars. Shocked phases of EETA79001 contain a trapped Ar, Kr, and Xe component characterized by ~15, , , and . These elemental and isotopic ratios are unlike those for any other noble gas component except analyses of the Martian atmosphere made by Viking spacecraft. The isotopic composition of the trapped Kr shows an approximate 1% per mass unit enrichment of lighter isotopes compared to terrestrial Kr, and the traped Xe may show either a fission component or a fractionated enrichment of heavier isotopes compared to terrestrial Xe. It is hypothesized that these gases represent a portion of the Martian atmosphere which was shock-implanted into EETA79001, and that they constitute direct evidence of a Martian origin for the shergottite meteorites. Cosmic ray-produced gases in the eight known SNC meteorites form three distinct groups with exposure ages of ~11 MY (Chassigny and the nakhlites), ~2.6 MY (Shergotty, Zagami, and ALHA77005), and ~0.5 MY (EETA79001). These ages suggest three distinct events and cannot have been produced by irradiation for a common time under greatly different shielding. Comparison of cosmogenic measured in EETA79001 with two independent models for the production of this ratio as a function of shielding indicates that this meteorite was irradiated in space as a relatively small object. If the SNC meteorites were ejected from Mars ~ 180 My ago, the shock age of the shergottites, they must have been relatively large objects (>6 meters diameter) which experienced at least three space collisions to initiate cosmic ray exposure. Ejection from Mars by three events at the times of initiation of cosmic ray exposure would permit the ejected objects to have been much smaller (<1 meter diameter), but would require three such events on 1.3 Gy Martian terraine in the past ~10 MY and would not explain the common 180 MY shock age seen in all four shergottites. 相似文献
12.
The isotopic composition of Ag and the concentration of Ag and Pd have been determined in Canyon Diablo (IA), Grant (IIIB), Hoba, Santa Clara, Tlacotepec and Warburton Range (IVB), Piñon and Deep Springs (anom.). Troilite from Grant and Santa Clara have also been analyzed. All of these meteorites, with the exception of Canyon Diablo, give in the metal phase that is greater than the terrestrial value with the enrichments of 107Ag ranging from ~2% to 212%. These data show that Ag of anomalous isotopic composition is common to all IVB and anomalous meteorites. The results on Grant suggest that the anomalies may be widespread including more common meteorite groups. There is a general correlation of with except for the data from FeS of Santa Clara. It is concluded that the excess 107Ag is the result of decay of 107Pd, a nuclide that is extinct at present with an abundance of of about 3 × 10?5. The troilite in Grant exhibits normal to within errors, a high Ag concentration and a low ratio of ~0.17. Grant metal has that is ~2% greater than normal and a high ratio of ~ 103. The data from Grant appear to represent a 107Pd-107Ag isochron and indicate that the cooling rate at elevated temperatures was sufficiently rapid to preserve substantial isotopic differences between metal and troilite. Troilite in Santa Clara was found to contain Ag with a very high ratio (108% above normal), an Ag concentration only a factor of three above the metal and a high value of ~1.3 × 104. The troilite has a higher than the metal. These data are not compatible with a simple model of in situ decay and subsequent local Ag redistribution between metal and troilite during cooling. These data suggest that Ag in Santa Clara and possibly other IVB meteorites is made up of almost pure 107Ag produced from 107Pd decay and 109Ag produced by nuclear reactions with only a small amount of “normal” Ag. This indicates an intense energetic particle bombardment history in the early solar system (~1020 p/m2) which occurred after the formation of small planetary bodies. We infer that a T-Tauri activity by the early sun contributed to some late stage “nucleosynthesis” and the heating of a dust cloud. In addition, implications on the early thermal evolution of iron meteorites are presented based on 107Pd decay and models of the cooling history. 相似文献
13.
14.
C. Nicole Foley M. Wadhwa P.E. Janney T.L. Grove 《Geochimica et cosmochimica acta》2005,69(18):4557-4571
We report here the results of an investigation of W and Nd isotopes in the SNC (Shergottite-Nakhlite-Chassignite (martian)) meteorites. We have determined that ε182W values in the nakhlites are uniform within analytical uncertainties and have an average value of ∼3. Also, while ε182W values in the shergottites have a limited range (from 0.3-0.7), their ε142Nd values vary considerably (from −0.2-0.9). There appears to be no correlation between ε182W and ε142Nd in the nakhlites and shergottites. These results shed new light on early differentiation processes on Mars, particularly on the timing and nature of fractionation in silicate reservoirs. Assuming a two-stage model, the metallic core is estimated to have formed at ∼12 Myr after the beginning of the solar system. Major silicate differentiation established the nakhlite source reservoir before ∼4542 Ma and the shergottite source reservoirs at 4525 Ma. These ages imply that, within the uncertainties afforded by the 182Hf-182W and 146Sm-142Nd chronometers, the silicate differentiation events that established the source reservoirs of the nakhlites and shergottites may have occurred contemporaneously, possibly during crystallization of a global magma ocean. The distinct 182W-142Nd isotope systematics in the nakhlites and the shergottites imply the presence of at least three isotopically distinct silicate reservoirs on Mars, two of which are depleted in incompatible lithophile elements relative to chondrites, and the third is enriched. The two depleted silicate reservoirs most likely reside in the Martian mantle, while the enriched reservoir could be either in the crust or the mantle. Therefore, the 182W-142Nd isotope systematics indicate that the nakhlites and the shergottites originated from distinct source reservoirs and cannot be petrogenetically related. A further implication is that the source reservoirs of the nakhlites and shergottites on Mars have been isolated since their establishment before ∼4.5 Ga. Therefore, there has been no giant impact or efficient global mantle convection to thoroughly homogenize the Martian mantle following the establishment of the SNC source reservoirs. 相似文献
15.
Derek W.G Sears Norouz Bakhtiar Bradly D Keck Karen S Weeks 《Geochimica et cosmochimica acta》1984,48(11):2265-2272
Samples of the unshocked, equilibrated chondrite, Kernouve (H6), have been annealed for 1–100 hours at 500–1200°C, their thermoluminescence sensitivity measured and Na, K, Mn, Ca and Sc determined by instrumental neutron activation analysis. The TL sensitivity decreased with temperature until by 1000°C it had fallen by 40%. The process responsible has an activation energy of ~8 kcal/mole and probably involves diffusion. Samples annealed 1000–1200°C had TL sensitivities 10?2 times the unannealed values, most of the decrease occurring ~1100°C. This process has an activation energy of ~100 kcal/mole and is probably related to the melting of the TL phosphor, feldspar, with some decomposition and loss of Cs, Na and K. Meteorites whose petrography indicates healing > 1100°C by natural shock heating events (shock facies d-f). have TL sensitivities similar to samples annealed > 1100°C. Our own and literature compositional data indicate that TL is more stable to annealing than Ag, In, Tl, Bi, Zn and Te and less stable than Na, K, Mn, Ca, Se and Co, while the TL decrease resembles very closely the pattern of Cs loss on annealing. 相似文献
16.
17.
Abundances of cosmic ray-produced noble gases and 26Al, including some new measurements, have been compiled for some 23 stone meteorites with exposure ages of < 3 × 106 yr. Concentrations of cosmogenic He, Ne, and Ar in these meteorites have been corrected for differences in target element abundances by normalization to L-chondrite chemistry. Combined noble gas measurements in depth samples of the Keyes and St. Séverin chondrites are utilized to derive equations for normalizing the production rates of cosmogenic 3He, 21Ne, and 38Ar in chondrites to an adopted ‘average’ shielding: The measured unsaturated 26Al concentrations and the calculated equilibrium 26Al for these meteorites are combined to estimate exposure ages. These exposure ages are statistically compared with chemistry- and shielding-corrected concentrations of cosmogenic He, Ne, and Ar to derive absolute production rates for these nuclides. For L-chondrites, at ‘average’ shielding, these production rates (in 10?8 cm3/g 106 yr) are: 3He = 2.45,21Ne = 0.47, and 38Ar = 0.069, which are ~ 25% higher than production rates used in the past. From these production rates and relative chemical correction factors, production rates for other classes of stone meteorites are derived. 相似文献
18.
J N Goswami 《Journal of Earth System Science》1981,90(3):345-358
The dominant component of nuclear tracks observed in meteoritic minerals poor in uranium is produced by cosmic ray very heavy (vh:Z>20) nuclei. Studies of cosmic ray tracks and other cosmogenic effects in meteorites give us information on the irradiation history of these meteorites and enable us to estimate the extent of ablation during their atmospheric transit, and hence their pre-atmospheric masses. In a specific type of meteorite, known asgas-rich meteorite, one finds individual grains and xenoliths that have received solar flare and galactic cosmic ray irradiation prior to the formation of these meteorites. Detailed studies of these exotic components give insight into the accretionary processes occurring in the early history of the solar system. Some of the important results obtained from such studies and their implications to meteoritics are summarized. 相似文献
19.
《Chemie der Erde / Geochemistry》2019,79(4):125526
Quantifying the amounts of various igneous lithologies in Vesta’s crust allows the estimation of petrologic ratios that describe the asteroid’s global differentiation and subsequent magmatic history. The eucrite:diogenite (Euc:Diog) ratio measures the relative proportions of mafic and ultramafic components. The intrusive:extrusive (I:E) ratio assesses the effectiveness of magma ascent and eruption. We estimate these ratios by counting numbers and masses of eucrites, cumulate eucrites, and diogenites in the world’s meteorite collections, and by calculating their proportions as components of crustal polymict breccias (howardites) using chemical mixing diagrams and petrologic mapping of multiple thin sections. The latter two methods yield a Euc:Diog ratio of ∼2:1, although meteorite numbers and masses give slightly higher ratios. Surface lithologic maps compiled from spectra of Dawn spacecraft instruments (VIR and GRaND) yield Euc:Diog ratios that bracket estimates of Euc:Diog from the meteorites. The I:E ratios from HEDs lie between 0.5–2.1:1, due to uncertainties in identifying cumulate eucrite. Gravity mapping of Vesta by the Dawn spacecraft supports the existence of diogenite plutons in the crust. Quantifying the proportion of high-density diogenitic crust in the gravity map yields I:E ratios of 0.8-1:2:1, values which are bracketed by calculations based on HEDs. The I:E ratio for Vesta is lower than for Earth and Mars, consistent with physical modeling of asteroid-size bodies. Nevertheless, it indicates a significant role for pluton emplacement during the formation of Vesta’s crust. These results are inconsistent with simple differentiation models that produce the crust by crystallization of a global magma ocean, unless residual melts are extracted into crustal magma chambers. 相似文献
20.
Fourteen siderophile and other non-lithophile elements determined in 31 Semarkona (LL3.0) chondrules by neutron activation analysis are severely fractionated relative to lithophile elements. Their chondrule/whole-rock abundance ratios vary by factors of up to 1000; the mean ratio is ~0.2. Non-refractory siderophile abundance patterns in Ni-rich chondrules are smooth functions of volatility and in Ni-poor chondrules patterns are more irregular. Refractory siderophile elements are often fractionated from Ni; they covary, confirming the presence of a refractory metal component. The chalcophile element Se correlates with Br and siderophile elements. Zinc is uniformly low and uncorrelated with other elements.Most metal and sulfide in chondrules was probably present in the solar nebula before chondrule formation; most siderophile and chalcophile elements were in these materials. Some Fe was also in silicates, as were minor amounts of Ni, Co, Au, Ge and possibly Se. The amount of metal formed by reduction during chondrule melting was minor. The common metal component in chondrules is similar to, and may be the same as the common component involved in the metal/silicate fractionation of the ordinary chondrite groups.Chondrules are depleted in metal chiefly because they sampled metal-poor precursor assemblages. Metal segregation during the molten period and subsequent loss was a minor process that may be responsible for most surface craters on chondrules. 相似文献