首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G.S. Golitsyn 《Icarus》1984,60(2):289-306
A brief survey is given of the observational data on wind speeds in the atmosphere of Venus, as well as results of the theory of similitude and of a scale analysis for estimation of the wind speeds and temperature contrasts. It is shown that, in the lower portion of the atmosphere, containing roughly half of the mass, the first method produces results which are in somewhat better agreement with the measurements. Measurements of the wind distribution in the atmosphere are discussed. It is shown that, in the slowly rotating atmosphere of Venus, we should expect the Solberg mechanism of inertial instability of the circulation to be effective with respect to axisymmetrical perturbations. The numerical experiments of G.P. Williams (1968, J. Atmos. Sci., 25, 34–1045; 1970, Geophys. Fluid Dyn., 1, 357–369) indicate that in this case the circulation in the meridional plane can be broken down into a series of forward and reverse cells. The existence of such cells can serve to preserve the angular momentum of the planet with its atmosphere—the total momentum of the atmospheric frictional forces against the surface should on the average equal zero. This supports the hypothesis of G. Schubert et al. (1980, J. Geophys. Res., 85, 8007–8025) concerning the multicellular structure of the meridional circulation. Data are analyzed with regard to the time variability of the circulation. If the angular momentum of Venus′ atmosphere can change by 30% (which is not excluded by the presently available data; in Earth's atmosphere seasonal variations of the momentum reach 50%), then the relative variations in the length of a Venusian day will attain 10?3, i.e., several hours. The surface boundary layer is considered. It is shown that, due to the small transparency of the atmosphere to thermal radiation, heat transfer between the surface and the atmosphere should basically take place by turbulent heat exchange. The basic parameters of the dynamic and thermal regimes of this layer are estimated. Questions of light refraction in the boundary layer are discussed. A strict theory of refraction, developed for these conditions, confirms the preliminary rough estimates of V.I. Moroz (1976, Cosmic Res., 14, No. 5, 691–692; Space Sci. Rev., 25, 3–127), viz, that the horizon is visible on the panorama at a distance of order 100m, due to a relatively sharp negative gradient near the surface.  相似文献   

2.
The role of SO2 in the chemistry of the clouds of Venus has been investigated by deducing its mixing ratio profile in the atmosphere through millimeter wavelength interferometric measurements of the planet's limb darkening. The first zero crossing of the Venus visibility function was measured to be β0 = 0.6221 ± 0.0007 at a wavelength of 3.4 mm using a reference radius for Venus of 6100 km. This measurement constrains the amount of limb darkening and shows that the high concentrations of SO2 found in the lower atmosphere do not persist above an altitude of 42 km. Thus, a sink for SO2 exists below the level of the lowest cloud deck.  相似文献   

3.
The spectral reflectance from 0.38 to 0.75 μm of a column of liquid sulfur has been measured at several temperatures between the melting point (~118°C) and 173°C. Below 160°C the spectral reflectance was observed to vary reversibly as a function of temperature, independent of the previous thermal history of the column. Once the temperature exceeded 160°C, the spectrum would not change given a subsequent decrease in temperature. The spectral reflectance of the liquid-sulfur column at all temperatures was very low (10–19%). Combining this information with Voyager spectrophotometry of Jupiter's satellite Io, it is concluded that liquid sulfur at any temperature on Io's surface would be classified as a “black area” according to the standards used by the Voyager imaging team in their spectrophotometric analysis (L. Soderblom, T. V. Johnson, D. Morrison, E. Danielson, B. L. Smith, J. Veverka, A. Cook, C. Sagan, P. Kupferman, D. Pieri, J. Mosher, C. Avis, J. Gradie, and T. Clancy (1980). Geophys. Res. Lett.7, 963–966).  相似文献   

4.
We have calculated the radar backscattering characteristics of a variety of compositional and structural models of Saturn's rings and compared them with observations of the absolute value, wavelength dependence, and degree of depolarization of the rings' radar cross section (reflectivity). In the treatment of particles of size comparable to the wavelength of observation, allowance is made for the nonspherical shape of the particles by use of a new semiempirical theory based on laboratory experiments and simple physical principles to describe the particles' single scattering behavior. The doubling method is used to calculate reflectivities for systems that are many particles thick using optical depths derived from observations at visible wavelengths. If the rings are many particles thick, irregular centimeter- to meter-sized particles composed primarily of water ice attain sufficiently high albedos and scattering efficiencies to explain the radar observations. In that case, the wavelength independence of radar reflectivity implies the existence of a broad particle size distribution that is well characterized over the range 1 cm ? r ? m by n(r)dr = n0r?3dr. A narrower size distribution with a ~ 6 cm is also a possibility. Particles of primarily silicate composition are ruled out by the radar observations. Purely metallic particles, either in the above size range and distributed within a many-particle-thick layer or very much larger in size and restricted to a monolayer, may not be ruled out on the basis of existing radar observations. A monolayer of very large ice “particle” that exhibit multiple internal scattering may not yet be ruled out. Observations of the variation of radar reflectivity with the opening angle of the rings will permit further discrimination between ring models that are many particles thick and ring models that are one “particle” thick.  相似文献   

5.
Images from three filters of the Voyager 1 wide-angle camera were used to measure the continuum reflectivity and spectral gradient near 6000 Å and the 6190-Å band methane/continuum ratio for a variety of cloud features in Jupiter's atmosphere. The dark “barge” features in the North Equatorial Belt have anomalously strong positive continuum spectral gradients suggesting unique composition, probably not elemental sulfur. Methane absorption was shown at unprecedented spatial scales for the Great Red Spot and its immediate environment, for a dark barge feature in the North Equatorial Belt, and for two hot spot and plume regions in the North Equatorial Belt. Some small-scale features, unresolvable at ground-based resolution, show significant enhancement in methane absorption. Any enhancement in methane absorption is conspicuously absent in both hot spot regions with 5-μm brightness temperature 255°K. Methane absorption and 5-μm emission are correlated in the vicinity of the Great Red Spot but are anticorrelated in one of the plume hot spot regions. Methane absorption and simultaneously maps of 5-μm brightness temperature were quantitatively compared to realistic cloud structure models which include multiple scattering at 5 μm as well as in the visible. A curve in parameter space defines the solution to any observed quantity, ranging from a shallow atmosphere and thin NH3 cloud to a deep atmosphere with a thick ammonia cloud. Without additional constraints, such as center-to-limb information, it is impossible to specify the NH3 cloud optical depth and pressure of a deeper cloud top independently. Variability in H2 quadrupole lines was also investigated and it was found that the constancy of the 4-0 S(1)-line equivalent width is consistent with the constancy of the methane 6190-Å band equivalent width at ground-based resolution, but the much greater variability of the 3-0 S(1) line is inconsistent with either the methane band or 4-0 S(1) line. In hot spot regions the 255°K brightness temperature requires a cloud optical depth of about 2 or less at 5 μm in the NH3 cloud layer. To be consistent with the observed 6190-Å methane absorption in hot spot regions, the NH3 cloud optical depth in the visible is about 7.5, implying that aerosols in hot spot regions have effective radii near 1 μm or less.  相似文献   

6.
Strong evidence that Io's sodium emission is due to resonant scattering is given by our observations which show a monotonic increase of emission intensity with residual solar intensity. In addition we detected no emission during three eclipse observations of Io. We propose a resonant scattering model with two spacial components comprising an optically thick atmosphere extending 103 km above Io's surface surrounded by an optically thin cloud which forms a partial torus around Jupiter. In this model a flux of 107 cm?2 sec?1 sodium atoms are sputtered from Io's surface by heavy energetic ions which are accelerated in a plasma sheath around Io. The atoms sputtered from the surface collide with atoms in Io's atmosphere so the equipartition of kinetic energy is established. The total sodium abundance is about 3 × 1013 cm?2. During Io's day, sodium and other atmospheric constituents are ionized, giving rise to the ionosphere observed by Pioneer 10. Atoms escape by means of Jeans escape from the critical level, which is at the top of the atmosphere and the base of the cloud. We have observed sodium emission 6arcsec (6 Io diameters) above and below Io's orbital plane and 23arcsec toward Jupiter in Io's orbital plane. No emission was detected at maximum elongation 180° from Io. We interpret these results to mean that atoms escaping from Io form a partial torus whose thickness is about 12 arcsec and whose length is at least one-fifth of Io's orbital circumference.  相似文献   

7.
The sizes, composition, and number of particles comprising the rings of Saturn may be meaningfully constrained by a combination of radar- and radio-astronomical observations. In a previous paper, we have discussed constraints obtained from radar observations. In this paper, we discuss the constraints imposed by complementary “passive” radio observations at similar wavelengths. First, we present theoretical models of the brightness of Saturn's rings at microwave wavelengths (0.34–21.0 cm), including both intrinsic ring emission and diffuse scattering by the rings of the planetary emission. The models are accurate simulations of the behavior of realistic ring particles and are parameterized only by particle composition and size distribution, and ring optical depth. Second, we have reanalyzed several previously existing sets of interferometric observations of the Saturn system at 0.83-, 3.71-, 6.0-, 11.1-, and 21.0-cm wavelengths. These observations all have spatial resolution sufficient to resolve the rings and planetary disk, and most have resolution sufficient to resolve the ring-occulted region of the disk as well. Using our ring models and a realistic model of the planetary brightness distribution, we are able to establish improved constraints on the properties of the rings. In particular, we find that: (a) the maximum optical depth in the rings is ~ 1.5 ± 0.3 referred to visible wavelengths; (b) a significant decrease in ring optical depth from λ3.7 to λ21.0 cm allows us to rule out the possibility that more than ~30% of the cross section of the rings is composed of particles larger than a meter or so; this assertion is essentially independent of uncertainties in particle adsorption coefficient; and (c) the ring particles cannot be primarily of silicate composition, independently of particle size, and the particles cannot be primarily smaller than ~0.1 cm, independently of composition.  相似文献   

8.
We present new, high-resolution, near-infrared images of the HH 1 jet and bow shock. H2 and [Fe  ii ] images are combined to trace excitation changes along the jet and across the many shock features in this flow. Echelle spectra of H2 profiles towards a few locations in HH 1 are also discussed. Gas excitation in oblique, planar C-type shocks best explains the observations, although J-type shocks must be responsible for the observed [Fe  ii ] emission features. Clearly, no single shock model can account for all of the observations. This will probably be true of most, if not all, Herbig–Haro flows.  相似文献   

9.
W. Macy  L. Trafton 《Icarus》1980,41(1):131-141
Models for the distribution of sodium in Io's vicinity and in a disk in Io's orbital plane, compared with observational data, support arguments (1) that Io is the source of the sodium, (2) that sodium is ejected from the inside hemisphere and most of the high velocity sodium which is observed is ejected from the leading inside quadrant, (3) that most of the sodium leads Io in Io's vicinity but follows Io at distances of more than 7Rj from Jupiter, (4) that a significant fraction of the sodium flux is ejected at large angles with respect to Io's orbital plane, (5) that the source velocity distribution has a pronounced high-velocity tail, and (6) that impact ionization by electrons is significant at large distances from Io.  相似文献   

10.
11.
We have measured the shape and absolute value of Venus' reflectivity spectrum in the 1.2-to 4.0-μm spectral region with a circular variable filter wheel spectrometer having a spectral resolution of 1.5%. The instrument package was mounted on the 91-cm telescope of NASA Ames Kuiper Airborne Observatory, and the measurements were obtained at an altitude of about 41,000 feet, when Venus had a phase angle of 86°. Comparing these spectra with synthetic spectra generated with a multiple-scattering computer code, we infer a number of properties of the Venus clouds. We obtain strong confirmatory evidence that the clouds are made of a water solution of sulfuric acid in their top unit optical depth and find that the clouds are made of this material down to an optical depth of at least 25. In addition, we determine that the acid concentration is 84 ± 2% H2SO4 by weight in the top unit optical depth, that the total optical depth of the clouds is 37.5 ± 12.5, and that the cross-sectional weighted mean particle radius lies between 0.5 and 1.4 μm in the top unit optical depth of the clouds. These results have been combined with a recent determination of the location of the clouds' bottom boundary [Marov et al., Cosmic Res.14, 637–642 (1976)] to infer additional properties about Venus' atmosphere. We find that the average volume mixing ratio of H2SO4 and H2O contained in the cloud material both equal approximately 2× 10?6. Employing vapor pressure arguments, we show that the acid concentration equals 84 ± 6% at the cloud bottom and that the water vapor mixing ratio beneath the clouds lies between 6 × 10?4 and 10?2.  相似文献   

12.
13.
14.
Observations of Neptune were made in September 2009 with the Gemini-North Telescope in Hawaii, using the NIFS instrument in the H-band covering the wavelength range 1.477–1.803 μm. Observations were acquired in adaptive optics mode and have a spatial resolution of approximately 0.15–0.25″.The observations were analysed with a multiple-scattering retrieval algorithm to determine the opacity of clouds at different levels in Neptune’s atmosphere. We find that the observed spectra at all locations are very well fit with a model that has two thin cloud layers, one at a pressure level of ∼2 bar all over the planet and an upper cloud whose pressure level varies from 0.02 to 0.08 bar in the bright mid-latitude region at 20–40°S to as deep as 0.2 bar near the equator. The opacity of the upper cloud is found to vary greatly with position, but the opacity of the lower cloud deck appears remarkably uniform, except for localised bright spots near 60°S and a possible slight clearing near the equator.A limb-darkening analysis of the observations suggests that the single-scattering albedo of the upper cloud particles varies from ∼0.4 in regions of low overall albedo to close to 1.0 in bright regions, while the lower cloud is consistent with particles that have a single-scattering albedo of ∼0.75 at this wavelength, similar to the value determined for the main cloud deck in Uranus’ atmosphere. The Henyey-Greenstein scattering particle asymmetry of particles in the upper cloud deck are found to be in the range g ∼ 0.6–0.7 (i.e. reasonably strongly forward scattering).Numerous bright clouds are seen near Neptune’s south pole at a range of pressure levels and at latitudes between 60 and 70°S. Discrete clouds were seen at the pressure level of the main cloud deck (∼2 bar) at 60°S on three of the six nights observed. Assuming they are the same feature we estimate the rotation rate at this latitude and pressure to be 13.2 ± 0.1 h. However, the observations are not entirely consistent with a single non-evolving cloud feature, which suggests that the cloud opacity or albedo may vary very rapidly at this level at a rate not seen in any other giant-planet atmosphere.  相似文献   

15.
Donald W. Davies 《Icarus》1977,30(2):286-294
Images of Jupiter have been obtained at three wavelengths intervals in the infrared: 0.7–2.5, 1.2–1.3, and 1.5–1.7 μm. The inages show evidence for two distinct zones of high-altitude clouds, one at 10° north latitude, the other at 22° south. The cloud zones also appear to be at different heights in the atmosphere and to have particles with different scattering properties.  相似文献   

16.
E. Dotto  M.A. Barucci  J. Romon  J. Licandro 《Icarus》2003,164(1):122-126
10199 Chariklo (1997 CU26) is the largest Centaur so far known. We carried out near-infrared observations of this object during two different runs separated by a year. Although no evidence for spectral variations has been found over short time scales, slight differences have been detected between the two observational runs. We interpret these findings as likely due to a heterogeneous composition of the surface of Chariklo. We suggest two different models comprising geographical mixtures of tholins, amorphous carbon, and water ice in slightly different percentages. Our observations confirm the presence of water ice on the surface of this Centaur, as already detected by Brown et al. (1998, Science 280, 1430-1432) and Brown and Koresko (1998, Astrophys. J. 505, L65-67).  相似文献   

17.
18.
19.
The origin of very low‐mass objects such as brown dwarfs and ‘isolated planets’ is unclear: can they form in‐situ from very low‐mass cloud cores in a scaled‐down version of star formation? Here I discuss methods of detecting and characterising such faint cores using submillimetre‐wavelength observations. Some data are presented for the Ophiuchus clouds that strongly suggest there is little division between stars and ultra low‐mass objects at the earliest evolutionary stages. Some challenging results have emerged (in the context of current theory), including finding cores of only a few Jupiter masses and a core mass function still rising at the mass detection limit: the implications are briefly discussed. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
M.D.A. Rosen  F.M. Pipkin 《Icarus》1978,35(2):252-262
This paper reports measurements of the reflection spectra of sodium and potassium doped ammonia frosts as a function of alkali metal concentration which cover the wavelength range 0.35–2.5 μm. The purpose of the measurements was to determine whether or not the reflection spectra for such a solid was compatible with the spectral albedo of Io. The data show that with a sufficiently large alkali metal concentration, the reflection spectra of the doped ammonia frost do not display the characteristic ammonia features at 2.0 and 2.25 μm. The high reflectance of the more concentrated samples and the character of the observed reflection spectrum make it difficult to rule out sodium doped ammonia frost as a surface constituent on Io on the basis of existing data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号