首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Rare earth elements (REE) were determined in fine, medium and coarse crystalline replacement dolomites, and for saddle dolomite cements from the Middle Devonian Presqu'ile barrier from Pine Point and the subsurface of the Northwest Territories and north-eastern British Columbia. REE patterns of the fine crystalline dolomite are similar to those of Middle Devonian limestones from the Presqu'ile barrier. Fine crystalline dolomite occurs in the back-barrier facies and may represent penecontemporaneous dolomitization at, or just below, the sea floor. Medium crystalline dolomite is widespread in the lower southern and lower central barrier. Medium crystalline dolomite is slightly depleted in heavy REE compared with Devonian marine limestones and fine crystalline dolomite, and has negative Ce and Eu anomalies. Medium crystalline dolomites replaced pre-existing limestones or were recrystallized from earlier fine crystalline dolomites. During these processes, the REE patterns of their precursors were modified. Late stage, coarse crystalline replacement dolomite and saddle dolomite cements occur together in the upper barrier and have similar geochemical signatures. Coarse crystalline dolomites have negative Eu anomalies, and those from the Pine Point area also have positive La anomalies. Saddle dolomites are enriched in light REE and have positive La anomalies. The REE patterns of coarse crystalline dolomite and saddle dolomite differ from those of marine limestones and fine and medium crystalline dolomites, suggesting that different diagenetic fluids were responsible for these later dolomites. Although massive dolomitization requires relatively large volumes of fluids in order to provide the necessary amounts of Mg2-. dolomitization and subsequent recrystallization may not necessarily modify the REE signatures of the precursor limestones because of the low concentrations of REE in most natural fluids. Thus, relative fluid-rock ratios during diagenesis may be estimated from REE patterns in the diagenetic and precursor minerals. Fine crystalline dolomites retain the REE patterns of their limestone precursors. In the medium and coarse crystalline dolomites the precursor REE patterns were apparently altered by large volumes of fluids involved during dolomitization. This study suggests that REE compositions of dolomites and their limestone precursors may provide important information about the relative amounts of fluids involved during diagenetic processes, such as dolomitization.  相似文献   

2.
晚前寒武纪扬子克拉通及其周缘保存了一套比较完整的白云岩地层(灯影组)。扬子北缘(南秦岭) 地区的灯影组白 云岩与典型灯影组白云岩在成岩组合和沉积序列有较大差别,有待进一步研究。该研究在野外剖面实测、镜下鉴定基础 上,运用阴极发光和X射线衍射有序度分析对扬子北缘(南秦岭) 淅川地区灯影组白云岩进行了岩石学分类及成因机制研 究。研究区灯影组白云岩类型主要为泥—粉晶他形白云岩、细晶自形—半自形白云岩、以中—粗晶白云石为主的细—粗晶 半自形—他形白云岩、鞍形白云岩和岩溶角砾白云岩。其中泥—粉晶他形白云石为准同生阶段蒸发海水白云石化作用产 物;细晶自形—半自形白云石形成于早成岩浅埋藏阶段,成岩过程与蒸发海水回流渗透白云石化作用有关;细—粗晶半自 形—他形白云石和鞍形白云石属晚成岩期中—深埋藏环境下由碳酸盐岩矿物经过热液白云石化或重结晶作用所形成;岩溶 角砾白云岩是通过白云岩层的溶蚀—垮塌和砾间胶结作用形成。因此,由于相对海平面升降、上覆地层沉积厚度增加引起 的成岩环境变化以及后期流体的改造作用促使了研究区不同类型白云岩的发育。  相似文献   

3.
晚前寒武纪扬子克拉通及其周缘保存了一套比较完整的白云岩地层(灯影组)。扬子北缘(南秦岭) 地区的灯影组白 云岩与典型灯影组白云岩在成岩组合和沉积序列有较大差别,有待进一步研究。该研究在野外剖面实测、镜下鉴定基础 上,运用阴极发光和X射线衍射有序度分析对扬子北缘(南秦岭) 淅川地区灯影组白云岩进行了岩石学分类及成因机制研 究。研究区灯影组白云岩类型主要为泥—粉晶他形白云岩、细晶自形—半自形白云岩、以中—粗晶白云石为主的细—粗晶 半自形—他形白云岩、鞍形白云岩和岩溶角砾白云岩。其中泥—粉晶他形白云石为准同生阶段蒸发海水白云石化作用产 物;细晶自形—半自形白云石形成于早成岩浅埋藏阶段,成岩过程与蒸发海水回流渗透白云石化作用有关;细—粗晶半自 形—他形白云石和鞍形白云石属晚成岩期中—深埋藏环境下由碳酸盐岩矿物经过热液白云石化或重结晶作用所形成;岩溶 角砾白云岩是通过白云岩层的溶蚀—垮塌和砾间胶结作用形成。因此,由于相对海平面升降、上覆地层沉积厚度增加引起 的成岩环境变化以及后期流体的改造作用促使了研究区不同类型白云岩的发育。  相似文献   

4.
The partly dolomitized Swan Hills Formation (Middle‐Upper Devonian) in the Simonette oil field of west‐central Alberta underwent a complex diagenetic history, which occurred in environments ranging from near surface to deep (>2500 m) burial. Five petrographically and geochemically distinct dolomites that include both cementing and replacive varieties post‐date stylolites in limestones (depths >500 m). These include early planar varieties and later saddle dolomites. Fluid inclusion data from saddle dolomite cements (Th=137–190 °C) suggest that some precipitated at burial temperatures higher than the temperatures indicated by reflectance data (Tpeak=160 °C). Thus, at least some dolomitizing fluids were ‘hydrothermal’. Fluorescence microscopy identified three populations of primary hydrocarbon‐bearing fluid inclusions and confirms that saddle dolomitization overlapped with Upper Cretaceous oil migration. The source of early dolomitizing fluids probably was Devonian or Mississippian seawater that was mixed with a more 87Sr‐rich fluid. Fabric‐destructive and fabric‐preserving dolostones are over 35 m thick in the Swan Hills buildup and basal platform adjacent to faults, thinning to less than 10 cm thick in the buildup between 5 and 8 km away from the faults. This ‘plume‐like’ geometry suggests that early and late dolomitization events were fault controlled. Late diagenetic fluids were, in part, derived from the crystalline basement or Palaeozoic siliciclastic aquifers, based on 87Sr/86Sr values up to 0·7370 from saddle dolomite, calcite and sphalerite cements, and 206Pb/204Pb of 22·86 from galena samples. Flow of dolomitizing and mineralizing fluids occurred during burial greater than 500 m, both vertically along reactivated faults and laterally in the buildup along units that retained primary and/or secondary porosity.  相似文献   

5.
Ground‐based hyperspectral imaging combined with terrestrial lidar scanning is a novel technique for outcrop analysis, which has been applied to Early and Late Albian carbonates of the Pozalagua Quarry (Cantabrian Mountains, Spain). An image processing workflow has been developed for differentiating limestone from dolomite, providing additional sedimentary and diagenetic information, and the possibility to quantitatively delineate diagenetic phases in an accurate way. Spectral absorption signatures can be linked to specific sedimentary or diagenetic products, such as recent and palaeokarst, hydrothermal karst, (solution enlarged) fractures and different dolomite types. Some of the spectral signatures are related to iron, manganese, organic matter, clay and/or water content. Ground‐truthing accessible parts of the quarry showed that the classification based on hyperspectral image interpretation was very accurate. This technique opens the possibility for quantitative data evaluation on sedimentary and diagenetic features in inaccessible outcrops. This study demonstrates the potential of ground‐based imaging spectroscopy to provide information about the chemical–mineralogical distribution in outcrops, which could otherwise not be established using conventional field methods.  相似文献   

6.
Hydrothermal Dolomite (HTD) is present in the Upper Sinian (Upper Proterozoic) Dengying Formation, east Sichuan Basin, China. The strata are comprised by primary dolomite. The HTD has various textures, including zebra dolomite, subhorizontal sheet-like cavities filled by saddle dolomite and breccias cemented by saddle dolomites as well occur as a fill of veins and fractures. Also co-occur MVT type lead-zinc ores in the study area. The δ13C and δ18O isotopes of HTD in the Upper Sinian Dengying Formation are lighter than those of the host rocks, while STSr/86Sr is higher. The apparent difference in carbon, oxygen and strontium isotopes, especially the large difference in S7Sr/S6Sr isotopes ratio indicate crystallization from hot basinal and/or hydrothermal fluids. Saddle dolomite was precipitated at temperatures of 270-320℃. The diagenetic parasequences of mineral assemblage deposited in the Dengying Formation are: (1) dolomite host rock →sphalerite-galena-barite-fluorite; (2) dolomite host rock →saddle dolomite →quartz; (3) dolomite host rock →saddle dolomite→bitumen; (4) dolomite host rock →saddle dolomite →barite. The mean chemical composition of the host dolomite matrix and HTD didn't change much during hydrothermal process. The fluids forming the HTDs in the Dengying Formation were mixtures of freshwater from the unconformity at the top of Sinian, fluids from diagenetic compaction and hydrocarbon generation & expulsion from the Lower Cambrian Niutitang Formation mudstones or the Doushantuo Formation silty mudstones, and hydrothermal fluids from the basement. The hydrocarbon reservoirs associated with the HTD were mostly controlled by the basement faults and fractures and karsting processes at the unconformity separating Sinian and Cambrian strata. The hydrocarbon storage spaces of HTD included dissolved cavities and intercrystalline pores. Dissolution cavities are extensive at the top of Dengying Formation, up to about 46m below the unconformity between Sinian an  相似文献   

7.
Dolomites occur extensively in Cambrian to Lower Ordovician carbonates in the Tienshan orogen of the Quruqtagh area, north‐east Tarim Basin, where thick (up to 1 km), dark grey lenticular limestones of semi‐pelagic to pelagic origin are prominent. The dolomites generally occur as beige, anastomosed geobodies that cross‐cut well‐stratified limestones. Based on detailed field investigations and petrographic examination, three types of matrix dolomite are identified: fine crystalline planar‐e (Md1), fine to medium crystalline planar‐s (e) (Md2) and fine to coarse crystalline non‐planar‐a (Md3) dolomites. One type of cement dolomite, the non‐planar saddle dolomite (Cd), is also common. The preferential occurrence of Md1 along low‐amplitude stylolites points to a causal link to pressure dissolution by which minor Mg ions were probably released for replacive dolomitization during shallow burial compaction. Type Md2, Md3 and Cd dolomites, commonly co‐occurring within the fractured zones, have large overlaps in isotopic composition with that of host limestone, implying that dolomitizing fluids inherited their composition from remnant pore fluids or were buffered by the formation water of host limestones through water–rock interaction. However, the lower δ18O and higher 87Sr/86Sr ratios of these dolomites also suggest more intense fluid–rock interaction at elevated temperature and inputs of Mg and radiogenic Sr from the host limestones with more argillaceous matter and possibly underlying Neoproterozoic siliciclastic strata. Secondary tensional faults and fractures within a compressional tectonic regime were probably important conduits through which higher‐temperature Mg‐rich fluids that had been expelled from depth were driven by enhanced tectonic compression and heating during block overthrusting, forming irregular networks of dolomitized bodies enclosed within the host limestones. This scenario probably took place during the Late Hercynian orogeny, as the Tarim block collided with Tienshan island arc system to the north and north‐east. Subsequent downward recharges of meteoric fluids into the dolomitizing aquifer probably terminated dolomitization as a result of final closure of the South Tienshan Ocean (or Palaeo‐Asian Ocean) and significant tectonic uplift of the Tienshan orogen. This study demonstrates the constructive role of notably tensional (or transtensional) faulting/fracturing in channelling fluids upward as a result of intense tectonic compression and heating along overthrust planes on the convergent plate margin; however, a relatively short‐lived, low fluid flux may have limited the dolomitization exclusively within the fractured/faulted limestones in the overthrust sheets.  相似文献   

8.
Pervasive early- to late-stage dolomitization of Lower Ordovician Ellenburger Group carbonates in the deep Permian Basin of west Texas and southeastern New Mexico is recorded in core samples having present-day burial depths of 1.5–7.0 km. Seven dolomite-rock textures are recognized and classified according to crystal-size distribution and crystal-boundary shape. Unimodal and polymodal planar-s (subhedral) mosaic dolomite is the most widespread type, and it replaced allochems and matrix or occurs as void-filling cement. Planar-e (euhedral) dolomite crystals line pore spaces and/or fractures, or form mosaics of medium to coarse euhedral crystals. This kind of occurrence relates to significant intercrystalline porosity. Non-planar-a (anhedral) dolomite replaced a precursor limestone/dolostone only in zones that are characterized by original high porosity and permeability. Non-planar dolomite cement (saddle dolomite) is the latest generation and is responsible for occlusion of fractures and pore space. Dolomitization is closely associated with the development of secondary porosity; dolomitization pre-and post-dates dissolution and corrosion and no secondary porosity generation is present in the associated limestones. The most common porosity types are non-fabric selective moldic and vuggy porosity and intercrystalline porosity. Up to 12% effective porosity is recorded in the deep (6477 m) Delaware basin. These porous zones are characterized by late-diagenetic coarse-crystalline dolomite, whereas the non-porous intervals are composed of dense mosaics of early-diagenetic dolomites. The distribution of dolomite rock textures indicates that porous zones were preserved as limestone until late in the diagenetic history, and were then subjected to late-stage dolomitization in a deep burial environment, resulting in coarse-crystalline porous dolomites. In addition to karst horizons at the top of the Ellenburger Group, exploration for Ellenburger Group reservoirs should consider the presence of such porous zones within other Ellenburger Group dolomites.  相似文献   

9.
The Tepearasi Formation of the autochthonous Geyikdagi Group in the Central Tauride Belt, SE of Beysehir, is Dogger in age and consists dominantly of massive limestones and greyish dolomites occurring within the middle to upper sections. The total thickness of the dolomitic levels ranges from 100-300 m and laterally extends 500-700 m. Three types of dolomite were distinguished through petrographic analyses: homogeneous, mottled (saddle-crystalline) and joint-filling dolomite, which were interpreted to have formed in two different stages, early diagenetic and late diagenetic. The homogeneous dolomite of the early diagenetic stage is light-coloured and monotonous-textured and shows the form of a dolosparite mosaic. The mottled dolomite formed in the late diagenetic stage is light- to dark-coloured and coarsely granular idiomorphic. The other type of late diagenetic dolomite, described as the joint-filling type, presents a crystal growth pattern from the joint walls towards the centre of the joint space. I  相似文献   

10.
通过岩心观察和薄片鉴定,在岩石学和矿物学特征分析基础上,结合白云石有序度测定,碳、氧同位素、锶同位素和稀土元素组成及配分模式分析,详细研究了川北元坝地区长兴组白云石化作用的特征、机制及模式,结果表明长兴组发育微晶白云石(岩)、粉-中晶他形白云石、粉-中晶自形白云石和异形白云石等四种类型,它们的有序度由低变高;白云石的碳、氧同位素、锶同位素和稀土元素组成及配分模式特征表明,长兴组微晶白云石(岩)、粉-中晶他形白云石、粉-中晶自形白云石主要形成于浓缩海水环境、正常海水环境、或者与正常海水相似的地层水环境中,并遭受过热液地质作用的改造,从微晶白云石(岩)→粉-中晶他形白云石→粉-中晶自形白云石是一个沉积埋藏过程中多阶段白云石化作用的产物,异形白云石则由热液作用形成;根据长兴组白云石的矿物学和地球化学特征及白云石化作用与层序和沉积相之间的关系,分别可以用准同生期蒸发泵白云石化作用模式、准同生期渗透回流白云石化作用模式、成岩早期浅埋藏状态下地层水白云石化作用模式和成岩晚期热液白云石化作用模式来解释微晶白云石(岩),粉-中晶他形白云石、粉-中晶自形白云石和异形白云石的形成。白云石化作用是有利于长兴组储层形成的建设性成岩作用。  相似文献   

11.
川西南中二叠统中粗晶白云石流体来源分析   总被引:2,自引:1,他引:1  
四川盆地西南地区中二叠统地层在埋藏过程中发生了较高程度的白云岩化。通过野外剖面观察和详细的薄片岩石学研究,在中二叠统白云岩储层中识别出了四种类型的白云石(包括三种基质交代白云石和一种白云石胶结物):1)粉晶白云石,宏观上主要呈层状发育,晶粒小于50 μm,平直镜面半自形晶-非平直晶面它形晶;2)细晶白云石,晶粒大小为50~250 μm,平直晶面半自形晶-自形晶;3)中粗晶白云石,宏观上可见溶蚀孔洞和裂缝发育,其中充填白色的白云石胶结物、方解石胶结物等,晶粒大小为250 μm~2 mm,非平直晶面它形晶;4)白云石胶结物,以胶结物的形式在裂缝和溶蚀孔洞中发育,晶粒大小变化较大,具有明显的波状消光。利用不同矿物之间的接触和切割关系,结合阴极发光和扫描电镜等手段,确定了几种白云石和相关成岩矿物的形成时序,确立四川盆地西南地区中二叠统白云岩的成岩演化序列。即从成岩早期到晚期,依次形成(或发生成岩作用)了粉晶白云石、早期溶蚀作用、细晶白云石、中粗晶白云石、水力压裂缝、白云石胶结物、石英、方解石脉、缝合线、晚期溶蚀和沥青充填。通过地球化学和包裹体分析,发现中粗晶白云石和白云石胶结物具有相似的地球化学特征,即明显偏负的氧同位素、大于同期海水的Sr同位素,成岩流体具有较高的温度和盐度,表明其成岩流体具有典型的热液性质。原始灰岩和早期白云岩经热液改造,重结晶为中粗晶白云石,并在裂缝和溶蚀孔洞中沉淀鞍形白云石胶结物。  相似文献   

12.
白云岩作为优质的油气储层,其成因一直是沉积学研究热点,通过地球化学分析揭示其流体性质是探究白云岩成因的重要途径。本文通过对川西南中二叠统典型剖面和钻井的碳酸盐岩样品进行岩石学、稀土元素和锶同位素特征研究,分析结果显示:(1)其岩石类型主要有石灰岩、泥微晶白云岩、细-中晶白云岩和鞍形白云石4种。(2)研究区白云岩锶同位素比值(平均值0.709 77)明显高于石灰岩和同期海水,接近全球壳源锶同位素平均比值,显示白云岩化流体是热液来源,同时部分泥微晶白云岩显示海水锶同位素特征。(3)研究区碳酸盐岩相较于同期海相沉积物有较高的δCe值(平均值0.86),显示其开放的成岩环境。(4)3种类型的白云岩相较于石灰岩有较高的δEu值(平均值0.99)和显著不同的稀土总量特征,显示研究区白云岩与石灰岩成岩流体性质不同且白云岩受到高温影响。综合分析表明,川西南地区白云岩主要是受构造控制的热液白云岩,部分为被岩浆和热液加热的海水改造的热对流白云岩。   相似文献   

13.
川西地区中二叠统栖霞组中—粗晶白云岩成因   总被引:2,自引:0,他引:2  
通过野外剖面、岩心、薄片的观察及地球化学分析等手段,对川西地区栖霞组中—粗晶白云岩成因进行了研究。结果表明,中—粗晶白云石晶形呈自形、半自形及他形,可见残余生物(碎屑)幻影,裂缝发育,白云石被缝合线切割,储集空间以溶蚀孔洞和晶间孔为主,孔洞内充填有自形白云石及鞍状白云石。中—粗晶白云岩的碳同位素值处于二叠系海相碳酸盐岩的范围;川西的南部地区中—粗晶白云岩氧同位素相对于川西的北部地区更偏负;川西的北部中—粗晶白云岩锶同位素比值处于二叠系海相碳酸盐岩的范围,而川西的南部则高于此范围;稀土元素配分模式显示白云岩基本继承了石灰岩特点;白云岩Ce显示正异常,Eu无明显正异常,川西的南部地区具有较明显的La负异常。综合研究得出:颗粒滩相是白云石化作用发生的有利相带,浅埋藏阶段的海水白云石化作用是中—粗晶白云岩的主要成因,后期局部遭受热液改造作用,孔洞内充填的自形白云石也为浅埋藏阶段的海水白云石化作用所形成,而鞍状白云石为后期热液成因。  相似文献   

14.
白云岩成因一直是地质学研究的热点领域。塔里木盆地塔东低隆起古城低凸起中—下奥陶统鹰山组发育厚层白云岩。为研究这些白云岩的成因,在岩心、薄片观测基础上,按照晶体粒度大小将白云岩分为泥晶白云岩、粉晶白云岩、细晶白云岩、中晶白云岩、粗晶白云岩,并对各类白云岩及缝洞充填物进行了稀土元素地球化学特征的研究。结果表明,各类白云岩及缝洞充填物稀土元素NASC配分模式分为6种类型:δCe弱正异常δEu正异常型、δCe负异常δEu强正异常型、δCe强负异常型、微右倾型、微左倾型和平坦型。分析上述6种白云岩及缝洞充填物的成因为:前2种类型形成于两期热液或不同演化阶段的同一期热液环境;第3种类型形成于蒸发泵模式;第4和第5种形成于两种性质不同的埋藏白云化流体;第6种则由渗透回流作用形成。古城地区鹰山组白云岩的成因非常复杂,成因模式多样,包括蒸发泵模式、渗透回流模式、埋藏白云化模式、热液白云化模式4种。  相似文献   

15.
In the northeast of Zakho City, Northern Iraq, the host rocks of Pb–Zn deposits are composed predominantly of dolomites with subordinate dolomitic limestone intervals. This study is focused on the dolomites of the Bekhme Formation (Upper Campanian) carbonate-hosted Pb–Zn deposits. The amount of dolomites, however, increases toward the mineralized zone. Dolomites are dominated by replacement dolomite with minor dolomite cements. Petrography study allowed identification of six different dolomite textures. These are (1) fine crystalline, planar-s (subhedral) dolomite, RD1; (2) medium to coarse crystalline, planar-e (euhedral) to planar-s (subhedral) dolomites, RD2; (3) medium crystalline, planar-s (subhedral) to nonplanar-a (anhedral) dolomites, RD3; (4) coarse crystalline, planar-s (subhedral) to nonplanar-a (anhedral) dolomites, RD4; (5) planar (subhedral) void-filling dolomite cements, CD1; and (6) nonplanar (saddle) void-filling dolomite, CD2. The RD1, RD2, RD3, and RD4 dolomite textures are replacive in origin and are volumetrically the most important types, whereas CD1 and CD2 dolomites with sparry calcite are commonly cements that fill the open spaces. Although the dolomites of the Bekhme Formation are not macroscopically observed in the field, their different types are easily distinguished by petrographic examination and scanning electron microscopy. It was observed that the dolomites of the Bekhme Formation are formed in two different diagenetic stages: the early diagenetic from mixing zone fluids at the tidal–subtidal (reef) environments and the late diagenetic from basinal brines which partially mixed with hydrothermal fluids at the shallow-deep burial depths. The latter occurs often with sphalerite, galena, and pyrite within mineralized zone. These dolomite types are associated base-metal mineralization (Mississippi Valley type).  相似文献   

16.
Dolomite cement is a significant and widespread component of Phanerozoic sucrosic dolomites. Cements in dolomites that were never deeply buried are limpid, have planar faces (non‐saddle forms), often distinct zonation in cathodoluminescence and form syntaxial overgrowths on crystals facing pores. Five samples of sucrosic dolomites, interpreted as having had mostly lime‐mudstone or wackestone precursors in four carbonate aquifers, provide insights into the abundance of planar cements in sucrosic dolomites. Such cement comprises 11% to 45% (32% mean) of peritidal to sub‐tidal dolomites on an outcrop in the Edwards aquifer (Early Cretaceous) of central Texas; 19% to 33% (25% mean) of ramp dolomites in the Hawthorn Group (Oligo‐Miocene) and 50% to 70% in shelf dolomites of the Avon Park Formation (Eocene) in the Upper Floridan aquifer of sub‐surface peninsular Florida; 18% to 45% (32+% mean) of sub‐tidal shelf dolomites in quarry sections of the Burlington‐Keokuk Formation (Early Mississippian) in south‐eastern Iowa; and 18% to 76% (50% mean) in shallow cores and outcrops of outer‐shelf dolomites from the Gambier Limestone (Oligo‐Miocene) of South Australia. Backstripping the cement phases revealed by cathodoluminescence colour photomicrographs documents the effects of cements on textural coarsening, pore‐space reduction, induration and general ‘maturation’ of these dolomites. Most pre‐Holocene dolomites are multiphase crystalline rocks composed of: (i) seed crystals or ‘cores’; (ii) crystal cortices that concentrically enlarged the cores; and (iii) free‐space, syntaxial precipitates of limpid cement around the crystals. Remaining CaCO3 grains and micrite can be replaced by dolomite, but typically they are dissolved between stages (ii) and (iii), creating systems of intercrystal and mouldic pores typical of sucrosic dolomites. Networks of cement overgrowths, aided by water‐filled pore systems under hydrostatic to lithostatic pressure, are judged to slow or prevent compaction in sucrosic dolomites. It can be argued that cortex growth involves both replacement of CaCO3 particles and microcementation of their interparticle pores. This interpretation, and the abundance of cements in so many dolomites, would obviate the controversy over the volumetrics of ‘replacement dolomitization’. Limpid, planar and syntaxial dolomite cements of early diagenetic origin are interpreted to have precipitated from clear pore waters, at low temperatures (<30 to 35 °C) and shallow burial depths (<100 m), in water‐saturated networks of dolomite ‘silt’ and ‘sand’. Cements in many dolomites in island and continental–aquifer systems appear to result from event‐driven processes related to sea‐level highstands. Cementation events can follow ‘replacement dolomitization’ events by time intervals ranging from geologically ‘instantaneous’ to tens of million years.  相似文献   

17.
The Waulsortian Limestone (Lower Carboniferous) of the southern Irish Midlands is dolomitized pervasively over a much larger region than previous studies have documented. This study indicates a complex, multistage, multiple fluid history for regional dolomitization. Partially and completely dolomitized sections of Waulsortian Limestones are characterized by finely crystalline (0·01–0·3 mm) planar dolomite. Planar replacive dolomite is commonly followed by coarse (≥0·5 mm) nonplanar replacive dolomite, and pervasive void‐filling saddle dolomite cement is frequently associated with Zn–Pb mineralization. Planar dolomite has average δ18O and δ13C values (‰ PDB) of –4·8 and 3·9 respectively. These are lower oxygen and slightly higher carbon isotope values than averages for marine limestones in the Waulsortian (δ18O=–2·2, δ13C=3·7). Mean C and O isotope values of planar replacive dolomite are also distinct from those of nonplanar and saddle dolomite cement (–7·0 and 3·3; –7·4 and 2·4 respectively). Fluid inclusions indicate a complex history involving at least three chemically and thermally distinct fluids during dolomite cementation. The petrography and geochemistry of planar dolomites are consistent with an early diagenetic origin, possibly in equilibrium with modified Carboniferous sea water. Where the Waulsortian was exposed to hydrothermal fluids (70–280 °C), planar dolomite underwent a neomorphic recrystallization to a coarser crystalline, planar and nonplanar dolomite characterized by lower δ18O values. Void‐filling dolomite cement is isotopically similar to nonplanar, replacive dolomite and reflects a similar origin from hydrothermal fluids. This history of multiple stages of dolomitization is significantly more complex than earlier models proposed for the Irish Midlands and provides a framework upon which to test competing models of regional vs. localized fluid flow.  相似文献   

18.
通过岩心薄片、扫描电镜、碳氧锶稳定同位素、X衍射有序度及微量元素特征分析,系统研究了渤海湾盆地沙西北 构造带碳酸盐岩潜山白云岩的地球化学特征及成因机制。结果表明,沙西北构造带下古生界白云岩可划分为泥晶白云岩、 颗粒白云岩、泥质/灰质白云岩和鞍状白云岩四类,各类白云石特征差异明显。泥晶和颗粒白云岩δ18O大于-7‰,87Sr/86Sr值 与海水值接近,为0.7090~0.7120,Na2O含量较高,大于0.06%,有序度偏低,薄片中可见石膏,为准同生成因。泥质/灰质 白云岩为细晶结构,δ18O偏负,为-8‰~-10‰,87Sr/86Sr为0.7120~0.7140,Na2O含量降低,有序度变大,镜下见次生加大亮 边,为埋藏成因。鞍状白云岩为中粗晶结构,贫δ18O,87Sr/86Sr较高,薄片中见辉绿岩,为热液成因。本区白云岩以准同生 和埋藏成因为主,局部沿断裂可能存在热液成因。奥陶系沉积时期主要发生埋藏白云石化和溶蚀作用,是增加白云岩有效 孔隙的重要阶段,为优质储层形成起到了建设性作用。  相似文献   

19.
白云岩研究的关键在于对白云石化作用的理解,而岩石结构作为白云石化作用分析的基础,不仅对白云岩的成因具有指示意义还深刻地影响着白云岩储层的质量。通过岩芯、薄片、扫描电镜、阴极发光以及碳、氧、锶同位素等测试手段,结合国际上常用的分类术语,对塔里木盆地中央隆起区寒武-奥陶系白云岩按结构进行了分类,并探讨了不同结构类型与其成因之间的关系。研究表明,白云岩结构与其形成环境和形成过程密切相关,其中保留原始结构的白云岩(包括泥-粉晶白云岩和颗粒白云岩)属于同生或准同生阶段、与蒸发海水有关的拟晶白云石化作用的产物,大量过饱和白云石化流体的通过有利于原始结构的保存;晶粒白云岩中,具有平直晶面结构的细晶、自形白云岩和细晶、半自形白云岩与浅埋藏成岩阶段的低温白云石化作用有关,云化流体以轻微蒸发的海源流体为主,浅埋藏晚期的过度白云石化作用导致晶体由平面-自形向平面-半自形转化;中-粗晶、他形白云岩是中或深埋藏成岩阶段的高温/热液白云石化或重结晶作用的结果,较高的形成温度导致晶体发生曲面化。  相似文献   

20.
Discordant zebra dolomite bodies occur locally in the Middle Cambrian Cathedral and Eldon Formations of the Main Ranges of the Canadian Rocky Mountains Fold and Thrust Belt. They are characterized by alternating dark grey (a) and white (b) bands, forming an ‘abba’ diagenetic cyclicity. These bands developed parallel to both bedding and cleavage. Dark grey (a) bands consist of fine (< 300 μm) non-planar crystalline impure dolomite. The white (b) bands are composed of coarse (up to several millimetres) milky-white pure saddle dolomites (b1) which are often covered by pore-lining zoned dolomite (b2). The b phases often possess a saddle-shaped morphology. In contrast to the replacement origin of the a dolomite, the zoned b2 dolomite rims are interpreted as a cement formed in open cavities. The b1 dolomite is interpreted as the result of recrystallization with diagenetic leaching of non-carbonate components. All the zebra dolomites studied are (nearly) stoichiometric and are characterized by enriched Na and depleted Sr concentrations. Fe and Mn concentrations in these dolomites differ depending on the sample locality. Fluid inclusion data indicate that the dolomites formed from relatively hot (TH = 130–200 °C), saline (20–23 wt% CaCl2 eq.) fluids. A diagenetic high temperature origin is also supported by depleted δ18O values (−20 to −14‰ VPDB). A contribution of 87Sr-enriched fluids is reflected in the 87Sr/86Sr values (0·7091–0·7123). Zebra dolomite development is explained by focused fluid flow, which exploited areas of structural weaknesses (e.g. basin-platform, rim areas, faults, etc.). Expulsion of hot basinal brines in a tectonically active regime generated overpressures, which explains the development of secondary porosity during zebra dolomitization as well as the intra-zebra fracturing at decimetre to micrometre scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号