首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ultraviolet spectroscopic study at 25°C is used to determine the stoichiometric stability constant of CuCO30 (βCuCO30) over a range of ionic strengths; extrapolation to zero ionic strength provides a thermodynamic constant (log β0CuCO30 = 6.89). At 0.69 m ionic strength, log βCuCO30) is 6.33.This study provides the first experimental evidence for the existence of CuHCO3+. At 0.69 m ionic strength, log βCuHCO3+ is 2.77.The ultraviolet molal absorptivity spectra for the two complexes are also determined. The spectrum for CuCO30 consists of a single band centered at 276.5 nm and was described well by a Gaussian function. The spectrum of CuHCO3+ consists of at least two overlapping bands.Side reactions which might affect the data interpretation were included in the analysis of the results. The effects of the Cu(II) hydrolysis reactions were accounted for by using data from previous work, and possible effects due to copper-organic species were eliminated by a subtraction procedure.  相似文献   

2.
海洋中的氮循环是海洋生物地球化学研究的热点领域之一,而硝化过程是氮循环的关键一环,准确获取硝化速率对于丰富海洋氮循环的认识至关重要。15N标记同位素技术是目前国际上最为广泛使用的硝化速率测定方法,该方法的核心在于准确测定15N加富样品产生的15NO2-15NO3-的含量,但目前的方法普遍存在测试时间较长、测试成本较高、所需样品体积较大或者检测限较高等问题。研究以低成本的膜进样质谱作为15N加富样品测试设备,建立了基于镉柱与氨基磺酸双还原体系测定15N加富样品中15NO3-含量的方法。经条件优化实验确定的具体方法:采用1 mol/L HCl配制15 mmol/L的氨基磺酸(SA)作为反应试剂除去样品原有的NO2-,然后利用镉柱将15NO  相似文献   

3.
Measurements of dissolved gases (O2, N2O), nutrients (NO3, NO2, PO43−), and oceanographic variables were performed off northern Chile (∼21°S) between March 2000 and July 2004, in order to characterize the existing oxygen minimum zone (OMZ) and identify processes involved in N2O cycling. Both N2O and NO3 displayed sharp, shallow peaks with concentrations of up to 124 nM (1370% saturation) and 26 μM, respectively, in association with a strong oxycline that impinges on the euphotic zone. NO2 accumulation below the oxycline's base reached up to 9 μM. The vertical distribution of physical and chemical parameters and the existing relationships between apparent oxygen utilization (AOU), apparent N2O production (ΔN2O), and NO3 revealed three main layers within the upper OMZ. The first layer, or the upper part of the oxycline, is located between the base of the mixed layer and the mid-point of the oxycline (around σt=25.5 kg m−3). There the O2 declines from ∼250 to ∼50 μM, and strong (but opposing) O2 and NO3 gradients and their associated AOU–ΔN2O and AOU–NO3 relationships indicate that nitrification produces N2O and NO3 in the presence of light. The second layer, or lower part of the oxycline, represents the upper OMZ boundary and is located between the middle and the base of the oxycline (25.9<σt<26.1 kg m−3). In this layer NO3 reduction begins at O2 levels ranging from ∼50 to ∼11 μM and accumulation of 41–68% of the ΔN2O pool occurs. The accumulation of N2O (but not of NO2 or NH4+) and the observed AOU–ΔN2O and AOU–NO3 relationships (which are opposite to those of the overlying first layer) suggest that a coupling between nitrification and NO3 reduction is involved in N2O cycling in this second layer. The third layer is the OMZ core, where the O2 concentration remains constant (O2<11 μM). It coincides with σt>26.2 kg m−3, which is typical of Equatorial Subsurface Water (ESSW). In this layer, N2O and NO3 continue to decrease, but a large NO2 accumulation is observed. Considering all the data, a biogeochemical model for the upper OMZ off northern of Chile is proposed, in which nitrification and denitrification differentially mediate N2O cycling in each layer.  相似文献   

4.
A widely used method for determining iodate in seawater involves reaction of the IO3? with excess I?, under acid conditions, to form I2 which is measured colorimetrically. It is known that when the acidification is by mineral acid, nitrite can interfere with the method by oxidising I? to I2 in an analogous way to IO3?. Some workers have used sulphamic acid for acidification since it is reported to destroy nitrite in solution.We have investigated the extent of nitrite interference in the colorimetric determination of iodate using both mineral acid and sulphamic acid for acidifying the reaction mixture. In seawater the extent of the interference is equivalent to 0.212 μM 1?1 IO3? per μM 1?1 NO2? with sulphuric acid, and 0.128 μM 1?1 IO3? per μM 1?1 NO2? with sulphamic acid. This means that for a seawater containing 0.31 μM 1?1 (39 μg 1?1) IO3?, the presence of 0.5 μM 1?1 NO2? will lead to an error of 25% in the iodate determined colorimetrically in methods using sulphuric acid, and 15% in methods in which sulphamic acid is used.  相似文献   

5.
The Loire estuary has been surveyed from 1982 to 1985 by 13 isochronous longitudinal profiles realized at low tide. Nutrient (SiO2, NO3, NH4+, PO3−4, particulate organic carbon or POC) patterns are very variable depending on the season, the estuarine section [river, upper-inner estuary, upstream of the fresh-water-saline-water interphase FSI, the lower-inner estuary characterized by the high turbidity zone (HTZ), the outer estuary] and the river discharge. Biological processes are dominant. In the eutrophied River Loire (summer pigment > 100 μg l−1), the high algal productivity (algal POC > 3 mg l−1) results in severe depletion of SiO2, PO43−, NO3. The enormous biomass (55 000 ton algal POC/year) is degraded in the HTZ where bacterial activity is intense. As a result, there is generally a regeneration of dissolved SiO2 and PO43−, a marked NH4+ maximum, while NO3 is conservative or depleted when the HTZ is nearly anoxic. Other processes can be considered including pollution from fertilizer plans (PO43−, NH4+) and from a hydrothermal power plant (NH4+). In the less turbid outer estuary, nutrients are generally conservative. Major variations of concentrations are observed in the lowest chlorinity section (Cl < 1 g kg) and also upstream the FSI, defined here as a 100% increase in Cl. Nutrient inputs to the ocean are not significantly modified for SiO2 and NO2, but are increased by 70% and 180% for PO43− and NH4+ and depleted by 60% for POC. Odd hydrological events, especially some floods, may perturbate or even mask the usual seasonal pattern observed in profiles.  相似文献   

6.
Five manganese nodules collected from the Northern Mid - Pacific have been analysed for their U and Th isotopes.lt is found that the enrichment of thorium compared to uranium is universal in deep- sea manganese, nodules and in the top sides of the nodules there are large excesses of Th and Pa decreasing exponentially with depth. For each of the nodules, the concordant growth rates are obtained from three different methods: 230Thex 230Thex/232Th and 231Paex.The growth rates of manganese nodules are closely related to the chemical compositions of the nodules and the types of the underlying sediments. The growth rates of five nodules are determined to be in the range of 0.79-7.4 mm/106a, in agreement with those predicted from the chemical compositions of the nodules. By the comparison of the extrapolated 230Thex,230Thex/232 Th and 231PaeX data from the top and bottom surfaces of the nodule from Site M21 yields, the nodule turnover time is (9.83-13.7)×104a.  相似文献   

7.
In order to investigate effects of benthic flux on the short-term variations in the distribution of nutrients in coastal waters, the concentrations of nutrients (PO4 3-, NH4 + NO3 -, NO2 - and H4SiO4) and other oceanographic parameters were measured every three hours over a 24-hour period at four fixed stations in the water column of Aburatsubo Bay, a shallow semi-enclosed inlet. Sediment cores were also taken from a fixed station once in each season over one year to quantitatively determine their benthic flux. Consistent linear negative correlations were found between their concentrations and salinity in the surface layers. This result suggests that fresh water was the main source of these nutrients and a physical mixing was the major process controlling their distribution. Monthly variations of PO4 3- and NH4 + monitored for 18 months in the bay also indicate that the high surf concentration of these nutrients was associated with the appearance of low salinity waters. On the other hand, in the bottom layers, a linear correlation between the concentration of the nutrients and salinity became weak, especially for NH4 + and PO4 3-. Their concentrations were higher than the predicted value from the conservative mixing between the fresh water and seawater, indicating the possibility of another source in the bottom layers. Benthic flux is suggested as a possible source. Pore water profiles of NH4 + and PO4 3- indicate their flux towards the overlying seawater, which is quantitatively consistent with their water column distributions.  相似文献   

8.
This study performed a detailed geochemical analyses of the components, stable carbon isotopes of alkane gas and CO2, stable hydrogen isotopes of alkane gas and helium isotopes of reproducing gas from the largest tight gas field (Sulige) and shale gas (Fuling) field in China. The comparative study shows that tight gas from the Sulige gas field in the Ordos Basin is of coal-derived origin, which is characterized by a positive carbon and hydrogen isotopic distribution pattern (δ13C1 > δ13C2 > δ13C3 > δ13C4; δ2H1 > δ2H2 > δ2H3), i.e., the carbon and hydrogen isotopes increase with increasing carbon numbers. Carbon dioxide from this field are of biogenic origin and the helium is crust-derived. Shale gas from the Fuling shale gas field belongs to oil-derived gas which has complete carbon and hydrogen isotopic reversal of secondary alteration origin (δ13C1 < δ13C2 < δ13C3; δ2H1 < δ2H2 < δ2H3), i.e., the carbon and hydrogen isotopes decrease with increasing carbon numbers. Such complete isotopic reversal distribution pattern is due to the secondary alteration like oil or gas cracking, diffusion and so on under high temperature. In that case, positive carbon or hydrogen isotopic distribution pattern will change into complete isotopic reversal as the temperature increases. Carbon dioxide is of abiogenic origin resulting from the thermal metamorphism of carbonates and helium is crust-derived.  相似文献   

9.
Vertical profiles of dissolved and particulate 210Po and 210Pb were measured across the redox transition zone at Station F1 in Framvaren Fjord, Norway. In this fjord, a sharp decrease in pH above the O2/H2S interface facilitates the aerobic dissolution of MnO2. In contrast, Fe(II) concentrations begin to increase only at the O2/H2S interface depth. Activity profiles reveal that dissolved 210Po and 210Pb are sequestered efficiently by particulates in surface waters. As polonium-210 and lead-210 activities descend down into the aerobic manganese reduction (AMR) zone, they are remobilized during the reductive dissolution of the carrier phase oxyhydroxides. Both 210Po and 210Pb are highly enriched at the O2/H2S interface where an active community of microbes, such as anoxygenic phototrophs (e.g., Chromatium, Chlorobium sp.), thrives. The coincident peaks in 210Po, 210Pb and microbial biomass suggest a strong biological influence on the behavior of these radionuclides. There is a strong covariance between the vertical distribution of Mn and Pb, indicating that their redox cycling is closely coupled and is likely microbially mediated.  相似文献   

10.
Estimating nitrogen transformation rates in aquatic ecosystems by isotope dilution techniques is simplified by directly measuring nitrogen isotopic ratios for NH4+ in the water using high performance cation exchange liquid chromatography (HPLC). Modifications of HPLC conditions and implementation of a median-area method for retention time determination improved and linearized a previously reported sigmoid relationship between the retention time shift (RTshift) of the NH4+ peak and the ratio of [15NH4+]: [Total NH4+] in seawater fortified with 15NH4+. Increasing the temperature of the HPLC column from 47 to 85 °C increased mobile phase buffer flow rate relative to column back pressure, decreased the retention time for NH4+, and allowed the buffer pH to be optimized relative to the pK of NH4+. The use of median-area rather than maximum-height to define the retention time of NH4+ further improved the linearity (r > 0.995) of the relationship between the ratio [15NH4+]: [Total NH4+] and RTshift over the range of isotope ratios. Reduction of NO3 to NH4+ by adding zinc dust to acidified (pH 2) seawater or lakewater samples, followed by pH neutralization, and subsequent analysis of NH4+ isotope ratios by HPLC, extended application of the method to isotope dilution experiments with NO3. Advantages of this direct-injection method over mass-measurement approaches traditionally used for isotope dilution experiments include small sample size and minimal sample preparation.  相似文献   

11.
12.
Understanding the role of the oceans in the Earth's changing climate requires comprehension of the relevant metabolic pathways which produce climatically important trace gases. The global ocean represents one of the largest natural sources of nitrous oxide (N2O) that is produced by selected archaea and/or bacteria during nitrogen (N) metabolism. In this study, the role of nitrite (NO2) in the production of N2O in the upper water column of the oligotrophic North Pacific Subtropical Gyre was investigated, focusing primarily on the lower euphotic zone where NO2 concentrations at the primary NO2 maximum reached 195 nmol L−1. Free-drifting sediment trap arrays were deployed to measure N cycle processes in sinking particulate material and the addition of selected N substrates to unpreserved sediment traps provided an experimental framework to test hypotheses regarding N2O production pathways and controls. Sinking particles collected using NO2-amended, unpreserved sediment traps exhibited significant production of N2O at depths between 100 and 200 m. Subsequent stable isotope tracer measurements conducted on sediment trap material amended with 15NO2 yielded elevated δ15N values of N2O, supporting N2O production via a NO2 metabolism pathway. Experiments on seawater collected from 150 m showed N2O production via NO2 metabolism also occurs in the water-column and indicated that the concentration of NO2 relative to NH4+ availability may be an important control. These findings provide evidence for the production of N2O via nitrifer-denitrification in the lower euphotic zone of the open ocean, whereby NO2 is reduced to N2O by ammonia-oxidizing microorganisms.  相似文献   

13.
Interconversion rates of the mononuclear ferric iron species Fe(OH)30 and Fe(OH)2+ are derived and their implications for the behavior of these species in seawater are examined. The previously reported formation constant for Fe(OH)30 and its claimed extreme adsorptive reactivity in seawater are shown to be mutually inconsistent. Although Fe(OH)30 is probably a stoichiometrically minor dissolved iron species, its rapid formation from Fe(OH)2+ could substantially enhance the rates of heterogeneous reaction rates of the [Fe(OH)2+ + Fe(OH)30] pool if the latter species is very reactive.  相似文献   

14.
Coastal upwelling systems are regions with highly variable physical processes and very high rates of primary production and very little is known about the effect of these factors on the short-term variations of CO2 fugacity in seawater (fCO2w). This paper presents the effect of short-term variability (<1 week) of upwelling–downwelling events on CO2 fugacity in seawater (fCO2w), oxygen, temperature and salinity fields in the Ría de Vigo (a coastal upwelling ecosystem). The magnitude of fCO2w values is physically and biologically modulated and ranges from 285 μatm in July to 615 μatm in October. There is a sharp gradient in fCO2w between the inner and the outer zone of the Ría during almost all the sampling dates, with a landward increase in fCO2w.CO2 fluxes calculated from local wind speed and air–sea fCO2 differences indicate that the inner zone is a sink for atmospheric CO2 in December only (−0.30 mmol m−2 day−1). The middle zone absorbs CO2 in December and July (−0.05 and −0.27 mmol·m−2 day−1, respectively). The oceanic zone only emits CO2 in October (0.36 mmol·m−2 day−1) and absorbs at the highest rate in December (−1.53 mmol·m−2 day−1).  相似文献   

15.
The precision of spectrophotometric measurements of indicator absorbance ratios is sufficient to allow evaluation of small isotopically induced differences in the dissociation constant of boric acid (KB). The quotient of 11KB and 10KB, obtained using isotopically ⩾99% pure borate/boric acid buffers, provides an equilibrium constant for the reaction 10B(OH)3+11B(OH)411B(OH)3+10B(OH)4 which heretofore had not been experimentally determined. Previous theoretical and semi-empirical evaluations of this equilibrium, which is important for assessments of the paleo-pH of seawater and the paleo-pCO2 of the atmosphere, have yielded constants, 11–10KB=10KB/11KB, that have ranged between 1.0194 and approximately 1.033. The experimentally determined value 11–10KB=1.0285±0.0016 (mean±95% confidence interval) obtained at 25 °C and 0.63 molal (mol kg−1 H2O) ionic strength is in much better agreement with recent theoretical assessments of 11–10KB that have ranged between 1.026 and 1.033, than the much-cited original estimate (1.0194) of Kakihana et al. (1977) [Fundamental studies on the ion-exchange separation of boron isotopes. Bulletin of Chemical Society of Japan 50, 158–163]. Since the activity quotient for the fractionation reaction is almost equal to unity, it is expected that the 11–10KB value obtained in this study will be applicable over a wide range of solution compositions and ionic strengths.  相似文献   

16.
The results of a potentiometric investigation (by ISE-H+, glass electrode) on the speciation of phytate ion (Phy12−) in an ionic medium simulating the major components (Na+, K+, Ca2+, Mg2+, Cl and SO42−) of natural seawater, at different salinities and t = 25 °C, are reported. The work was particularly aimed at determining the possible formation of mixed Ca2+–Mg2+–phytate ion pairs, and to establish how including the formation of these mixed species would affect the speciation modeling in seawater media. After testing various speciation models, that considering the formation of the MgCaH3Phy5−, MgCaH4Phy4−, Mg2CaH3Phy3− and Mg2CaH4Phy2− species was accepted, and corresponding stability constants were determined at two salinities (S = 5, 10). A discussion is reported both on the choice of the experimental conditions and on the possibility to extend these results to those typical of real seawater. A detailed procedure is also described to demonstrate that the stability of these species is higher than that statistically predicted. As reported in literature, a parameter, namely log X, has been determined in order to quantify this extra stability for the formation of each mixed species at various salinities. For example, at S = 10, log X113 = 2.67 and log X114 = 1.37 for MgCaH3Phy5− and MgCaH4Phy4− (statistical value is log Xstat = 0.60), and log X213 = 6.11 and log X214 = 2.15 for Mg2CaH3Phy3− and Mg2CaH4Phy2− (log Xstat = 1.43), respectively. Results obtained also showed that the formation of these species may occur even in conditions of low salinity (i.e. low concentration of alkaline earth cations) and low pH (i.e., more protonated ligand).  相似文献   

17.
It is shown that the values of pK1C and pK2C for carbonic acid, pKB for boric acid and the ionic product of water, pKw, in sea water may be explained on the basis of their determination in 0.7 Mw sodium chloride and the formation of the following ion-pairs: NaSO4?, MgSO4, CaSO4, MgCO3, CaCO3, MgHCO3+, CaHCO3+, MgOH+, HSO4?, MgB(OH)4+ and CaB(OH)4+. On the whole the calculated stability constants are lower than those given by Garrels and Thompson (1962).  相似文献   

18.
We studied the seasonal change of the spatial distribution of nitrite (NO-2), nitrate (NO-3), reactive phosphate (PO3-4), and silicate (SiO2) in the Colorado River Delta. We also generated 24-h time series at one location to study their short-period variability. The delta is a negative estuary. During summer, salinity may be as high as 40. Amplitude of spring tides is as large as 9 m, and this causes great water turbidity by sediment resuspension. Nutrient concentrations were high throughout the whole year, with lower values towards the oceanic region. Maximum nutrient values in the river delta were 15, 53, 11·5 and 92 μM, for NO-2, NO-3, PO3-4, and SiO2, respectively. Most values were under 2, 40, 5, and 60 μM, for NO-2, NO-3, PO3-4, and SiO2, respectively. Our nutrient data show no clear seasonal pattern. Possibly, high NO-3 values in the delta are due to groundwater input, mostly at the internal extreme, and high NO-2, PO3-4, and SiO2 values are due to resuspension of sediments and mixing of porewaters with the water column, caused mainly during spring tides. In the case of NO-2, oxidation of NH+4 in the water column would be part of the mechanism. This would explain the high negative correlation between NO-3 and sea-level, and the relatively low correlation between the other nutrients and sea-level, for the time series generated at a single location.  相似文献   

19.
Nitrous oxide (N2O) is a trace gas that is increasing in the atmosphere. It contributes to the greenhouse effect and influences the global ozone distribution. Recent reports suggest that regions such as the Arabian Sea may be significant sources of atmospheric N2O.In the ocean, N2O is formed as a by-product of nitrification and as an intermediary of denitrification. In the latter process, N2O can be further reduced to N2. These processes, which operate on different source pools and have different magnitudes of isotopic fractionation, make separate contributions to the 15N and18O isotopic composition of N2O. In the case of nitrification in oxic waters, the isotopic composition of N2O appears to depend mainly on the 15N/14N ratio of NH+4 and the 18O/16O ratio of O2 and H2O. In suboxic waters, denitrification causes progressive 15N and 18O enrichment of N2O as a function of degree of depletion of nitrate and dissolved oxygen. Thus the isotopic signature of N2O should be a useful tool for studying the sources and sinks for N2O in the ocean and its impact on the atmosphere.We have made observations of N2O concentrations and of the dual stable isotopic composition of N2O in the eastern tropical North Pacific (ETNP) and the Arabian Sea. The stable isotopic composition of N2O was determined by a new method that required only 80–100 nmol of N2O per sample analysis. Our observations include determinations across the oxic/suboxic boundaries that occur in the water columns of the ETNP and Arabian Sea. In these suboxic waters, the values of δ15N and δ18O increased linearly with one another and with decreasing N2O concentrations, presumably reflecting the effects of denitrification. Our results suggest that the ocean could be an important source of isotopically enriched N2O to the atmosphere.  相似文献   

20.
The interactions of Fe(II) and Fe(III) with the inorganic anions of natural waters have been examined using the specific interaction and ion pairing models. The specific interaction model as formulated by Pitzer is used to examine the interactions of the major components (Na+, Mg2+, Ca2+, K+, Sr2+, Cl, SO4, HCO3, Br, CO32−, B(OH)4, B(OH)3 and CO2) of seawater and the ion pairing model is used to account for the strong interaction of Fe(II) and Fe(III) with major and minor ligands (Cl, SO42−, OH, HCO3, CO32− and HS) in the waters. The model can be used to estimate the activity and speciation of iron in natural waters as a function of composition (major sea salts) and ionic strength (0 to 3 M). The measured stability constants (KFeX*) of Fe(II) and Fe(III) have been used to estimate the thermodynamic constants (KFeX) and the activity coefficient of iron complexes (γFeX) with a number of inorganic ligands in NaClO4 medium at various ionic strengths: In(KFeXFeγX) = InKFeX − In(γFeX) The activity coefficients for free ions (γFe, γx) needed for this extrapolation have been estimated from the Pitzer equations. The activity coefficients of the ion pairs have been used to determine Pitzer parameters (BFeX, BFeX0, CFeXφ) for the iron complexes. These results make it possible to estimate the stability constants for the formation of Fe(II) and Fe(III) complexes over a wide range of ionic strengths and in different media. The model has been used to determine the solubility of Fe(III) in seawater as a function of pH. The results are in good agreement with the measurements of Byrne and Kester and Kuma et al. When the formation of Fe organic complexes is considered, the solubility of Fe(III) in seawater is increased by about 25%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号