首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The secular evolution of the purely general relativistic low angular momentum accretion flow around a spinning black hole is shown to exhibit hysteresis effects. This confirms that a stationary shock is an integral part of such an accretion disc in the Kerr metric. The equations describing the space gradient of the dynamical flow velocity of the accreting matter have been shown to be equivalent to a first order autonomous dynamical systems. Fixed point analysis ensures that such flow must be multi-transonic for certain astrophysically relevant initial boundary conditions. Contrary to the existing consensus in the literature, the critical points and the sonic points are proved not to be isomorphic in general, they can form in a completely different length scales. Physically acceptable global transonic solutions must produce odd number of critical points. Homoclinic orbits for the flow possessing multiple critical points select the critical point with the higher entropy accretion rate, confirming that the entropy accretion rate is the degeneracy removing agent in the system. However, heteroclinic orbits are also observed for some special situation, where both the saddle type critical points of the flow configuration possesses identical entropy accretion rate. Topologies with heteroclinic orbits are thus the only allowed non-removable degenerate solutions for accretion flow with multiple critical points, and are shown to be structurally unstable. Depending on suitable initial boundary conditions, a homoclinic trajectory can be combined with a standard non-homoclinic orbit through an energy preserving Rankine-Hugoniot type of stationary shock, and multi-critical accretion flow then becomes truly multi-transonic. An effective Lyapunov index has been proposed to analytically confirm why certain class of transonic flow cannot accommodate shock solutions even if it produces multiple critical points.  相似文献   

2.
Detailed studies of the asteroidal belt are of importance for clarifying whether the asteroids are fragments of an exploded planet or represent an intermediate state in the accretion of planets.A study of the Hirayama family Flora shows that it contains three groups of bodies travelling in almost identical orbits, thus constituting three jet streams.It is shown that the formation of jet streams is difficult to reconcile with the exploded planet view.In order to decide whether the formation of jet streams is a general phenomenon in the asteroidal belt, it is necessary to determine the orbits of a large number of small asteroids.  相似文献   

3.
Numerical integration of the gravitational N-body problem has been carried out for a variety of photoplanetary clusters in the range N = 100 to 200. Particles are assumed to coagulate at collisions irrespective of relative velocity and mass ratio of the particles. It is shown graphically how the dispersed N-bodies accumulate to a single planet through mutual collisions. The velocity distribution and size distribution of bodies are also investigated as functions of time in the accretion process. The root mean square velocity of bodies in a cluster increases with time in an early stage of accretion but decreases with time in a late stage of accretion. Accretion rates of planets are found to be dependent strongly on the initial number density distribution, the initial size distribution, and the initial velocity distribution of bodies. Formation of satellites of about 10% in the planet mass is common to most cases in the present study. A substantial mass of bodies also escapes from the cluster. Many satellites and escapers formed during the accretion process of planets may be source materials of heavy bombardment in the early history of planets.  相似文献   

4.
J.A. Fernández  W.-H. Ip 《Icarus》1981,47(3):470-479
The dynamical evolution of bodies under the gravitational influence of the accreting proto-Uranus and proto-Neptune is investigated. The main aim of this study is to analyze the interrelations between the accretion of Uranus and Neptune with other processes of cosmological importance as, for example, the formation of a cometary reservoir from bodies placed into near-parabolic orbits by planetary perturbations and the scattering of bodies to the region of the terrestrial planets. Starting with a mass ratio (initial mass/present mass) of 0.1, Uranus and Neptune acquire masses close to their present ones in a time scale of 108 years. Neptune is found to be the most important contributor of comets to the cometary reservoir. The time scale of bodies scattered by Neptune to reach near-parabolic orbits (semimajor axes a > 104 AU)is about 109 years. The contribution of Uranus was partially inhibited because a large part of the residual bodies of its accretion zone fell under the strong gravitational influence of Jupiter and Saturn. A significant fraction of the bodies dispersed by Uranus and Neptune reached the region of the terrestrial planets in a time scale of some 108 years.  相似文献   

5.
We have found that two members of the TW Hydrae association, TW Hydrae and Hen 3-600A, are still actively accreting, based on the ballistic infall signature of their broad Halpha emission profiles. We present the first quantitative analysis of accretion in these objects and conclude that the same accretion mechanisms which operate in the well-studied 1 Myr old T Tauri stars can and do occur in older (10 Myr) stars. We derive the first estimates of the disk mass accretion rate in TW Hya and Hen 3-600A, which are 1-2 orders of magnitude lower than the average rates in 1 Myr old objects. The decrease in accretion rates over 10 Myr, as well as the low fraction of TW Hya association objects still accreting, points to significant disk evolution, possibly linked to planet formation. Given the multiplicity of the Hen 3-600 system and the large UV excess of TW Hya, our results show that accretion disks can be surprisingly long lived in spite of the presence of companions and significant UV ionizing flux.  相似文献   

6.
On the migration of a system of protoplanets   总被引:1,自引:0,他引:1  
The evolution of a system consisting of a protoplanetary disc with two embedded Jupiter-sized planets is studied numerically. The disc is assumed to be flat and non-self-gravitating; this is modelled by the planar (two-dimensional) Navier–Stokes equations. The mutual gravitational interaction of the planets and the star, and the gravitational torques of the disc acting on the planets and the central star are included. The planets have an initial mass of one Jupiter mass M Jup each, and the radial distances from the star are one and two semimajor axes of Jupiter, respectively.
During the evolution a joint wide annular gap is created by the planets. Both planets increase their mass owing to accretion of gas from the disc: after about 2500 orbital periods of the inner planet it has reached a mass of 2.3  M Jup, while the outer planet has reached a mass of 3.2  M Jup. The net gravitational torques exerted by the disc on the planets result in an inward migration of the outer planet on time-scales comparable to the viscous evolution time of the disc. The semimajor axis of the inner planet remains constant as there is very little gas left in its vicinity to induce any migration. When the distance of close approach eventually becomes smaller than the mutual Hill radius, the eccentricities increase strongly and the system may become unstable.
If disc depletion occurs rapidly enough before the planets come too close to each other, a stable system similar to our own Solar system may remain. Otherwise the orbits may become unstable and produce systems like υ And.  相似文献   

7.
The article presents a simple derivation of a set of approximate formulas for the rate of change of orbital elements of a planet, perturbed by a time-averaged gravitational force due to the remaining planets of the solar system. The corresponding set of differential equations for long-time development of planetary orbits is then numerically integrated and the results are shown to be consistent with Milankovitch theory of climatic cycles. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
We investigate the physics of gas accretion in young stellar clusters. Accretion in clusters is a dynamic phenomenon as both the stars and the gas respond to the same gravitational potential. Accretion rates are highly non-uniform with stars nearer the centre of the cluster, where gas densities are higher, accreting more than others. This competitive accretion naturally results in both initial mass segregation and a spectrum of stellar masses. Accretion in gas-dominated clusters is well modelled using a tidal-lobe radius instead of the commonly used Bondi–Hoyle accretion radius. This works as both the stellar and gas velocities are under the influence of the same gravitational potential and are thus comparable. The low relative velocity which results means that R tidal< R BH in these systems. In contrast, when the stars dominate the potential and are virialized, R BH< R tidal and Bondi–Hoyle accretion is a better fit to the accretion rates.  相似文献   

9.
Shock wave and thermodynamic data for rock-forming and volatile-bearing minerals are used to determine minimum impact velocities (vcr) and minimum impact pressures (pcr) required to form a primary H2O atmosphere during planetary accretion from chondritelike planetesimals. The escape of initially released water from an accreting planet is controlled by the dehydration efficiency. Since different planetary surface porosities will result from formation of a regolith, vcr and pcr can vary from 1.5 to 5.8 km/sec and from 90 to 600 kbar, respectively, for target porosities between 0 and ~45%. On the basis of experimental data, hydration rates for forsterite and enstatite are derived. For a global regolith layer on the Earth's surface, the maximum hydration rate equals 6 × 1010 g H2O sec?1 during accretion of the Earth. Attenuation of impact-induced shock pressure is modeled to the extent that the amount of released water as a function of projectile radius, impact velocity, weight fraction of water in the target, target porosity, and dehydration efficiency can be estimated. The two primary processes considered are the impact release of water bound in hydrous minerals (e.g., serpentine) and the subsequent reincorporation of free water by hydration of forsterite and enstatite. These processes are described in terms of model calculations for the accretion of the Earth. Parameters which lead to a primary atmosphere/hydrosphere are: an accretion time of ? 1.6 × 108years, the use of an accretion model defined by Weidenschilling (1974, 1976), a mean planetesimal radius of 0.5 km, a hydration rate of 6 × 1010 g H2O sec?1 inferred from a mean porosity of ~ 10% for the upper 1 km of the accreting Earth, and values for the dehydration efficiency, DE, of 0.55 and 0.07 for the maximum and minimum pressure decay model, respectively. Conditions which prohibit the formation of a primary atmosphere include an accretion time much longer than 1.6 × 108 years, a hydration rate for forsterite and enstatite well in excess of 6 × 1010 g H2O sec?1, and a dehydration efficiency DE < 0.07. We conclude that the concept of dehydration efficiency is of dominant importance in determining the degree to which an accreting planet acquires an atmosphere during its formation.  相似文献   

10.
The classical Kepler Problem consists in the determination of the relative orbital motion of a secondary body (planet) with respect to the primary body (Sun), for a given time. However, any natural system tends to have minimum energy and is subjected to differential gravitational or tidal forces (called into play mainly due to the finite size and deformability of the secondary body). We formulate the Kepler Problem taking into account the finite size of the secondary body and consider an approximation which tends towards minimum energy orbits, by increasing the dimensionality of the problem. This formulation leads to a conceivable natural explanation of the fact that the planetary orbits are characterized by small eccentricities.  相似文献   

11.
Previously unexplored accretion regimes associated with the rotation of accreting matter, namely the perturbations of a quasi-spherical subsonic settling flow and Bondi-Hoyle accretion in the presence of axial rotation, are considered within the framework of ideal hydrodynamics. For subsonic settling accretion, the perturbations are shown to grow rapidly as the gravitating center is approached, so that the flow in the inner regions can no longer be considered quasi-spherical. For Bondi-Hoyle accretion, a vacuum cylindrical cavity is shown to be formed at large distances from the gravitating center near the flow axis, with the flow velocity outside this cavity being virtually independent of the distance to the rotation axis.  相似文献   

12.
We consider a planetary system consisting of two primaries, namely a star and a giant planet, and a massless secondary, say a terrestrial planet or an asteroid, which moves under their gravitational attraction. We study the dynamics of this system in the framework of the circular and elliptic restricted three-body problem, when the motion of the giant planet describes circular and elliptic orbits, respectively. Originating from the circular family, families of symmetric periodic orbits in the 3/2, 5/2, 3/1, 4/1 and 5/1 mean-motion resonances are continued in the circular and the elliptic problems. New bifurcation points from the circular to the elliptic problem are found for each of the above resonances, and thus, new families continued from these points are herein presented. Stable segments of periodic orbits were found at high eccentricity values of the already known families considered as whole unstable previously. Moreover, new isolated (not continued from bifurcation points) families are computed in the elliptic restricted problem. The majority of the new families mainly consists of stable periodic orbits at high eccentricities. The families of the 5/1 resonance are investigated for the first time in the restricted three-body problems. We highlight the effect of stable periodic orbits on the formation of stable regions in their vicinity and unveil the boundaries of such domains in phase space by computing maps of dynamical stability. The long-term stable evolution of the terrestrial planets or asteroids is dependent on the existence of regular domains in their dynamical neighbourhood in phase space, which could host them for long-time spans. This study, besides other celestial architectures that can be efficiently modelled by the circular and elliptic restricted problems, is particularly appropriate for the discovery of terrestrial companions among the single-giant planet systems discovered so far.  相似文献   

13.
A model of planetary formation in a binary system with a small relative mass of primary is computed on the assumption of a mass transfer from the less massive component to the more massive one with no mass and angular momentum carried away from the system under consideration. At the last stage of mass transfer the condensed Moon-like objects (planetoids) are ejected through the inner Lagrange point of the primary Roche lobe with the outflow of gaseous matter.The whole system is considered in the plane of binary star rotation. Newtonian equations of motion are integrated with the initial conditions for the planetoids referred to as the coordinates and velocity of the inner Lagrangian point at the moments of planetoid ejections, all the pairwise gravitational interactions being included in computations but without a gas-drag. The mass transfer ceases at the primary relative mass 10–3 which corresponds to the present Sun-Jupiter system. The total mass of planetoids approximates that of the terrestrial planets. Those are formed through coagulation of the planetoids with the effective radius of capture cross-section as an input parameter in the computer simulation. When the minimum separation between the pair of bodies becomes less than this radius they coalesce into a single body with their masses and momenta summed. If the effective radius value is under a certain limit the computer simulation yields the planetary system like that of terrestrial planets of the present Sun system.Numerical computations reveal the division of the planetoids into 4 groups along their distances from the Sun. Further, each group forms a single planet or a planet and a less massive body at the nearest orbits. The parameters of simulated planet orbits are close to the present ones and the interplanetary spacings are in accord with the Titius-Bode law.  相似文献   

14.
Planetesimals encountering with a planet cannot be captured permanently unless energy dissipation is taken into account, but some of them can be temporarily captured in the vicinity of the planet for an extended period of time. Such a process would be important for the origin and dynamical evolution of irregular satellites, short-period comets, and Kuiper-belt binaries. In this paper, we describe the basic formulation for the study of temporary capture of planetesimals from heliocentric orbits using three-body orbital integration, such as the definition of the duration and rate of temporary capture, and present results in the case of low random velocity of planetesimals. In the case of planetesimals initially on circular orbits, we find that planetesimals undergo a close encounter with the planet before they become temporarily captured. When planetesimals are scattered by the planet into the vicinity of one of periodic orbits around the planet, the duration of temporary capture tends to be extended. Typically, these capture orbits are in the retrograde direction around the planet. We evaluate the rate of temporary capture of planetesimals, and find that the ratio of this rate to their collision rate on to the planet increases with increasing semimajor axis of the planet. Similar results are obtained for planetesimals with non-zero but small random velocities, as long as Kepler shear dominates the relative velocity between the planet and planetesimals. For larger initial random velocities of planetesimals, temporary capture in both prograde and retrograde directions with much longer duration becomes possible.  相似文献   

15.
Numerical simulations of planet growth in the outer solar system shows thatgrwoth of Uranus and Neptune occurs in reasonably short time, well below the actual age of the system, without the need for ad hoc assumptions about excess mass or artificially low relative velocities among the icy planetesimals. Low velocities, which speed accretion, are a natural consequence of the non-power-law size distribution of planetesimals, just as in our earlier simulations of terrestial planet growth. Initial planetesimals of size ~ 100 km, predicted by formal expressions for gravitational instability in a thin disk of solid material, failed to produce sufficient debris in the size range 1 to 10 km to account for population of the Oort cloud with comet-sized bodies. However, our model of nonhomologous settling of grains to the midplane of the solar system shows that gravitational clumping did not wait until all solid material had settled to the midplane, as had been assumed in earlier models. Rather, the clumping occurred in successive portions of the material that reached the midplane, producing “initial” planetesimals probably of comet-like sizes. Models of subsequent collisional evolution show that such an initial size distribution, similar to known comets, would have been required in order to have an adequate comet-like size distribution available to feed the Oort cloud as the other planets reach full size. Comets are probably unaltered remnants of the initial population of planetesimals in the outer solar system, not fragments of larger bodies.  相似文献   

16.
The recent BATSE observations of the spin-up and spin-down of accreting pulsars have shown that the standard formulation for the accretion torque as proposed by Ghosh &38; Lamb may need to be revised. The observations indicate alternate spin-up and spin-down phases driven by torques of similar magnitude and typically larger than the mean torque. The variations of the torque in systems such as Cen X-3 are difficult to explain in terms of changes of the mass accretion rate. The implication is that the torque does not depend on the accretion rate as in the GL model. In this paper we argue that the observed changes in the spin rate can result from stochastic transitions between two magnetospheric states. In particular, we show that intermediate magnetospheric systems are not admissible, because of a disc-induced magnetospheric instability which exists in a star–disc magnetic interaction system. This explains why torque reversal occurs in disc accreting pulsars with similar magnitudes.  相似文献   

17.
The position of pre-main-sequence or protostars in the Hertzsprung–Russell diagram is often used to determine their mass and age by comparison with pre-main-sequence evolution tracks. On the assumption that the stellar models are accurate, we demonstrate that, if the metallicity is known, the mass obtained is a good estimate. However, the age determination can be very misleading, because it is significantly (generally different by a factor of 2 to 5) dependent on the accretion rate and, for ages less than about 106 yr, the initial state of the star. We present a number of accreting protostellar tracks that can be used to determine age if the initial conditions can be determined and the underlying accretion rate has been constant in the past. Because of the balance established between the Kelvin–Helmholtz, contraction time-scale and the accretion time-scale, a pre-main-sequence star remembers its accretion history. Knowledge of the current accretion rate, together with an HR-diagram position, gives information about the rate of accretion in the past, but does not necessarily improve any age estimate. We do not claim that ages obtained by comparison with these particular accreting tracks are likely to be any more reliable than those from comparisons with non-accreting tracks. Instead, we stress the unreliability of any such comparisons, and use the disparities between various tracks to estimate the likely errors in age and mass estimates. We also show how a set of coeval accreting objects do not appear coeval when compared with non-accreting tracks. Instead, accreting pre-main-sequence stars of around a solar mass are likely to appear older than those of either smaller or larger mass.  相似文献   

18.
This paper gives a full nonlinear version of Newtonian gravity in which the gravitational energy acts as a source of the gravitational field. The generalized field equation for the scalar gravitational potential is solved for a spherically symmetric localized distribution of matter. It is shown that the perihelia of orbits of test particles in such a field precess steadily. The effect is, however, too small to account for the observed shift in the perihelion of planet Mercury. Further, the bending of light in this theory is zero. It is suggested that these inadequacies of the quasi-Newtonian framework call for more sophisticated approaches to gravity.  相似文献   

19.
We derive here a relatively simple expression for the total wind mass loss rates in QSOs within the accretion disk wind scenario. We show that the simple expression derived here for QSO disk wind mass loss rate is in a very good agreement with the more “exact” values obtained through significantly more complex and detailed numerically intensive 2.5D time-dependent simulations. Additionally we show that for typical QSO parameters, the disk itself will be emitting mostly in the UV/optical spectrum, in turn implying that the X-ray emission from QSOs likely is produced through some physical mechanism acting at radii smaller than the inner disk radius (for a standard accretion disk, half of the initially gravitational potential energy of the accreting disk mass is emitted directly by the disk, while the other half “falls” closer towards the black hole than the inner disk radius). We also show that for typical QSO parameters, the disk itself is dominated by continuum radiation pressure (rather than thermal pressure), resulting in a “flat disk” (except for the innermost disk regions).  相似文献   

20.
In this work, we have assumed the generalized Vaidya solution in Lovelock theory of gravity in (n+2)-dimensions. It has been shown that Gauss-Bonnet gravity, dimensionally continued Lovelock gravity and pure Lovelock gravity can be constructed by suitable choice of parameters. We have investigated the occurrence of singularities formed by the gravitational collapse in above three particular forms of Lovelock theory of gravity. The dependence of the nature of singularity on the existence of radial null geodesic for Vaidya space-time has been specially considered. In all the three models, we have shown that the nature of singularities (naked singularity or black hole) completely depend on the parameters. Choices of various parameters are shown in tabular form. In Gauss-Bonnet gravity theory, it can be concluded that the possibility of naked singularity increases with increase in dimensions. In dimensionally continued Lovelock gravity, the naked singularity is possible for odd dimensions for several values of parameters. In pure Lovelock gravity, only black hole forms due to the gravitational collapse for any values of parameters. It has been shown that when accretion is taking place on a collapsing object, it is highly unlikely to get a black hole. Finally on considering the phantom era in the expanding universe it is observed that there is no possibility of formation of a black hole if we are in the Gauss-Bonnet gravity considering the accreting procedure upon a collapsing object.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号