首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Whole-rock samples of 25 carbonaceous chondrites were analysed for contents of C, H and N and δ13C, δD and δ15N. Inhomogeneous distribution of these isotopes within individual meteorites is pronounced in several cases. Few systematic intermeteorite trends were observed; N data are suggestive of isotopic inhomogeneity in the early solar system. Several chondrites revealed unusual compositions which would repay further, more detailed study. The data are also useful for classification of carbonaceous chondrites; N abundance and isotopic compositions can differentiate existing taxonomic groups with close to 100% reliability; Al Rais and Renazzo clearly constitute a discrete “grouplet”; and there are hints that both CI and CM groups may each be divisible into two subgroups.  相似文献   

2.
We report new nitrogen isotopic data in metals of H-, L- and one LL -chondrites, with N abundances in the range of ∼0.3 to 3.3 ppm and half of these <1 ppm. Nitrogen isotopic signatures in metals with low indigenous N concentrations are modified by cosmic ray spallation components; corrections are required to determine the indigenous N signatures. The metals of type 4 and 5 show uniform indigenous nitrogen (δ15N = −6.8 ± 0.5 ‰) and confirm a reported possible genetic association of chondritic metal with metal in IIE and IVA iron meteorites. Distinct isotopic signatures are observed in two metal samples of the Portales Valley (H6) meteorite which both are inconsistent with signatures in H4 and H5 chondrites, but possibly reveal a record of impact-induced melting and metamorphism on the parent asteroid. Anomalous nitrogen signatures in metals of type 3 chondrites, on the other hand, may reflect residues of surviving presolar isotopic signatures.  相似文献   

3.
This paper presents chemical analyses of mercury in 123 specimens of 58 meteorites. A statistical comparison is made of the mercury content in meteorites (using all available data) as a function of their composition and texture.The average mercury abundance in stony meteorites is estimated as 6.6 ppm. Stony and iron meteorites differ significantly in mercury content. Among stones, chondrites and achondrites show significant differences in the mercury content. In ordinary cbondrites, mineralogy and texture do not seem to have a significant influence on the distribution of mercury, judging from the available number of analyses. Carbonaceous chondrites, in which we found up to 500 ppm mercury, stand out among all other varieties of chondrites. Iron meteorites fall at the other extreme, having the lowest mercury concentrations (generally 0-0x ppm). In specimens of several meteorite classes, troilite is a good mercury concentrator, having a consistently higher mercury content than the meteorite as a whole. Nonetheless, troilite generally accounts for less than one-half the total mercury content of the meteorite.  相似文献   

4.
Bulk meteorite samples of various chemical classes and petrologic types (mainly carbonaceous chondrites) were systematically investigated by the stepped combustion method with the simultaneous isotopic analysis of carbon, nitrogen, and noble gases. A correlation was revealed between planetary noble gases associating with the Q phase and isotopically light nitrogen (δ15N up to –150‰). The analysis of this correlation showed that the isotopically light nitrogen (ILN) is carried by Q. In most meteorites, isotopically heavy nitrogen (IHN) of organic compounds (macromolecular material) is dominant. The ILN of presolar grains (diamond and SiC) and Q can be detected after separation from dominant IHN. Such a separation of nitrogen from Q and macromolecular material occurs under natural conditions and during laboratory stepped combustion owing to Q shielding from direct contact with oxygen, which results in Q oxidation at temperatures higher than the temperatures of the release of most IHN. There are arguments that ILN released at high temperature cannot be related to nanodiamond and SiC. The separation effect allowed us to constrain the contents of noble gases in Q, assuming that this phase is carbon-dominated. The directly measured 36Ar/C and 132Xe/C ratios in ILN-rich temperature fractions are up to 0.1 and 1 × 10–4 cm3/g, respectively. These are only lower constraints on the contents. The analysis of the obtained data on the three-isotope diagram δ15N–36Ar/14N showed that Q noble gases were lost to a large extent from most meteorites during the metamorphism of their parent bodies. Hence, the initial contents of noble gases in Q could be more than an order of magnitude higher than those directly measured. Compared with other carbon phases, Q was predominantly transformed to diamond in ureilites affected by shock metamorphism. The analysis of their Ar–N systematics showed that, similar to carbonaceous chondrites, noble gases were lost from Q probably before its transformation to diamond.  相似文献   

5.
Concentrations and isotopic compositions were determined for H2, N2 and C extracted by stepwise pyrolysis from powdered meteorites, from residues of meteorites partially dissolved with aqueous HF, and from residues of meteorites reacted with HF-HCl solutions. The meteorites treated were the carbonaceous chondrites, Orgueil, Murray, Murchison, Renazzo and Cold Bokkeveld. Data determined for whole rock samples are in approximate agreement with previously published data. Acidification of the meteorites removed the inorganic sources of H2, so that H2 in the HF-HCl acid residues came primarily from insoluble organic matter, which makes up 70–80% fraction of the total carbon in carbonaceous meteorites. The δD in the organic matter differs markedly from previously determined values in organic matter in meteorites. The δD values of organic matter from acid residues of C1 and C2 carbonaceous chondrites range from +650 to + 1150%. The acid residues of the Renazzo meteorite, whose total H2 has a δD of +930‰, gave a δD value of +2500‰. Oxidation of the HF-HCl residue with H2O2 solution removes the high δD and the low δ15N components. The δ13C values range between ?10 and ?21 and δ15N values range between +40 and ?11. The δ15N of Renazzo is unusual; its values range between +150 and ?190.There is good correlation between δD and the concentration of H2 in the acid residues, but no correlation exists between δD, δ13C and δ15N in them. A simple model is proposed to explain the high δD values, and the relationships between δD values and the concentration of H2. This model depends on the irradiation of gaseous molecules facilitating reaction between ionic molecules, and indicates that an increase in the rate of polymerization and accumulation of organic matter on grains would produce an increase in the deuterium concentration in organic matter.  相似文献   

6.
Previous studies of chondrites heated in the laboratory for extended periods under conditions approximating those in shock-heated collisional debris indicate that Au, Co, Se, Ga, Rb, Cs, Te, Bi, In, Ag, Zn, Tl and Cd progress in mobility. We report data for these 13 trace elements in 14 L4–6 chondrites of established shock history and discuss these and 13 additional chondrites studied earlier. Trace element contents vary with petrologic type, SFe sub-group and shock history, the last dominating strongly. Absolute abundances and interelement relationships for the 6 or 7 most mobile elements vary with degree of shock-loading (i.e. residual temperatures) established from mineralogic/petrologic study. A tertiary process, shock-heating, previously known to have affected radiogenic 40Ar and/or 4He in meteorites but not other elements, apparently was at least as effective as other open-system processes (secondary [parent body] and primary [nebular and/or accretionary] episodes) in establishing mobile trace element contents of L chondrites and probably others. If conditions during early genetic episodes are to be deduced from compositional information, shocked meteorites should be avoided or effects of later processes should be compensated for.  相似文献   

7.
Solvent extractions were done on the carbonaceous chondrites Murray, Murchison, Orgueil and Renazzo, using CCl4 and CH3OH. Between 2 and 10% of the total carbon in these meteorites is extractable by ordinary techniques, most of it in CH3OH. After demineralization with HF, perhaps as much as 30% of the total carbon in Murray may be extractable with CH3OH. The extracts from Renazzo have isotopic ratios which suggest that they are mainly terrestrial organic matter, with lesser contributions from indigenous organics. The CH3OH-soluble organic matter from Murchison and both untreated and HF-treated Murray has δ13C values of about +5 to + 10%. and δ15N values of about +90 to +100%., both of which are significantly higher than the bulk meteorite values. The Orgueil CH3OH-extract also has a δ15N value well above the value in residual organic matter. Values for δD of +300 to +500%. are found for the CH3OH-soluble organic matter. The combined data for C, H and N isotopes makes it highly unlikely that the CH3OH-soluble components are derivable from, or simply related to, the insoluble organic polymer found in the same meteorites. A relationship is suggested between the event that formed hydrous minerals in CI1 and CM2 meteorites and the introduction of water-soluble (methanol-soluble) organic compounds. Organic matter soluble in CCl4 has essentially no nitrogen, and δ3C and δD values are lower than for CH3OH-soluble phases. Either there are large isotopic fractionations for carbon and hydrogen between different soluble organic phases, or the less polar components are partially of terrestrial origin.  相似文献   

8.
Based on the analysis of data in [1, 2] on the concentrations of noble gases and the cosmic ray exposure age (CREA) of chromite grains in fossil meteorites, it was demonstrated in [3] that the distributions of gas concentrations and cosmic ray exposure ages can be explained under the assumption of the fall of a single meteorite in the form of a meteorite shower in southern Sweden less than 0.2 Ma after the catastrophic destruction of the parental body (asteroid) of L chondrites in space at approximately 470 Ma. This assumption differs from the conclusion in [1, 2, 4] about the long-lasting (for 1–2 Ma) delivery of L chondrites to the Earth, with the intensity of the flux of this material one to two orders of magnitude greater than now. The analysis of newly obtained data on samples from the Brunflo fossil meteorite [5] corroborates the hypothesis of a meteorite shower produced by the fall of a single meteorite. The possible reason for the detected correlations between the cosmic ray exposure ages of meteorites and the masses of the samples with the 20Ne concentrations can be the occurrence of Ne of anomalous isotopic composition in the meteorites.  相似文献   

9.
We report new mineralogical, petrographic and noble gas analyses of the carbonaceous chondrite meteorites Y-82162 (C1/2ung), Y-980115 (CI1), Y-86029 (CI1), Y-86720 (C2ung), Y-86789 (C2ung), and B-7904 (C2ung). Combining our results with literature data we show that these meteorites experienced varying degrees of aqueous alteration followed by short-lived thermal metamorphism at temperatures of >500 °C. These meteorites have similar mineralogy, textures and chemical characteristics suggesting that they are genetically related, and we strongly support the conclusion of Ikeda (1992) that they form a distinct group, the CYs (“Yamato-type”). The CY chondrites have the heaviest oxygen isotopic compositions (δ17O ˜12‰, δ18O ˜22‰) of any meteorite group, high abundances of Fe-sulphides (˜10 ‒ 30 vol%) and phosphates, and contain large grains of periclase and unusual objects of secondary minerals not reported in other carbonaceous chondrites. These features cannot be attributed to parent body processes alone, and indicate that the CYs had a different starting mineralogy and/or alteration history to other chondrite groups, perhaps because they formed in a different region of the protoplanetary disk. The short cosmic-ray exposure ages (≤1.3 Ma) of the CY chondrites suggest that they are derived from a near-Earth source, with recent observations by the Hayabusa2 spacecraft highlighting a possible link to the rubble-pile asteroid Ryugu.  相似文献   

10.
Samples of the Murchison (C2), Murray (C2) and Orgueil (C1) carbonaceous meteorites were analyzed for nitrogen-heterocyclic compounds using gas chromatography, cation and anion exclusion liquid chromatography and mass spectrometry. The purines adenine, guanine, hypoxanthine and xanthine were identified in formic acid extracts of all samples, in concentrations ranging from 114–655 ppb. Purines have not previously been found in the Murray meteorite and adenine. hypoxanthine and xanthine have never simultaneously been detected in meteorite extracts. All four biologically significant purines, as well as the pyrimidine uracil have now been identified in these meteorites. A number of other, previously reported N-heterocyclic compounds such as certain hydroxypyrimidines and s-triazines could not be detected in any of the extracts. Laboratory data indicated that both these classes of compounds may be formed from structurally simple precursors (such as guanylurea in the case of s-triazines) during the extraction and analysis of meteorite extracts.We find that the suite of N-heterocyclic compounds identified in meteorites do not, at present, permit a clear distinction to be made between mechanisms of synthesis such as the Fischer-Tropsch type and other candidates. Secondary reactions and conversions in meteorite parent bodies, of HCN and other nitriles produced by Miller-Urey type reactions as well as by Fischer-Tropsch type reactions, must also be considered.  相似文献   

11.
The carbonaceous chondrites contain significant amounts of carbon- and nitrogen-bearing components, the most abundant of which is organic matter. Stepped combustion data of whole rock and HF/HCl residues of carbonaceous chondrites reveal that the organic material can be subdivided operationally into three components: (1) free organic matter (FOM), which is readily extractable from whole-rock meteorites and is enriched in 13C and 15N; (2) labile organic matter (LOM), which has a macromolecular structure but is liberated by hydrous pyrolysis; LOM is the parent structure for some FOM and is also enriched in 13C and 15N; and (3) refractory organic matter (ROM), which is also macromolecular but is virtually unaffected by hydrous pyrolysis and is relatively depleted in 13C and 15N. The macromolecular entities (LOM and ROM) are by far the most abundant organic components present, and as such, the relative abundances of the 13C- and 15N-enriched LOM and the 13C- and 15N-depleted ROM will have a major influence on the overall isotopic composition of the whole-rock meteorite. Laboratory experiments designed to simulate the effects of parent body aqueous alteration indicate that this form of processing removes LOM from the macromolecular material, allowing ROM to exert a stronger influence on the overall isotopic compositions. Hence, aqueous alteration of macromolecular materials on the meteorite parent body may have a significant control on the stable isotopic compositions of whole-rock carbonaceous chondrites. The enstatite chondrites are also carbon rich but have been subjected to high levels of thermal metamorphism on their parent body. Stepped combustion data of HF/HCl residues of enstatite chondrites indicate, that if they and carbonaceous chondrites inherited a common organic progenitor, metamorphism under reducing conditions appears to incorporate and preserve some of the 13C enrichments in LOM during graphitisation. However, when metamorphism is at its most extreme, the 15N enrichments in LOM are lost.  相似文献   

12.
For unequilibrated ordinary chondrites (= UOC), two measures of primitiveness are available: volatile content, in principle reflecting accretion conditions from the solar nebula, and metamorphism, reflecting reheating in the parent bodies. These two measures do not always correlate, and we have therefore developed a tentative classification scheme based on volatile content that complements the Searset al. (1980) scheme based on metamorphism. Like the latter, it subdivides type 3 chondrites on a scale of 3.0 to 3.9; the notation 3.4/0 indicates a meteorite that is subtype 3.4 according to metamorphism and 3.0 according to volatile content.The classification is based mainly on C and Xe—two elements that are little affected by shock-induced reheating—and to a lesser extent on Ar36,Bi,In, and Tl. Of 22 meteorites considered, the majority have concordant classifications (±0.2) on the two scales. However, 5 meteorites are richer in volatiles than their metamorphic grade indicates: Sharps 3.4/0, ALHA 77011 3.5/0, Ngawi 3.6/3, ALHA 77299 3.7/4, and Mezö-Madaras 3.7/3. It remains to be seen whether these differences indeed denote a more primitive nature.Some new clues to the formation of chondrites may eventually come from Xe and C. Their concentrations in UOC's vary by more than 5×, but the XeC ratio remains nearly constant at 3.4 × 10?3 of the solar-system ratio. Even the ratios for other chondrite classes differ only slightly from that for UOC's, e.g., C3O (1.5×) and E3,4 (0.4×). Either the 4 factors determining this ratio (T, t, P, and internal surface area of the carbon) varied in complementary fashion, or—more probably—they varied only slightly in the entire source region of chondrites.  相似文献   

13.
The carbon isotopic composition of the total carbon in the enstatite chondrites Indarch, Abee, St. Marks, Pillistfer, Hvittis and Daniel's Kuil and the enstatite achondrite Cumberland Falls has been measured. The empirical relationhip between carbon isotopic composition and total carbon content is distinct from that of carbonaceous and ordinary chondrites. Within the enstatite chondrite group the average 13C content increases with petrographic type: E4 < E5 < E6. Daniel's Kuil shows the largest 13C enrichment in the bulk carbon of any meteorite. The carbon isotopic composition is most clearly correlated with the abundance of the elements Zn, Cd and In. Insofar as these elements may hold the key to the understanding of enstatite chondrites, more detailed combined carbon isotope and trace element studies of these meteorites will play an important role in the deciphering of their history.  相似文献   

14.
Osmium isotopic compositions, abundances of highly siderophile elements (HSE: platinum group elements, Re and Au), the chalcogen elements S, Se and Te and major and minor elements were analysed in physically separated size fractions and components of the ordinary chondrites WSG 95300 (H3.3, meteorite find) and Parnallee (LL3.6, meteorite fall). Fine grained magnetic fractions are 268-65 times enriched in HSE compared to the non-magnetic fractions. A significant deviation of some fractions of WSG 95300 from the 4.568 Ga 187Re-187Os isochron was caused by redistribution of Re due to weathering of metal. HSE abundance patterns show that at least four different types of HSE carriers are present in WSG 95300 and Parnallee. The HSE carriers display (i) CI chondritic HSE ratios, (ii) variable Re/Os ratios, (iii) lower than CI chondritic Pd/Ir and Au/Ir and (iv) higher Pt/Ir and Pt/Ru than in CI chondrites. These differences between components clearly indicate the loss of refractory HSE carrier phases before accretion of the components. Tellurium abundances correlate with Pd and are decoupled from S, suggesting that most Te partitioned into metal during the last high-temperature event. Tellurium is depleted in all fractions compared to CI chondrite normalized Se abundances. The depletion of Te is likely associated with the high temperature history of the metal precursors of H and LL chondrites and occurred independent of the metal loss event that depleted LL chondrites in siderophile elements. Most non-magnetic and slightly magnetic fractions have S/Se close to CI chondrites. In contrast, the decoupling of Te and Se from S in magnetic fractions suggests the influence of volatility and metal-silicate partitioning on the abundances of the chalcogen elements. The influence of terrestrial weathering on chalcogen element systematics of these meteorites appears to be negligible.  相似文献   

15.
Recent results on cosmic ray interactions in lunar samples and meteorites resulting in production of stable and radionuclides, particle tracks and thermoluminescence are reviewed. A critical examination of26A1 depth profiles in lunar rocks and soil cores, together with particle track data, enables us to determine the long term average fluxes of energetic solar protons (>10 MeV) which can be represented by (J s,R o)=(125, 125). The lunar rock data indicate that this flux has remained constant for 5×105 to 2×106 years. Production rates of stable and radionuclides produced by galactic cosmic rays is given as a function of size and depth of the meteoroid. Radionuclide (53Mn,28Al) depth profiles in meteorite cores, whose preatmospheric depths are deduced from track density profiles are used to develop a general procedure for calculating isotope production rates as a function of meteoroid size. Based on the track density and22Ne/21Ne production rates, a criterion is developed to identify meteorites with multiple exposure history.22Ne/21Ne ratio <1·06 is usually indicative of deep shielded exposure. An examination of the available data suggests that the frequency of meteorites with multiple exposure history is high, at least 15% for LL, 27% for L and 31% for H chondrites. The epi-thermal and the thermal neutron density profiles in different meteorites are deduced from60Co and track density data in Dhajala, Kirin and Allende chondrites. The data show that the production profile depends sensitively on the size and the chemical composition of the meteoroid. Cosmic ray-induced thermoluminescence in meteorites of known preatmospheric sizes has been measured which indicates that its production profile is nearly flat and insensitive to the size of the meteoroid. Some new possibilities in studying cosmic ray implanted radionuclides in meteorites and lunar samples using resonance ionisation spectroscopy are discussed.  相似文献   

16.
Measured were the abundance and distribution of nitrogen in glasses of glass inclusions in olivines of CV3, CO3, CR, C4, CH3, and LL chondritic meteorites by means of the 14N(d, p)15N nuclear reaction. Similar to what was observed with carbon, nitrogen is present in low concentrations (<20 ppm) in the structure of olivines but can by stored in variable amounts in glasses of glass inclusions. These primitive glasses, characterized by a Si-Al-Ca-rich composition, have highly variable nitrogen contents (30 to 1500 ppm) and highly inhomogeneous nitrogen distribution. Nitrogen contents are independent of the chemical composition of the glasses. The heterogeneous distribution is a common feature of all studied inclusions, as is evidenced by the variable contents of nitrogen in glass inclusions occurring in the same olivine grain. Nitrogen heterogeneity is suggestive of trapping of solid nitrogen carrier phases during formation of the constituents of chondrules. However, part of the originally trapped nitrogen appears to have been lost, possibly, by ulterior oxidation and subsequent transformation into volatile species.  相似文献   

17.
王松山 《地质科学》1987,(4):364-373
40Ar/39Ar年龄谱是研究陨石冲击事件的重要资料。根据对55块陨石40Ar/39Ar冲击年龄和陨石暴露年龄的分析,发现陨石的冲击年龄与陨石类型之间存在对应关系。据此,将陨石冲击事件划分为九期。其中3900-4000Ma、470-540Ma和小于65Ma是陨石母体的三个重要演化阶段。阶段Ⅰ、Ⅱ和Ⅲ(冲击年龄大于30亿年)主要涉及高钙型无球粒陨石。所有球粒陨石的冲击年龄均小于30亿年。陨石暴露年龄因类型而异,铁陨石最大,石铁陨石次之,石陨石最小。  相似文献   

18.
In common with the remarkable variation in the bulk rock Zr content of distinct meteorite groups, ranging from <1 ppm to >800 ppm, the occurrence and abundance of accessory zircon is also highly diverse and limited to certain meteorite classes. A detailed literature study on the occurrence of meteoritic zircon, along with other Zr-bearing phases reveals that lunar rocks, eucrites and mesosiderites are the prime sources of meteoritic zircon. Rare zircon grains occur in chondrites, silicate-bearing iron meteorites and Martian meteorites, with grain sizes of >5 μm allowing chemical and chronological studies at high spatial resolution using secondary ion mass spectrometry (SIMS) technique. Grain sizes, crystal habits, structural and chemical characteristics of zircon grains derived from various meteorite types, including their REE abundances, minor element concentrations, and Zr/Hf values is diverse. Superchondritic Zr/Hf values (47 ± 8; s.d. with n = 97), i.e., typical for zircon in eucrites and mesosiderites, indicate crystallization from a fractionated, incompatible-element-rich (residual) melt. Differences in REE abundances, occurrence or absence of Ce- and Eu-anomalies, and overall REE patterns that are often fractionated with a depletion in LREE, might be primarily controlled by variable formation conditions of individual grains and/or differences in the residual melt compositions on a small, local scale within single samples. Subsequent fractionation/modification of the chemical fingerprint of meteoritic zircon can involve high-temperature annealing processes during thermal metamorphic reactions and/or impact events along with mixing of lithic fragments since many samples are breccias.  相似文献   

19.
Contributors to chromium isotope variation of meteorites   总被引:3,自引:0,他引:3  
We report the results of a comprehensive, high precision survey of the Cr isotopic compositions of primitive chondrites, along with some differentiated meteorites. To ensure complete dissolution of our samples, they were first fused with lithium borate-tetraborate at 1050-1000 °C. Relative to the NIST Cr standard SRM 3112a, carbonaceous chondrites exhibit excesses in 54Cr/52Cr from 0.4 to 1.6ε (1ε = 1 part in 10,000), and ordinary chondrites display a common 54Cr/52Cr deficit of ∼0.4ε. Analyses of acid-digestion residues of chondrites show that carbonaceous and ordinary chondrites share a common 54Cr-enriched carrier, which is characterized by a large excess in 54Cr/52Cr (up to 200ε) associated with a very small deficit in 53Cr/52Cr (<2ε). We did not find 54Cr anomalies in either bulk enstatite chondrites or in leachates of their acid-digestion residues. This either requires that the enstatite chondrite parent bodies did not incorporate the 54Cr anomaly carrier phase during their accretion, or the phase was destroyed by parent body metamorphism. Chromium in the terrestrial rocks and lunar samples analyzed here show no deviation from the NIST SRM 3112a Cr standard. The eucrite and Martian meteorites studied exhibit small deficits in 54Cr/52Cr. The 54Cr/52Cr variations among different meteorite classes suggest that there was a spatial and/or temporal heterogeneity in the distribution of a 54Cr-rich component in the inner Solar System.We confirm the correlated excesses in 54Cr/52Cr and 53Cr/52Cr for bulk carbonaceous chondrites, but the new data yield a steeper slope (∼6.6) than that reported in Shukolyukov and Lugmair (2006). The correlated excesses may affect the use of the Mn-Cr chronometer in carbonaceous chondrites. We could not confirm the bulk carbonaceous chondrite Mn-Cr isochron reported by Shukolyukov and Lugmair (2006) and Moynier et al. (2007), mostly because we find much smaller total variations in ε53Cr (∼0.2). All bulk chondrites have small ε53Cr excesses (up to 0.3) relative to the Earth, most likely reflecting the sub-chondritic Mn/Cr ratio of the Earth. The ε53Cr variations in chondrites do seem to grossly correlate with Mn/Cr and yield an initial Solar System 53Mn/55Mn value of 5.4(±2.4) × 10−6, corresponding to an absolute age of 4566.4 (±2.2) Ma.Nuclear interactions with cosmic rays result in coupled excesses in ε54Cr and ε53Cr with a ∼4:1 ratio in phases with high Fe/Cr. These are most dramatically demonstrated in the iron meteorite Carbo, showing excesses in ε54Cr of up to 140ε. These new results show that the Mn-Cr chronometer should be used with caution in samples/minerals with high Fe/Cr and long cosmic ray exposure ages.  相似文献   

20.
Whereas most radiometric chronometers give formation ages of individual meteorites >4.5 Ga ago, the K–Ar chronometer rarely gives times of meteorite formation. Instead, K–Ar ages obtained by the 39Ar–40Ar technique span the entire age of the solar system and typically measure the diverse thermal histories of meteorites or their parent objects, as produced by internal parent body metamorphism or impact heating. This paper briefly explains the Ar–Ar dating technique. It then reviews Ar–Ar ages of several different types of meteorites, representing at least 16 different parent bodies, and discusses the likely thermal histories these ages represent. Ar–Ar ages of ordinary (H, L, and LL) chondrites, R chondrites, and enstatite meteorites yield cooling times following internal parent body metamorphism extending over ∼200 Ma after parent body formation, consistent with parent bodies of ∼100 km diameter. For a suite of H-chondrites, Ar–Ar and U–Pb ages anti-correlate with the degree of metamorphism, consistent with increasing metamorphic temperatures and longer cooling times at greater depths within the parent body. In contrast, acapulcoites–lodranites, although metamorphosed to higher temperatures than chondrites, give Ar–Ar ages which cluster tightly at ∼4.51 Ga. Ar–Ar ages of silicate from IAB iron meteorites give a continual distribution across ∼4.53–4.32 Ga, whereas silicate from IIE iron meteorites give Ar–Ar ages of either ∼4.5 Ga or ∼3.7 Ga. Both of these parent bodies suffered early, intense collisional heating and mixing. Comparison of Ar–Ar and I–Xe ages for silicate from three other iron meteorites also suggests very early collisional heating and mixing. Most mesosiderites show Ar–Ar ages of ∼3.9 Ga, and their significantly sloped age spectra and Ar diffusion properties, as well as Ni diffusion profiles in metal, indicate very deep burial after collisional mixing and cooling at a very slow rate of ∼0.2 °C/Ma. Ar–Ar ages of a large number of brecciated eucrites range over ∼3.4–4.1 Ga, similar to ages of many lunar highland rocks. These ages on both bodies were reset by large impact heating events, possibly initiated by movements of the giant planets. Many impact-heated chondrites show impact-reset Ar–Ar ages of either >3.5 Ga or <1.0 Ga, and generally only chondrites show these younger ages. The younger ages may represent orbital evolution times in the asteroid belt prior to ejection into Earth-crossing orbits. Among martian meteorites, Ar–Ar ages of nakhlites are similar to ages obtained from other radiometric chronometers, but apparent Ar–Ar ages of younger shergottites are almost always older than igneous crystallization ages, because of the presence of excess (parentless) 40Ar. This excess 40Ar derives from shock-implanted martian atmosphere or from radiogenic 40Ar inherited from the melt. Differences between meteorite ages obtained from other chronometers (e.g., I–Xe and U–Pb) and the oldest measured Ar–Ar ages are consistent with previous suggestions that the 40K decay parameters in common use are incorrect and that the K–Ar age of a 4500 Ma meteorite should be possibly increased, but by no more than ∼20 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号