首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Steven W. Lee 《Icarus》1984,58(3):339-357
The characteristics of wind streaks associated with Martian craters and hills in the size range of ~100 m to ~80 km (corresponding to obstacle heights of a few to several hundred meters) have been analyzed from Viking Orbiter images. Both dark erosional and bright depositional streaks form over the entire obstacle size range, but there are preferred obstacle sizes for producing streaks. Bright streaks form more readily in association with relatively smaller obstacles than do dark streaks. Small obstacles produce both types of streaks more effectively than do large ones. Hills produce streaks as effectively as do craters of comparable height. Alternative explanations of bright streak formation are evaluated in terms of their ability to account for these observations. The most satisfactory models invoke blocking of atmospheric flow downwind of an obstacle and consequent deposition of dust within the sheltered zone.  相似文献   

2.
Alan R. Peterfreund 《Icarus》1981,45(2):447-467
Estimation of surface properties and physical setting of three common Martian wind streak types (bright, dark, and splotch related) provides constraints on models of the formation and variability of streaks. Bright streaks form independently of surface properties other than local topography. This is consistent with their formation being due to deposition of atmospheric dust in the lee of topographic features. Although they are widespread on Mars, dark streaks are noted as variable only in regions near 30°S latitude and elevations between 3 and 7 km, and are associated with dark surfaces that have relatively high thermal inertias. Splotch-related streaks occur at elevations between 0 and 6 km and in regions of relatively high thermal inertia. Splotch-related streaks occur near the boundaries of thermally defined regions, such as the south polar cap and other areas of either low or high thermal inertia. These thermal conditions are responsible for the production of surface winds which form and modify these streaks. The source of sidements which form splotch-related streaks varies from dunes to well-indurated stratified deposits. Regional studies of the various types in Syrtis Major, Syria Planum-Claritas Fossae, Oxia Palus, Mesogea, and Pettit craters and Noachis confirm that the correlations found at the global level occur at regional scales.  相似文献   

3.
Mariner 9 photographs of the southern hemisphere of Mars taken during the 1971 planet-wide dust storm display circular bright spots at a time when all near-surface features were totally obscured. Correlating the positions and diameters of these spots with topography shows that they correspond to craters. About half of all the large craters in thestudy area were brightened. The associated craters are large and flat-floored, have significant rim uplift, and contain dark splotches on their floors. The depth/diameter relationship of the bright spot craters is comparable to that of a planet-wide sample. Depth may not be important in selectively brightening certain craters. The visibility of bright spots in A-camera photographs is strongly dependent on the wavelength of the filter used during exposure. It is proposed that bright spots result from the multiple scattering of incident light in dust clouds entrained within craters during dust storms. The appearance of the dust clouds is a function of the availability of a dust supply and, perhaps, air turbulence generated by winds flowing over upraised rims and rough crater floors. Bright spots persist during the final stage of the planet-wide dust storm. If bright spots are dust clouds, this persistence demonstrates that crater interiors are the last regions of clearing.  相似文献   

4.
P. Thomas  J. Veverka  S. Lee  A. Bloom 《Icarus》1981,45(1):124-153
A classification of Martian wind streaks has been developed to assist in investigations of eolian transport and related meteorological phenomena on Mars. Streaks can be grouped by their albedo contrast with their surroundings and by the presence of either topographic obstacles or sediment deposits at their points of origin. The vast majority of wind streaks can be included in three categories. (1) Bright streaks with no source deposit: interpreted to be formed by preferential deposition of dust from suspension. (2) Dark streaks with no source deposit: interpreted to be formed by preferential erosion of bright dust and its removal in suspension. (3) Dark streaks associated with deposits of sediment: interpreted to be formed by deposition of dark material moved by saltation. The orientations of the different streak types are distinctive and reflect both global flow patterns and slope-controlled winds. The wind directions derived from streaks and the geographical distribution of the features show a strong north-south asymmetry—consistent with the fact that perihelion (and hence maximum wind activity) occurs near southern summer solstice.  相似文献   

5.
J. Veverka  K. Cook  J. Goguen 《Icarus》1978,33(3):466-482
A statistical study of all crater-related wind streaks visible on Mariner 9 A-camera frames between latitudes 0 and 30°N has been completed. Of the 2325 streaks identified 1914 (82%) are light tone streaks, 189 (8%) are dark tone, and the remaining 222 (10%) are of mixed tone. Nine parameters characterizing each streak and its associated crater were measured and intercorrelated. Because of the large number of light streaks in our sample fir findings for this type of streak are most significant statistically: light tone streaks occur preferentially in Pc terrain (heavily cratered plains); they are preferentially associated with fresh craters; the surface density of light streaks is not a strong function of elevation; a significant latitude effect does emerge—the density of light tone streaks reaches a maximum between 10 and 15°N, and drops off appreciably both toward the equator and toward higher latitudes; the mean angular width of light streaks is about 25°—long light streaks are significantly narrower than short ones; about 50% of streaks have streak length/crater diameter ratios of ?4; light streak directions conform closely to the wind regime expected at the season of global dust storms (southern summer). Generally speaking, the results for dark and mixed tone streaks in the northern equatorial zone are similar, with the following possible exceptions: dark streaks may show a slight preference to form at higher elecations; dark streaks may be slightly wider on average than light or mixed tone streaks; mixed tone streaks do not share the preference for sharp craters exhibited by light and dark streaks; in general, the directions of dark streaks do not conform to the general circulation pattern expected at the season of global dust storms as well as do those of the light streaks.  相似文献   

6.
Mariner 9 (M9) and Mariner 6 and 7 photography of common regions of Mars are compared, with appropriate attention to the photometric properties of the camera systems. The comparison provides a 2.5yr time baseline for study of variable albedo features. We find the development of bright streaks and patches, a phenomenon unobserved through the entire M9 mission; the evolution of dark crater splotches into dark streaks; and a planetwide increase in splotchiness. Yet, a large number of splotches and albedo boundaries remain fixed over the same period. Many of the observations are interpreted in terms of a global fallout and subsequent local redistribution of bright fine particulates raised by global dust storms.  相似文献   

7.
Three decades of slope streak activity on Mars   总被引:1,自引:0,他引:1  
Slope streaks are surficial mass movements that are abundant in the dust-covered regions of Mars. Targeting of slope streaks seen in Viking images with the Mars Orbiter Camera provides observations of slope streak dust activity over two to three decades. In all study areas, new and persisting dark slope streaks are observed. Slope streaks disappeared in one area, with persisting streaks nearby. New slope streaks are found to be systematically darker than persisting streaks, which indicates gradual fading. Far more slope streaks formed at the study sites than have faded from visibility. The rate of formation at the study sites was 0.03 new slope streaks per existing streak per Mars year. Bright slope streaks do not presently form in sudden events as dark slope streaks do. Instead, bright streaks might form from old dark slope streaks, perhaps transitioning through a partially faded stage.  相似文献   

8.
P. Thomas  J. Veverka  D. Gineris  L. Wong 《Icarus》1984,60(1):161-179
Global mapping and photometry of selected areas on Mars are used to investigate the nature of bright and dark wind streaks that extend from topographic obstacles. Occurrence of both bright and dark streaks is strongly latitude dependent and is only weakly correlated with surface properties such as albedo and thermal inertia. Data on the colors, albedos, and phase behavior of streaks are consistent with models of bright streaks as mosaics of plains material and brighter, redder dust. Less than 20% of the ground need be covered by the optically thick dust in the brightest parts of the streaks; the amount of dust in optically thick layers could be as little as 10?3 g/cm2. Dark streaks can be interpreted as erosional windows in a patchy dust cover. Our model of dust deposition in optically thick patches is sedimentologically different from scenarios involving the deposition of ubiquitous, optically thin layers. It has the advantage that large amounts of dust can be deposited without affecting regional albedos.  相似文献   

9.
P. Thomas 《Icarus》1981,48(1):76-90
A comparison of crater-related wind markers in the north and south polar (40–90° latitude) regions of Mars has been made on the basis of comprehensive mapping from Viking Orbiter and Mariner 9 Images. Wind streaks show that present wind activity is most effective in both north and south in the southern spring and summer. This asymmetry is consistent with the present asymmetry of climate. The more massive intracrater dune fields are also oriented with the presently strongest winds. This alignment may reflect a long-term asymmetry in the effectiveness of northern and southern spring flow because reorientation times far exceed the period of cycles of hemispherical climate asymmetry, ≈51, 000 years. Streaks originating from dark crater splotches indicate that windflow away from the south pole is effective over a larger latitude range than it is in the north. This difference may be partly responsible for the contrasting distribution of dune sand in the north and south polar regions.  相似文献   

10.
A. Mantz  R. Sullivan  J. Veverka 《Icarus》2004,167(1):197-203
Images of Eros from the NEAR Shoemaker spacecraft reveal bright and dark albedo features on steep crater walls unlike markings previously observed on asteroids. These features have been attributed to the downslope movement of space-weathered regolith, exposing less weathered material (Science 292 (2001) 484; Meteor. Planet. Sci. 36 (2001) 1617; Icarus 155 (2002) 145). Here we present observations of the interiors of large craters (>1 km in diameter) to test this hypothesis and constrain the origin of the features. We find that bright regions in these craters correspond to steep slopes, consistent with previous work. The geographic distribution of craters with albedo variations shows no pattern and does not resemble the distribution of ponds, another phenomenon on Eros attributed to regolith movement. Shadows and other indications of topography are not observed at feature boundaries, implying that the transported layer is ?1 m thick. The presence of multiple bright and dark units on long slopes with sharp boundaries between them suggests that mobilized regolith may be halted by frictional or other effects before reaching the foot of the slope. Features on crater walls should darken at the same rate as bright ejecta deposits from crater formation; the lack of observed, morphologically fresh craters with bright interiors or ejecta suggests that the albedo patterns are younger than the most recently formed craters greater than about 100 m in diameter. Smaller or micrometeorite impacts, which would not necessarily leave evident deposits of bright ejecta, remain possible causes of albedo patterns. Although their effectiveness is difficult to assess, electrostatic processes and thermal creep are also candidates.  相似文献   

11.
High-resolution images of Chryse Planitia and eastern Lunae Planum from the early revolutions of Viking Orbiter I permit detailed analyses of crater-associated streaks and interpretation of related eolian processes. A total of 614 light and dark streaks were studied and treated statistically in relation to: (1) morphology, morphometry, and orientation, (2) “parent” crater size and morphology, (3) terrain type in which they occured, (4) topographic elevation, and (5) meteorological data currently being acquired by Viking Lander I. Three factors are apparent: (1) light streaks predominate, (2) most streaks form in association with fresh bowl-shaped craters, and (3) most light streaks are of the “parallel” type, whereas dark streaks are approximately evenly divided between convergent and parallel forms; moreover, very few light or dark streaks are divergent or fan-shaped. Light streaks have an average azimuth of 218° (corresponding to winds from the northeast), which approximates the orientation of 197 ± 14° for eolian “drifts” observed by the Viking Lander imaging team (Binder et al., 1977). This lends support to the hypothesis that light streaks are deposits of windblown sediments. Dark streaks are oriented at an azimuth of 42° (approximately opposite that of light streaks) and are nearly in line with the dominant wind direction currently recorded by the Viking meteorology instruments (Hess et al., 1977). Although the size of the sample area is not uniform among the various terrain types, the highest frequency of streaks per unit area occurs in the knobby terrain. This is partly explained by the probable production of fine-grained material (weathered from the knobs) to form streaks and other eolian features, and the higher wind turbulence generated around the knobs. The lowest frequency of streaks occurs on the elevated plateaus. The light streaks in Chryse Planitia appear to be relatively stable and to result from deposition of windblown material during times of relatively high velocity northeasterly winds. Dark streaks are more variable and probably result from erosion by southwesterly winds. Both types will be monitored during the extended Viking mission and the results compared with lander data.  相似文献   

12.
Of the impact craters on Earth larger than 20 km in diameter, 10-15% (3 out of 28) are doublets, having been formed by the simultaneous impact of two well-separated projectiles. The most likely scenario for their formation is the impact of well-separated binary asteroids. If a population of binary asteroids is capable of striking the Earth, it should also be able to hit the other terrestrial planets as well. Venus is a promising planet to search for doublet craters because its surface is young, erosion is nearly nonexistent, and its crater population is significantly larger than the Earth's. After a detailed investigation of single craters separated by less than 150 km and “multiple” craters having diameters greater than 10 km, we found that the proportion of doublet craters on Venus is at most 2.2%, significantly smaller than Earth's, although several nearly incontrovertible doublets were recognized. We believe this apparent deficit relative to the Earth's doublet population is a consequence of atmospheric screening of small projectiles on Venus rather than a real difference in the population of impacting bodies. We also examined “splotches,” circular radar reflectance features in the Magellan data. Projectiles that are too small to form craters probably formed these features. After a careful study of these patterns, we believe that the proportion of doublet splotches on Venus (14%) is comparable to the proportion of doublet craters found on Earth (10-15%). Thus, given the uncertainties of interpretation and the statistics of small numbers, it appears that the doublet crater population on Venus is consistent with that of the Earth.  相似文献   

13.
Abstract— A model for an impact ejecta landform peculiar to Saturn's moon Titan is presented. Expansion of the ejecta plume from moderate‐sized craters is constrained by Titan's thick atmosphere. Much of the plume is collimated along the incoming bolide's trajectory, as was observed for plumes from impacts on Jupiter of P/Shoemaker‐Levy‐9, but is retained as a linear, diagonal ejecta cloud, unlike on Venus where the plume “blows out.” On Titan, the blowout is suppressed because the vertically‐extended atmosphere requires a long wake to reach the vacuum of space, and the modest impact velocities mean plume expansion along the wake is slow enough to allow the wake to close off. Beyond the immediate ejecta blanket around the crater, distal ejecta is released into the atmosphere from an oblique line source: this material is winnowed by the zonal wind field to form streaks, with coarse radar‐bright particles transported less far than fine radar‐dark material. Thus, the ejecta form two distinct streaks faintly reminiscent of dual comet tails, a sharply W‐E radar‐dark one, and a less swept and sometimes comma‐shaped radar‐bright one.  相似文献   

14.
J. Veverka  P. Thomas  Carl Sagan 《Icarus》1978,36(1):147-152
R. O. Kuzmin has proposed that all crater-associated wind streaks on Mars are depositional and consist of unresolved barchan-like dunes. He claims that any streak can appear either bright or dark relative to its surroundings depending on the azimuth of the Sun relative to the streak axis and on the elevation of the Sun above the horizon. Our studies of the entire Mariner 9 picture collection as well as of available Viking data lend no support to these ideas. We find that the conditions for visibility of bright and dark streaks are identical. In Mariner 9 images both types of streaks are visible for viewing angles ? ? 60°, illumination angles of 15° ? i ? 75°, and over the whole range of phase angles covered (about 15 to 85°). There are numerous examples of dark and light streaks visible at the same azimuth angle of the Sun, contrary to Kuzmin's claim. There is much evidence to indicate that bright and dark streaks differ both in morphology and in character. The common ragged dark streaks are probably erosion scars, while most bright streaks probably represent accumulations of bright dust-storm fallout. There is no evidence at present that these accumulations have a barchan-like texture.  相似文献   

15.
Cover     
Cover: This oblique view of the lunar crater Pierazzo (3.3°N, 100.2°W, D≈9km) was taken by NASA’s Lunar Reconnaissance Orbiter Camera’s Narrow Angle Camera in late 2017. The camera was pointed off-nadir to provide this oblique view which, coupled with the moon’s curvature, provides an observation angle of 74°. This young crater features many large deposits of impact melt, typically dark material that is seen strewn throughout the image not only outside the crater (and is found over 40 km from the impact site), but in numerous deposits inside the crater. An extensive analysis of the impact melt was recently published by Veronica Bray et al. (2018, Icarus 201, p. 26–36). Small, bright splotches litter the ejecta and are mostly new craters that post-date the larger Pierazzo impact, though some might be caused by ejected blocks from the crater hitting its own ejecta. The crater is named in honor of Elisabetta (“Betty“) Pierazzo (1963–2011), who studied impact craters, including the production of impact melt material. We selected this image for the cover of this special issue because we think that it presents a good overview of this issue: rather than emphasizing any one study or type of paper in this special issue, it, at a simple glance, shows the force of an impact, the intriguing complexity inherent to their structure, and that even relatively young features are prone to modifi cation by the ongoing process of impact cratering. Credit: NASA/GSFC/ASU  相似文献   

16.
An investigation of Martian intracrater materials has been made using their thermophysical properties as derived from Viking IRTM observations. Over one-fourth of all craters larger than 25 km in diameter between ?50°S and 50°N have localized deposits of coarse material on the floor which are associated with dark “splotches” seen visually. Assuming homogeneous, unconsolidated materials, the measured thermal inertias of these deposits (I = 0.003 × 10?3to 0.026 × 10?3cal cm?2sec?12°K?1) imply effective grain sizes ranging from 0.1 mm to 1 cm, with a modal value of 0.9 mm. These deposits are coarser and darker than the surrounding terrains and the majority of the Martian surface, but are not compositionally distinct from materials with similar albedos. They occur more frequently in the south, in regions of relatively coarse material (0.2 to 2 mm), and in relatively dark areas. These features most likely formed by entrapment of marginally mobile material which can be transported into, but not out of, crater depressions by the wind. Very few have recognizable dune forms: those that do have effective grain sizes less than 0.5 mm. The majority of the “splotch” deposits are coarser than the dune-forming materials found in the north polar region and inside extreme southern latitude craters and probably form low, broad zibar dunes or lag deposits. Intracrater deposits are noticeably lacking from the interior of the large, northern hemisphere low-inertia region of Arabia (?10°S to 30°N, 300° to 360°W), interpreted to be a sink for suspended dust, but do occur around the perimeter of this region. This distribution suggests that the intracrater features have been buried in the interior of Arabia and that the dust deposit is less extensive at the margins and may currently be expanding. The occurrence of regional dust deposits in the north may be related to the maximum wind activity currently occurring in the southern hemisphere and suggests that the location of regional sinks may migrate with time as the solar insolation maximum migrates.  相似文献   

17.
An unusual, prominent dark streak located in Mesogaea (near 8°N, 191°W) is described. Its appearance is unlike that of most dark streaks on Mars, many of which have ragged outlines, are variable on short time-scales, and are presumed to be erosional. The Mesogaea streak has a tapered, smooth outline, and no changes within it were observed. We suggest that this streak is depositional and that the low-albedo material originated within the associated crater itself. The source area is identified with a compact, low-albedo region on the crater floor. Two possible origins for the dark material are suggested: (1) deflation from a recently exposed, relatively unconsolidated subsurface deposit, and (2) production of ash by a volcanic vent.  相似文献   

18.
Interfacial liquid water has been hypothesized to form during the seasonal evolution of the dark dune spots observed in the high latitudes of Mars. In this study we assess the presence, nature and properties of ices - in particular water ice - that occur within these spots using HIRISE and CRISM observations, as well as the LMD Global Climate Model. Our studies focus on Richardson crater (72°S, 179°E) and cover southern spring and summer (LS=175-341°). Three units have been identified of these spots: dark core, gray ring and bright halo. Each unit show characteristic changes as the season progress. In winter, the whole area is covered by CO2 ice with H2O ice contamination. Dark spots form during late winter and early spring. During spring, the dark spots are located in a 10 cm thick depression compared to the surrounding bright ice-rich layer. They are spectrally characterized by weak CO2 ice signatures that probably result from spatial mixing of CO2 ice-rich and ice-free regions within pixels, and from mixing of surface signatures due to aerosols scattering. The bright halo shaped by winds shows stronger CO2 absorptions than the average ice-covered terrain, which is consistent with a formation process involving CO2 re-condensation. According to spectral, morphological and modeling considerations, the gray ring is composed of a thin layer of a few tens of μm of water ice. Two sources/processes could participate to the enrichment of water ice in the gray ring unit: (i) water ice condensation at the surface in early fall (prior to the condensation of a CO2-rich winter layer) or during wintertime (due to cold trapping of the CO2 layer) and (ii) ejection of dust grains surrounded by water ice by the geyser activity responsible for the dark spot. In any case, water ice remains longer in the gray ring unit after the complete sublimation of the CO2. Finally, we also looked for liquid water in the near-IR CRISM spectra using linear unmixing modeling but found no conclusive evidence for it.  相似文献   

19.
Slope streaks are a form of gravity-driven mass-movements that frequently occur on Mars today. The cause of slope streak formation remains unclear; both, dry and wet processes have been suggested. Here, we observationally constrain the time of the year during which slope streaks form. Imagery from four Mars-orbiting cameras is mined to identify locations that have been imaged repeatedly, and the overlapping images are surveyed for streak activity. A search algorithm automatically finds the locations on the surface that have been imaged most often based on a graph representation. Dark slope streaks are found to form sporadically throughout the Mars year. At one study site in the Olympus Mons Aureole, observations constrain slope streak formation to at least five distinct time intervals within a single Mars year. New slope streaks form spatially isolated or in small groups within a few kilometers of one another. The observations suggest that slope streak triggering is unrelated to season and not caused by any large regional events. Most slope streaks are caused by sporadic events of small spatial extent.  相似文献   

20.
Hα mottles     
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号