首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O.G. Franz  R.L. Millis 《Icarus》1975,24(4):433-442
UBV measurements of Dione, Tethys, and Enceladus were made with an area-scanning photometer on several nights during the 1972/1973 and 1973/1974 apparitions of Saturn. The observed brightness variations have been separated into two components—one a function of orbital position, the other a function of solar phase angle. Dione and Tethys are brightest near greatest eastern elongation and faintest near greatest western elongation. The reverse is true of Enceladus. Opposition surges are observed for Dione and Tethys.  相似文献   

2.
Six-color photometric observations made during Saturn's 1972/73 opposition enable us to separate the solar phase and orbital phase contributions to the observed light variations of Iapetus, Titan, Rhea, Dione and Tethys. Titan shows no orbital variations, but has phase coefficients which range from negligible values in the infrared to 0.014mag/deg in the ultraviolet. Rhea has a bright leading side, a light curve amplitude of about 0.2mag, which increases toward short wavelengths, and surprisingly large phase coefficients, which increase from 0.025mag/deg in the red to 0.037mag/deg in the ultraviolet. Combined with other available information, this behavior suggests a very porous, texturally complex surface layer. Dione also has a leading side which is a few tenths of a magnitude brighter than the trailing side, but the light curve amplitude has little wavelength dependence and the phase coefficients are significantly smaller than those of Rhea, suggesting a less intricate surface texture. The leading side of Tethys is probably a few tenths of a magnitude brighter than the trailing side. Our Iapetus observations generally supplement the earlier work by Millis. The phase coefficients of the bright (trailing) side are typically ~0.03mag/deg and are not strongly wavelength dependent; the dark (leading) side coefficients are large (~0.05 mag/deg) and increase at shorter wavelengths, indicating a very porous and intricate surface texture. The light curve amplitude shows a slight increase at shorter wavelengths, suggesting an increasing contrast between the dark and bright materials. The spectral reflectance curves we derive for the satellites are in agreement with the spectrophotometry of McCord, Johnson, and Elias.  相似文献   

3.
B. Buratti  J. Veverka 《Icarus》1984,58(2):254-264
Voyager imaging observations provide new photometric data on Saturn's satellites at large phase angles (up to 133° in the case of Mimas) not observable from Earth. Significant new results include the determination of phase integrals ranging from 0.7 in the case of Rhea to 0.9 for Enceladus. For Enceladus we find an average geometric albedo pv = 1.04 ± 0.15 and Bond albedo of 0.9 ± 0.1. The data indicate an orbital lightcurve with an amplitude of 0.2 mag, the trailing side being the brighter. For Mimas, the lightcurve amplitude is probably less than 0.1 mag. The value of the geometric albedo of Mimas reported here, pv = 0.77 ± 0.15 (corresponding to a mean opposition magnitude V0 = +12.5) is definitely higher than the currently accepted value of about 0.5. For Dione, the Voyager data show a well-defined orbital lightcurve of amplitude about 0.6 mag, with the leading hemisphere brighter than the trailing one.  相似文献   

4.
G.J. Black  D.B. Campbell 《Icarus》2007,191(2):702-711
We have measured the bulk radar reflectance properties of the mid-size saturnian satellites Rhea, Dione, Tethys, and Enceladus with the Arecibo Observatory's 13 cm wavelength radar system during the 2004 through 2007 oppositions of the Saturn system. Comparing to the better studied icy Galilean satellites, we find that the total reflectivities of Rhea and Tethys are most similar to Ganymede while Dione is most similar to Callisto. Enceladus' reflectivity falls between those of Ganymede and Europa. The mean circular polarization ratios of the saturnian satellites range from ∼0.8 to 1.2, and are on average lower than those of the icy Galilean satellites at this wavelength although still larger than expected for single reflections off the surface. The ratio for the trailing hemisphere of Enceladus may be the exception with a value ?0.56. The 13 cm wavelength radar albedos and polarization ratios may be systematically lower than similar results from the Cassini orbiter's RADAR instrument at 2.2 cm wavelength [Ostro, S.J., and 19 colleagues, 2006. Icarus 183, 479-490]. Overall, these reflectivities and polarization properties, together with the shapes of the echo spectra, suggest subsurface multiple scattering to be the dominant reflection mechanism although operating less efficiently than on the large icy moons of Jupiter. All these saturnian moons and icy jovian moons are atmosphere-less, low temperature water ice surfaces, and any differences in radar properties may be indicative of differences in composition or the effects of various processes that modify the regolith structure. The degree of variation in radar properties with wavelength on each satellite may constrain the thickness and efficiency of the scattering layer.  相似文献   

5.
J.L. Elliot  J. Veverka  J. Goguen 《Icarus》1975,26(4):387-407
The diameters of Tethys, Dione, Rhea, Titan and Iapetus were determined from observations of their March 30, 1974, lunar occultations, made with the Mauna Kea 224 and 61 cm telescopes. Light curves were obtained simultaneously in four colors, and the difference between the time of occultation at the two telescopes provided a direct measurement of the slope of the lunar limb, found to be small in all cases. The satellite diameters were determined by least-squares fits of model occultation light curves to the data. In these fits the diameter and degree of limb darkening of the satellite are correlated variables, requiring the limb darkening to be specified before the diameter can be determined, or vice versa. However, for Titan the signal-to-noise ratio is sufficiently high to allow some assessment of the amount of limb darkening, which was found to be substantial. Titan's diameter must be at least 5800 km, much larger than the currently accepted value of 5000 km, making it the largest satellite in the solar system. This larger diameter implies a low mean density. For the other four satellites arguments are presented in favor of accepting the occultation diameters corresponding to limb darkened disks. Except for Titan, the lunar occultation diameters generally agree with previous diskmeter and radiometric determinations.  相似文献   

6.
Cassini 2.2-cm radar and radiometric observations of seven of Saturn's icy satellites yield properties that apparently are dominated by subsurface volume scattering and are similar to those of the icy Galilean satellites. Average radar albedos decrease in the order Enceladus/Tethys, Hyperion, Rhea, Dione, Iapetus, and Phoebe. This sequence most likely corresponds to increasing contamination of near-surface water ice, which is intrinsically very transparent at radio wavelengths. Plausible candidates for contaminants include ammonia, silicates, metallic oxides, and polar organics (ranging from nitriles like HCN to complex tholins). There is correlation of our targets' radar and optical albedos, probably due to variations in the concentration of optically dark contaminants in near-surface water ice and the resulting variable attenuation of the high-order multiple scattering responsible for high radar albedos. Our highest radar albedos, for Enceladus and Tethys, probably require that at least the uppermost one to several decimeters of the surface be extremely clean water ice regolith that is structurally complex (i.e., mature) enough for there to be high-order multiple scattering within it. At the other extreme, Phoebe has an asteroidal radar reflectivity that may be due to a combination of single and volume scattering. Iapetus' 2.2-cm radar albedo is dramatically higher on the optically bright trailing side than the optically dark leading side, whereas 13-cm results reported by Black et al. [Black, G.J., Campbell, D.B., Carter, L.M., Ostro, S.J., 2004. Science 304, 553] show hardly any hemispheric asymmetry and give a mean radar reflectivity several times lower than the reflectivity measured at 2.2 cm. These Iapetus results are understandable if ammonia is much less abundant on both sides within the upper one to several decimeters than at greater depths, and if the leading side's optically dark contaminant is present to depths of at least one to several decimeters. As argued by Lanzerotti et al. [Lanzerotti, L.J., Brown, W.L., Marcantonio, K.J., Johnson, R.E., 1984. Nature 312, 139-140], a combination of ion erosion and micrometeoroid gardening may have depleted ammonia from the surfaces of Saturn's icy satellites. Given the hypersensitivity of water ice's absorption length to ammonia concentration, an increase in ammonia with depth could allow efficient 2.2-cm scattering from within the top one to several decimeters while attenuating 13-cm echoes, which would require a six-fold thicker scattering layer. If so, we would expect each of the icy satellites' average radar albedos to be higher at 2.2 cm than at 13 cm, as is the case so far with Rhea [Black, G., Campbell, D., 2004. Bull. Am. Astron. Soc. 36, 1123] as well as Iapetus.  相似文献   

7.
The Cassini spacecraft made a single flyby each of Saturn's icy moons Tethys and Rhea in late 2005. The magnetic field observations from these flybys provide unique portraits of the magnetic properties of these moons. These are the first observations of interactions of these inert moons with the sub-magnetosonic plasma of Saturn's magnetosphere. Because the upstream field and plasma conditions are extremely stable, we are able to observe the interaction in great detail. One of the major findings of this study is that the region of plasma depletion is greatly elongated along the field direction in a sub-magnetosonic interaction. Based on the consideration of field aligned velocities of thermal ions, we show that overlapping particle shadow wings form downstream of an inert moon such that in each of the particle shadow wings, particles of specific field aligned velocities are depleted. Other major findings of this study are: (1) Tethys and Rhea are devoid of any internal magnetic field; (2) No induction generated field was observed, as expected because of the extremely weak primary inducing (time varying) field; (3) There is no appreciable mass-loading of Saturn's magnetosphere from Tethys and Rhea; (4) We predict that wave particles interactions would be generated that smooth out the phase space holes created by the moon/plasma interaction. These waves serve to isotropize the plasma distribution function.  相似文献   

8.
Spectra taken by Cassini’s Composite Infrared Spectrometer (CIRS) between 10 and 600 cm−1 (17-1000 μm) of surface thermal emission of Mimas, Enceladus, Tethys, Dione, Rhea and Iapetus have been used to derive the thermal inertia and bolometric Bond albedo values. Only an upper limit for the bolometric Bond albedo of Iapetus’ dark leading side could be determined due to the insensitivity of the thermal model to albedo when albedos are very low. The thermal inertia in this region however is better constrained. The CIRS coverage of Enceladus is extensive enough that the latitudinal variation in these values from 60°S to 70°N has been determined in 10° wide bins. The bolometric Bond albedos determined here are consistent with literature values which show the surface of the saturnian icy moons to be covered in ice contaminated to varying degrees. The thermal inertia of the moons is shown to be in the range 9-, approximately 2-6 times lower than that of the Galilean satellites, implying a less well consolidated and more porous surface. The thermal inertias of Iapetus and Phoebe are somewhat higher, suggesting that the very low thermal inertias of satellites from Rhea inwards may be related to their probable coating of E-ring material. Latitudinal variations on the surface of Enceladus show that the bolometric Bond albedo and thermal inertia increase towards the active plume source at the south pole.  相似文献   

9.
PhotoelectricUBV observations of the W UMa-system MW Pavonis are presented; they were made at Bosque Alegre Station of Córdoba Observatory in 1972 and 1974. The period and linear ephemeris were obtained from nine times of minimum observed in each color. Satisfactory orbital elements were determined for the three light curves on the basis of the Russell model.  相似文献   

10.
Ke Zhang  Francis Nimmo 《Icarus》2009,204(2):597-609
We study the orbital behavior of Saturn’s satellites Enceladus and Dione during their passage through the 2:1 mean-motion resonances to constrain their interior structures, parameterized by the quantity k2/Q (assumed constant). Enceladus’ evolution after escape from the second-order e-Enceladus e-Dione resonance requires that (k2/Q)Enceladus<8×10-4, for that QSaturn>18,000. This result is in agreement with [Meyer, J., Wisdom, J., 2008b. Icarus 193, 213-223]. The present-day libration amplitude of Enceladus requires that (k2/Q)Enceladus>1.2×10-4, assuming that QSaturn<105. Dione’s present-day eccentricity indicates that (k2/Q)Dione?3×10-4 for QSaturn>18,000. Assuming Maxwellian viscoelastic behavior, we find that for Enceladus a convective ice shell overlying an ocean is too dissipative to match the orbital constraints. We conclude that a conductive shell overlying an ocean is more likely, and discuss the implications of this result. Dione’s ice shell is also likely to be conductive, but our results are less constraining.  相似文献   

11.
Ke Zhang  Francis Nimmo 《Icarus》2012,218(1):348-355
An inferred ancient episode of heating and deformation on Tethys has been attributed to its passage through a 3:2 resonance with Dione (Chen, E.M.A., Nimmo, F. [2008]. Geophys. Res. Lett. 35, 19203). The satellites encounter, and are trapped into, the e-Dione resonance before reaching the e-Tethys resonance, limiting the degree to which Tethys is tidally heated. However, for an initial Dione eccentricity >0.016, Tethys’ eccentricity becomes large enough to generate the inferred heat flow via tidal dissipation. While capture into the e-Dione resonance is easy, breaking the resonance (to allow Tethys to evolve to its current state) is very difficult. The resonance is stable even for large initial Dione eccentricities, and is not broken by perturbations from nearby resonances (e.g. the Rhea–Dione 5:3 resonance). Our preferred explanation is that the Tethyan impactor which formed the younger Odysseus impact basin also broke the 3:2 resonance. Simultaneously satisfying the observed basin size and the requirement to break the resonance requires a large (≈250 km diameter) and slow (≈0.5 km/s) impactor, possibly a saturnian satellite in a nearby crossing orbit with Tethys. Late-stage final impacts of this kind are a common feature of satellite formation models (Canup, R.M., Ward, W.R. [2006]. Nature 441, 834–839).  相似文献   

12.
J.B. Plescia 《Icarus》1983,56(2):255-277
Dione is one of the more geologically complex of Saturn's satellites. Several geologic units have been identified including ancient heavily cratered terrain; two plains units: cratered plains and lightly cratered plains; lobate deposits; crater rim deposits; and bright wispy material. The only structural features observed are a series of troughs which cross portions of the surface and subtle northeast and northwest trending lineaments. The troughs are associated with volcanic deposits and are interpreted to be the vents through which material was erupted. Correlations exist between telescopically observed albedo patterns and the distribution of geologic units.  相似文献   

13.
Cassini Visual Infrared Mapping Spectrometer (VIMS) observations of Mimas, Tethys, and Dione obtained during the nominal and extended missions at large solar phase angles were analyzed to search for plume activity. No forward scattered peaks in the solar phase curves of these satellites were detected. The upper limit on water vapor production for Mimas and Tethys is one order of magnitude less than the production for Enceladus. For Dione, the upper limit is two orders of magnitude less, suggesting this world is as inert as Rhea (Pitman, K.M., Buratti, B.J., Mosher, J.A., Bauer, J.M., Momary, T., Brown, R.H., Nicholson, P.D., Hedman, M.M. [2008]. Astrophys. J. Lett. 680, L65-L68). Although the plumes are best seen at ∼2.0 μm, Imaging Science Subsystem (ISS) Narrow Angle Camera images obtained at the same time as the VIMS data were also inspected for these features. None of the Cassini ISS images shows evidence for plumes. The absence of evidence for any Enceladus-like plumes on the medium-sized saturnian satellites cannot absolutely rule out current geologic activity. The activity may below our threshold of detection, or it may be occurring but not captured on the handful of observations at large solar phase angles obtained for each moon. Many VIMS and ISS images of Enceladus at large solar phase angles, for example, do not contain plumes, as the active “tiger stripes” in the south pole region are pointed away from the spacecraft at these times. The 7-year Cassini Solstice Mission is scheduled to gather additional measurements at large solar phase angles that are capable of revealing activity on the saturnian moons.  相似文献   

14.
Jeffrey M. Moore 《Icarus》1984,59(2):205-220
The tectonic and volcanic modifications of Dione are described and interpreted. It is proposed that after the formation of a brittle outer shell, but before the end of heavy meteoritic bombardment, global expansion due to radionuclide heating (and perhaps a loss of oblateness due to tidal despinning and orbital recession) produced a global system of lineaments. An NH3 · H2O melt was produced and “erupted” on the surface to form plains units. Cooling of the interior (or a phase change) led to horizontal compression in the surface. Compression of a thick deposit of plains material, possibly overlying a décollement surface, is proposed to explain cratered-plains ridges developed as thrust or high-angle reverse faults. Following formation of ridges and smooth plains, the surface experienced light cratering.  相似文献   

15.
A control network of the Saturnian satellite Rhea has been established photogrammetrically from pictures taken by the two Voyager spacecraft. Coordinates of 288 control points on Rhea have been computed and listed; some of these are identified on the preliminary U.S. Geological Survey map of Rhea and many of the control point features have been named. Pixel measurements of these points were made on 81 Voyager 1 and 3 Voyager 2 pictures. The longitude system on Rhea is defined by the crater Tore; the 340° meridian passes through the center of this crater. The mean radius of Rhea has been determined as 764 ± 4 km.  相似文献   

16.
A new infrared spectrum of the leading side of Rhea is presented in the 0.65- to 2.5 μm region with 1.5% spectral resolution and 3 to 5% data precision. Water ice absorptions previously identified at 2.02, 1.65, and 1.55 μm are confirmed and more precisely defined. The 1.25-μm water ice absorption is identified for the first time and the 1.04-μm water ice absorption is probably also present. The spectrum of the leading side of Rhea is very similar to the spectrum of the leading side of Ganymede in the 0.6- to 2.5-μm region. The Rhea spectrum is also very similar to laboratory spectra of water frost on ice blocks rather than that of an optically thick frost. The strong water ice absorption features, high albedo, and little downturn in reflectance toward shorter wavelengths from 0.6 to 0.4 μm all indicate a surface of nearly pure water ice. The surface of Rhea is probably at least 90 wt% water ice and may be as much as 98 wt%. Of the remaining constituents, neither minerals nor clathrathes can be excluded. If the surface of Rhea were a methane clathrate, the surface would still be about 90 wt% water ice.  相似文献   

17.
Tidal evolution of Mimas, Enceladus, and Dione   总被引:2,自引:0,他引:2  
Jennifer Meyer  Jack Wisdom 《Icarus》2008,193(1):213-223
The tidal evolution through several resonances involving Mimas, Enceladus, and/or Dione is studied numerically with an averaged resonance model. We find that, in the Enceladus-Dione 2:1 e-Enceladus type resonance, Enceladus evolves chaotically in the future for some values of k2/Q. Past evolution of the system is marked by temporary capture into the Enceladus-Dione 4:2 ee-mixed resonance. We find that the free libration of the Enceladus-Dione 2:1 e-Enceladus resonance angle of 1.5° can be explained by a recent passage of the system through a secondary resonance. In simulations with passage through the secondary resonance, the system enters the current Enceladus-Dione resonance close to tidal equilibrium and thus the equilibrium value of tidal heating of 1.1(18,000/QS) GW applies. We find that the current anomalously large eccentricity of Mimas can be explained by passage through several past resonances. In all cases, escape from the resonance occurs by unstable growth of the libration angle, sometimes with the help of a secondary resonance. Explanation of the current eccentricity of Mimas by evolution through these resonances implies that the Q of Saturn is below 100,000. Though the eccentricity of Enceladus can be excited to moderate values by capture in the Mimas-Enceladus 3:2 e-Enceladus resonance, the libration amplitude damps and the system does not escape. Thus past occupancy of this resonance and consequent tidal heating of Enceladus is excluded. The construction of a coherent history places constraints on the allowed values of k2/Q for the satellites.  相似文献   

18.
The mean diameter D = 147 ± 3 km of (106) Dione is derived from visual observations in Denmark, Germany and the Netherlands of the occultation of AGK3 + 25°0989 on 1983 January 19. Photoelectric magnitudes are: B(1, 2°.4) = 8m.51 ± 0m.06 and B – V = 0m.65 ± 0m.07. The visual albedo is pv = .064. Constraints on the axis of rotation are derived from the observed elliptical contour.  相似文献   

19.
An inversion procedure to obtain the reflectance of the central region of a satellite's disk from lunar occultation data is presented. The scheme assumes that the limb darkening of the satellite depends only on the radial distance from the center of the disk. Given this assumption, normal reflectances can be derived that are essentially independent of the limb darkening and the diameter of the satellite. The procedure has been applied to our observations of the March 1974 lunar occultation of Tethys, Dione, Rhea, Titan, and Iapetus. In the V passband we derive the following normal reflectances: Rhea (0.97±0.20), Titan (0.24±0.03), Iapetus, bright face (0.60±0.14). For Tethys and Dione the values derived have large uncertainties, but are consistent with our result for Rhea.  相似文献   

20.
B. Zellner  L. Andersson  J. Gradie 《Icarus》1977,31(4):447-455
Photoelectric magnitudes and colors on the UBV system are presented for 65 minor planets, including four Mars crossers, six Trojans, and main-belt objects down to 6 km in diameter. The Trojans all have very similar colors not characteristics of the main-belt population. A paucity of S-type asteroids at the smallest diameters, predicted from trends seen at larger sizes, is not observed. The newly available color data for small objects ranging from 1.0 to 5.2 AU in heliocentric distance show the main belt to be a transition zone between predominantly silicate and carbonaceous compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号