首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The equilibrium constants for the fractionation of H218O and H216O between liquid and solid phases were determined by slow freezing of ice and by slow formation of the clathrate hydrate of tetrahydrofuran from liquid solution. Both systems gave α = 1.00268. It is likely that oxygen-18 enrichment of the water in clathrate hydrates generally is essentially the same as for ice and that the relatively high oxygen-18 content observed in pore waters from some deep-sea sediments arises from the recent presence of methane hydrate.  相似文献   

2.
Oxygen isotope fractionation was experimentally studied in the quartz-wolframite-water system from 200 to 420 °C. The starting wolframite was synthesized in aqueous solutions of Na2WO4 · 2H2O + FeCl2 · 4H2O or MnCl2 · 4H2O. The starting solutions range in salinity from 0 to 10 equivalent wt.% NaCl. Experiments were conducted in a gold-lined stainless steel autoclave, with filling degrees of about 50%. The results showed no significant difference in equilibrium isotope fractionation between water and wolframite, ferberite and huebnerite at the same temperature (310 °C ). The equilibrium oxygen isotope fractionation factors of wolframite and water tend to be equal with increasing temperature above 370 °C, but to increase significantly with decreasing temperature below 370 °C: 1000 ln αwf-H2o= 1.03×106T−2-4.91 (370 °C ±200 °C ) 1000 ln αwf-H2o = 0.21×106T −2-2.91 (420 °C -370 °C ±) This projects was financially supported by the National Natural Science Foundation of China.  相似文献   

3.
Palaeotemperature reconstruction for the period of 20?18 ka BP in Siberia is here based on δ18O analysis and 14C dating of large syngenetic ice wedges. Dozens of yedoma exposures, from Yamal Peninsula to Chukotka, have been studied. Snow meltwater is considered to be the main source of ice‐wedge ice. The modern relationship between δ18O composition of ice‐wedge ice and winter temperature is used as a base for reconstruction. In modern ice wedges (elementary veins that have accumulated during the last 60–100 years) δ18O fluctuates between ?14 and ?20‰ in western Siberia and between ?23 and ?28‰ in northern Yakutia. The trend in δ18O distribution in ice wedges dated at 20?18 ka BP is similar to the modern one. For example, the δ18O values in Late Pleistocene wedges are more negative going from west to east by 8–10‰, i.e. from ?19 to ?25‰ in western Siberian ice wedges to ?30 to ?35‰ in northern Yakutia. However, values are as high as ?28 to ?33‰ in north Chukotka and the central areas of the Magadan Region and even as high as ?23 to ?29‰ in the east of Chukotka. The same difference between the oxygen isotope composition of ice wedges in the eastern and western regions of Siberian permafrost (about 8–10‰) is also preserved from 20?18 ka BP to the present: δ18O values obtained from large ice wedges from the Late Pleistocene vary from ?19 to ?25‰ in western Siberia to ?30 to ?35‰ in northern Yakutia. We conclude that, at 20?18 ka BP, mean January temperatures were about 8–12°C lower (in Chukotka up to 17–18°C) than at present.  相似文献   

4.
The hydrogen isotope fractionation between kaolinite and water   总被引:1,自引:0,他引:1  
Hydrogen isotope fractionation factors between kaolinite and water were determined at temperatures between 200° and 352°C. Five-gram samples of kaolinite were heated in contact with 8-mg samples of water in sealed glass reaction tubes. Under these conditions the approach to equilibrium with time will be reflected primarily in the change of the δ D in the water. Also the δ D of the hydrogen in the kaolinite will be relatively constant, subject to minor corrections. About seventy sealed vessels were heated for various times at various temperatures. During four months of heating, ~ 25% of kaolinite hydrogen exchanged with the water at 200°C, whereas 100% exchanged at 352°C. The α-values were estimated assuming equilibrium between exchanged kaolinite and water. The 103lnα-values are estimated to be ?20, ?15, ?6 and +7 for 352°, 300°, 250° and 200°C, respectively, which are in approximate agreement with reported values previously determined at 400°C using conventional methods as well as those estimated from kaolinite in hydrothermally active systems. The curve representing the relationship between the hydrogen isotope fractionation factor for the kaolinite-water system and temperatures between 400° and 25°C is not monotonic but rather has a maximum at 200°C.  相似文献   

5.
Carbonates formed from hyperalkaline aqueous solutions at the Earth?s surface are known to bear the most extreme disequilibrium isotope signatures reported so far in nature. We present here the results for stable carbon (C), oxygen (O), and barium (Ba) isotope fractionation during the precipitation of witherite (BaCO3) induced by the chemical absorption of atmospheric carbon dioxide (CO2) into an aqueous hyper-alkaline solution (at 4° and 21?°C; 1?atm total pressure). Independent from temperature, the barium carbonate formation was associated with a substantial enrichment of the lighter C and O isotopes in the solid compared to the atmosphere (C, O), close to previous results found in experiments and nature. A new approach is introduced to explain oxygen isotope fractionation upon hydroxylation of CO2. With Ba isotope enrichment factors between ?0.45 and ?0.53‰ (138/134ε) or ?0.34 and ?0.40‰ (137/134ε), respectively, the synthesized BaCO3 displays the highest kinetic enrichment of the light Ba isotope in the carbonate solid reported so far.  相似文献   

6.
Crystallisation of sodium sulfate: supersaturation and metastable phases   总被引:1,自引:0,他引:1  
Crystallisation of sodium sulfate solutions by evaporation under controlled climatic conditions has revealed the existence of crystalline hydrated sodium sulfate salts not previously reported. The sodium sulfate phase crystallising and the concentration of the solution at the point of crystallisation depends on the climatic conditions (temperature and evaporation rate). During the rehydration of the anhydrous sodium sulfate phase, thenardite, another previously unreported phase was formed prior to the nucleation of the stable phase, mirabilite Na2SO4 · 10H2O. The addition of organic inhibitors changes both the crystallisation and the rehydration behavior in this system.  相似文献   

7.
Experimental runs were made in cold-seal pressure vessels using synthetic CaCO8·6H2O, calcite and aragonite as starting materials. The reaction CaCO3·6H2O (ikaite) ? CaCO3 (calcite I) + 6H2O was reversed across its metastable extension into the aragonite stability field and the phase boundary is defined by brackets at 4.14kb, 14.3°C and 2.96 kb, ?3.0°C. An invariant point for CaCO3·6H2O, calcite I, aragonite and water thus occurs at about 3.02 kb and ?2.0°C. No other reaction could be reversed. Calculations based on the equilibrium phase boundary between calcite and ikaite and the available thermochemical data for calcite and water yield the stadard free energy of formation, standard enthalpy of formation and third law entropy of CaCO3·6H2O at 25°C and 1 bar total pressure; ?607.3 kcal/mole, ?705.8 kcal/mole, and 88.4 cal/deg mole, respectively.  相似文献   

8.
First-ever ice core drilling at Mt. Kazbek (Caucasus Mountains) took place in the summer of 2014. A shallow ice core (18 m) was extracted from a plateau at ~4500 m a.s.l. in the vicinity of the Mt. Kazbek summit (5033 m a.s.l.). A detailed radar survey showed that the maximum ice thickness at this location is ~250 m. Borehole temperature of ?7 °C was measured at 10 m depth. The ice core was analyzed for oxygen and deuterium isotopes and dust concentration. From the observed seasonal cycle, it was determined that the ice core covers the time interval of 2009–2014, with a mean annual snow accumulation rate of 1800 mm w. eq. Multiple melt layers have been detected. δ18O values vary from ?25 to ?5‰. The dust content was determined using a particle sizing and counting analyzer. The dust layers were investigated using scanning electron microscopy and X-ray diffraction analysis. Dust can be separated into two categories by its origin: local and distant. Samples reflecting predominantly local origin consisted mainly of magmatic rocks, while clay minerals were a characteristic of dust carried over large distances, from the deserts of the Middle East and Sahara. The calculated average dust flux over three years at Kazbek was of 1.3 mg/cm2 a?1. Neither δ18O nor dust records appear to have been affected by summer melting. Overall, the conditions on Kazbek plateau and the available data suggest that the area offers good prospects of future deep drilling in order to obtain a unique environmental record.  相似文献   

9.
Isotopic and mineralogic data from an 8500-m thick section of the Great Valley sequence, northern California, indicate that changes in the δ18O values of authigenic minerals resulted from the conversion of smectite to a 10 Å clay-mineral as temperature increased with burial in the Jurassic- Cretaceous outer-arc basin. The clay-mineral assemblage in mudstone is characterized by a proportional increase of the 10 Å clay-mineral with increasing stratigraphic depth, and by a depletion in the δ18O value of the mixed-layer smectite/10 Å clay-mineral with descending stratigraphic position from +21.9 to + 15.5%. SMOW. Modeling of the oxygen isotopic data from authigenic phases, based on equilibrium fractionation during clay-mineral diagenesis, indicates that δ18O values of calcite in mudstones and of calcite cements in sandstone precipitated along a temperature gradient of about 25°C/km during maximum burial to about 6–7 km. δD values of the mixed-layer smectite/10 Å clay-mineral range between ?69 to ?44%. SMOW. Using temperatures calculated from the oxygen isotopic data, the deuterium and oxygen isotopic data indicate that the smectite underwent late-stage dehydration and probably buffered the composition of formation waters from sea water values to isotopic compositions of δ18O ≈ +8%. SMOW and δD ≈ ?25%. SMOW. The δ13C values of calcite from mudstone and sandstone imply that crystallization of authigenic calcite was linked to organic diagenesis during which dissolved HCOt-3 was continuously enriched in 13C as temperature increased with burial. At the base of the sequence and immediately overlying the ophiolitic basement rocks, several hundred meters of strata were altered by more oxygen-depleted (δ18O ? +4 to +5%.) hydrothermal fluids emanating from the ophiolitic rocks, probably at maximum burial depth.  相似文献   

10.
Oxygen isotope exchange between BaSO4 and H2O from 110 to 350°C was studied using 1 m H2SO4-1 m NaCl and 1 m NaCl solutions to recrystallize the barite. The slow exchange rate (only 7% exchange after 1 yr at 110°C and 91% exchange after 22 days at 350°C in 1 m NaCl solution) prompted the use of the partial equilibrium technique. However, runs at 300 and 350°C were checked by complete exchange experiments. The temperature calibration curve for the isotope exchange is calculated giving most weight to the high temperature runs where the partial equilibrium technique can be tested. Oxygen isotope fractionation factors (α) in 1 m NaCl solution (110–350°C), assuming a value of 1.0407 for αCO2H2O at 25°C, are:
1031nαBaSO4?1 m NaCl = 2.64 (106T2) ? 5.3 ± 0.3
.These data, when corrected for ion hydration effects in solution (Truesdell, 1974), give the fractionation factors in pure water:
1031nαBaSO4H2O = 3.01 (106/T2) ?7.3 ± 0.1
.In the 1 m H2SO4-1 m NaCl runs, sulfur isotope fractionation between HSO?4 and BaSO4 is less than the detection limit of 0.4%. A barite-sulfide geothermometer is obtained by combining HSO?4H2S and sulfide-H2S calibration data.Barite in the Derbyshire ore field, U.K., appears to have precipitated in isotopic equilibrium with water and sulfur in the ore fluid at temperatures less than 150°C. At the Tui Mine, New Zealand, the barite-water geothermometer indicates temperatures of late stage mineralization in the range 100–200°C. A temperature of 350 ± 20°C is obtained from the barite-pyrite geothermometer at the Yauricocha copper deposit, Peru, and oxygen isotope analyses of the barite are consistent with a magmatic origin for the ore fluids.  相似文献   

11.
Carbonyl oxygens of organic molecules undergo isotopic exchange with water during reversible hydration reactions. The equilibrium isotopic fractionation factors between the carbonyl oxygen of acetone and water at 15°, 25°, and 35°C are 1.028, 1.028, and 1.026 respectively. The differences between the δ18O values of the carbonyl oxygen of acetone and of the water with which it is in equilibrium are similar to the differences that have been observed between the δ18O values of cellulose and the water used in its synthesis by a variety of aquatic plants and animals. Additionally, the identity of the acetone-water fractionation factors at 15° and 25°C parallels the observation that the difference between the δ18O values of cellulose and water shows no temperature dependence for individual species of plants grown over the same temperature range. These results are discussed in relation to the proposal that the oxygen isotopic relationship between cellulose and water is established by isotopic exchange occurring during the hydration of carbonyl groups of the intermediates of cellulose synthesis.  相似文献   

12.
Perennial ice covers on many Antarctic lakes have resulted in high lake inorganic carbon contents. The objective of this paper was to evaluate and compare the brine and CO2 chemistries of Lake Vida (Victoria Valley) and West Lake Bonney (Taylor Valley), two lakes of the McMurdo Dry Valleys (East Antarctica), and their potential consequences during global warming. An existing geochemical model (FREZCHEM-15) was used to convert measured molarity into molality needed for the FREZCHEM model, and this model added a new algorithm that converts measured DIC into carbonate alkalinity needed for the FREZCHEM model. While quite extensive geochemical information exists for ice-covered Taylor Valley lakes, such as West Lake Bonney, only limited information exists for the recently sampled brine of >25 m ice-thick Lake Vida. Lake Vida brine had a model-calculated pCO2 = 0.60 bars at the field pH (6.20); West Lake Bonney had a model-calculated pCO2 = 5.23 bars at the field pH (5.46). Despite the high degree of atmospheric CO2 supersaturation in West Lake Bonney, it remains significantly undersaturated with the gas hydrate, CO2·6H2O, unless these gas hydrates are deep in the sediment layer or are metastable having formed under colder temperatures or greater pressures. Because of lower temperatures, Lake Vida could start forming CO2·6H2O at lower pCO2 values than West Lake Bonney; but both lakes are significantly undersaturated with the gas hydrate, CO2·6H2O. For both lakes, simulation of global warming from current subzero temperatures (?13.4 °C in Lake Vida and ?4.7 °C in West Lake Bonney) to 10 °C has shown that a major loss of solution-phase carbon as CO2 gases and carbonate minerals occurred when the temperatures rose above 0 °C and perennial ice covers would disappear. How important these Antarctic CO2 sources will be for future global warming remains to be seen. But a recent paper has shown that methane increased in atmospheric concentration due to deglaciation about 10,000 years ago. So, CO2 release from ice lakes might contribute to atmospheric gases in the future.  相似文献   

13.
The estimated depth of formation of authigenic dolomite concretions in the Middle Ordovician Cloridorme Formation, Quebec, ranges from < 1 m to 150–200 m below sea floor (mbsf) (mostly between < 1 and 25 mbsf), based on centre‐to‐margin variations in minus‐cement porosity (80–90% to 45–75%). Formation depths are > 350 mbsf (25–17% porosity) in the Lower Ordovician Levis Formation. Outward‐decreasing δ13CVPDB values (10·2–0·8‰) suggest precipitation in the methane generation zone with an increasing contribution of light carbonate derived by advection from thermocatalytic reactions at depth. Anomalously low δ18OVPDB values (centre‐to‐margin variations of ?0·4 to ?7·5‰) give reasonable temperatures for the concretion centres only if the δ18O of Ordovician sea water was negative (?6‰) and the bottom water was warm (> 15 °C). The 3–5‰ lower values for the concretion margins compared with the centres can be explained if, in addition, volcanic‐ash alteration, organic‐matter decomposition and/or advection of 18O‐depleted water lowered the δ18O of the pore water further by 2·0–4·0‰ during the first 25–200 m of burial. Reasonable growth temperatures for the margins of 17–20 °C are compatible with a lowering of the isotopic ratios by 1 to < 1·3‰ as a temperature effect. The systematic concentric isotope zonation of the concretions suggests that the well‐ordered near‐stoichiometric dolomite is a primary feature and not the result of recrystallization. Diagenetic dolomite beds of the Cloridorme Formation appear to have formed by coalescence of concretions, as shown by randomly sampled traverses that indicate formation at different subsurface depths. Growth of the Cloridorme dolomites was probably limited by calcium availability, at least 50% of which was derived from connate water, and the remainder by diffusion from sea water. Dolomite precipitation was favoured over calcite by very high sedimentation rates, the abundance of marine organic matter in the host sediment and a correspondingly thin sulphate reduction zone. Deep‐seated concretion growth in the Levis Formation required either internal sources for the participating ions (carbonate dissolution event) or porewater advection along faults.  相似文献   

14.
Time variation of surface fluxes of heat, moisture and momentum over a sea station (20°N 89°E) in the north Bay of Bengal has been computed by profile method for the period 18th–25th August 1990 using meteorological data of MONTBLEX-90 from ORVSagarkanya. The fluxes showed synoptic and diurnal variations which are marked during depression (20th–21st August) compared to their variation prior to and after this period. Variations of heat and water vapour fluxes were in phase. Night time fluxes are relatively high compared to day time. Average momentum transfer during depression was two to three times large. Variations in Bowen ratio were relatively large during day time. During depression, it varied between 0·2 in day time and about 0·3 at night and in the undisturbed period between ?0·1 and 0·2 during day time and 0·2 and 0·25 at night. The study shows that the assumptionC D=CH=CE of the exchange coefficients normally used in estimating the fluxes by the bulk aerodynamic method is not appropriate becauseC H/CD≈2,C E/CD≈1·5 andC H/CE≈1·4.  相似文献   

15.
Zabuye Salt Lake in Tibet, China is a carbonate-type salt lake, which has some unique characteristics that make it different from other types of salt lakes. The lake is at the latter period in its evolution and contains liquid and solid resources. Its brine is rich in Li, B, K and other useful minor elements that are of great economic value. We studied the concentration behavior of these elements and the crystallization paths of salts during isothermal evaporation of brine at 15°C and 25°C. The crystallization sequence of the primary salts from the brine at 25°C is halite (NaCl) → aphthitalite (3K2SO4·Na2SO4) → zabuyelite (Li2CO3)→ trona (Na2CO3·NaHCO3·2H2O) → thermonatrite (Na2CO3·H2O) → sylvite (KCl), while the sequence is halite (NaCl) → sylvite (KCl) → trona (Na2CO3·NaHCO3·2H2O) → zabuyelite (Li2CO3) → thermonatrite (Na2CO3·H2O) → aphthitalite (3K2SO4·Na2SO4) at 15°C. They are in accordance with the metastable phase diagram of the Na+, K+-Cl?, CO32?, SO42?-H2O quinary system at 25°C, except for Na2CO3·7H2O which is replaced by trona and thermonatrite. In the 25°C experiment, zabuyelite (Li2CO3) was precipitated in the early stage because Li2CO3 is supersaturated in the brine at 25°C, in contrast with that at 15°C, it precipitated in the later stage. Potash was precipitated in the middle and late stages in both experiments, while boron was concentrated in the early and middle stages and precipitated in the late stage.  相似文献   

16.
Investigation of the palaeoclimatic conditions associated with Upper Jurassic strata in Portugal and comparison with published palaeoclimate reconstructions of the Upper Jurassic Morrison Formation in western North America provide important insights into the conditions that allowed two of the richest terrestrial faunas of this period to flourish. Geochemical analyses and observations of palaeosol morphology in the informally named Upper Jurassic Lourinhã formation of western Portugal indicate warm and wet palaeoclimatic conditions with strongly seasonal precipitation patterns. Palaeosol profiles are dominated by carbonate accumulations and abundant shrink‐swell (vertic) features that are both indicative of seasonal variation in moisture availability. The δ18OSMOW and δDSMOW values of phyllosilicates sampled from palaeosol profiles range from +22·4‰ to +22·7‰ and ?53·0‰ to ?37·3‰, respectively. These isotope values correspond to temperatures of formation between 32°C and 39°C ± 3°, with an average of 36°C, which suggest surface temperatures between 27°C and 34°C (average 31°C). On average, these surface temperature estimates are 1°C higher than the highest summer temperatures modelled for Late Jurassic Iberia using general circulation models. Elemental analysis of matrix material from palaeosol B‐horizons provides proxy (chemical index of alteration minus potassium) estimates of mean annual precipitation ranging from 766 to 1394 mm/year, with an average of approximately 1100 mm/year. Palaeoclimatic conditions during deposition of the Lourinhã formation are broadly similar to those inferred for the Morrison Formation, except somewhat wetter. Seasonal variation in moisture availability does not seem to have negatively impacted the ability of these environments to support rich and relatively abundant faunas. The similar climate between these two Late Jurassic terrestrial ecosystems is probably one of the factors which explains the similarity of their vertebrate faunas.  相似文献   

17.
Pervasive dolomites occur preferentially in the stromatoporoid biostromal (or reefal) facies in the basal Devonian (Givetian) carbonate rocks in the Guilin area, South China. The amount of dolomites, however, decreases sharply in the overlying Frasnian carbonate rocks. Dolostones are dominated by replacement dolomites with minor dolomite cements. Replacement dolomites include: (1) fine to medium, planar‐e floating dolomite rhombs (Rd1); (2) medium to coarse, planar‐s patchy/mosaic dolomites (Rd2); and (3) medium to very coarse non‐planar anhedral mosaic dolomites (Rd3). They post‐date early submarine cements and overlap with stylolites. Two types of dolomite cements were identified: planar coarse euhedral dolomite cements (Cd1) and non‐planar (saddle) dolomite cements (Cd2); they post‐date replacement dolomites and predate late‐stage calcite cements that line mouldic vugs and fractures. The replacement dolomites have δ18O values from ?13·7 to ?9·7‰ VPDB, δ13C values from ?2·7 to + 1·5‰ VPDB and 87Sr/86Sr ratios from 0·7082 to 0·7114. Fluid inclusion data of Rd3 dolomites yield homogenization temperatures (Th) of 136–149 °C and salinities of 7·2–11·2 wt% NaCl equivalent. These data suggest that the replacive dolomitization could have occurred from slightly modified sea water and/or saline basinal fluids at relatively high temperatures, probably related to hydrothermal activities during the latest Givetian–middle Fammenian and Early Carboniferous times. Compared with replacement dolomites, Cd2 cements yield lower δ18O values (?14·2 to ?9·3‰ VPDB), lower δ13C values (?3·0 to ?0·7‰ VPDB), higher 87Sr/86Sr ratios (≈ 0·7100) and higher Th values (171–209 °C), which correspond to trapping temperatures (Tr) between 260 and 300 °C after pressure corrections. These data suggest that the dolomite cements precipitated from higher temperature hydrothermal fluids, derived from underlying siliciclastic deposits, and were associated with more intense hydrothermal events during Permian–Early Triassic time, when the host dolostones were deeply buried. The petrographic similarities between some replacement dolomites and Cd2 dolomite cements and the partial overlap in 87Sr/86Sr and δ18O values suggest neomorphism of early formed replacement dolomites that were exposed to later dolomitizing fluids. However, the dolomitization was finally stopped through invasion of meteoric water as a result of basin uplift induced by the Indosinian Orogeny from the early Middle Triassic, as indicated by the decrease in salinities in the dolomite cements in veins (5·1–0·4 wt% NaCl equivalent). Calcite cements generally yield the lowest δ18O values (?18·5 to ?14·3‰ VPDB), variable δ13C values (?11·3 to ?1·2‰ VPDB) and high Th values (145–170 °C) and low salinities (0–0·2 wt% NaCl equivalent), indicating an origin of high‐temperature, dilute fluids recharged by meteoric water in the course of basin uplift during the Indosinian Orogeny. Faults were probably important conduits that channelled dolomitizing fluids from the deeply buried siliciclastic sediments into the basal carbonates, leading to intense dolomitization (i.e. Rd3, Cd1 and Cd2).  相似文献   

18.
Tufa samples from 16 consecutive barrages along a 13 km section of the groundwater‐fed Krka River (Slovenia) were analysed for their petrographical, mineralogical, elemental and stable carbon (δ13C) and oxygen (δ18O) isotope composition, to establish their relation to current climatic and hydrological conditions. Waters constantly oversaturated with calcite and the steep morphology of the Krka riverbed stimulate rapid CO2 degassing and subsequent tufa precipitation. The carbon isotope fractionation (Δ13C) between dissolved inorganic carbon and tufa in the Krka River evolves towards isotopic equilibrium being controlled by continuous CO2 degassing and tufa precipitation rate downstream. The Δ13C increased from 1·9 to 2·5‰ (VPDB); however, since tufa precipitation rates remain similar downstream, the major controlling factor of carbon isotope exchange is most probably related to the continuous 12CO2 degassing downstream leaving the carbon pool enriched in 13C. In the case of oxygen, the isotope fractionation (Δ18O) was found to be from 1·0 to 2·3‰ (VSMOW) smaller than reported in the literature. The observed discrepancies are due to different precipitation rates of calcite deposits because Krka tufas on cascades grow relatively faster compared to slowly precipitated calcite deposits in cave or stream pools. Due to non‐equilibrium oxygen isotope exchange between Krka tufa and water, the δ18O proxy showed from 1·2 to 8·2°C higher calculated water temperatures compared to measured water temperatures, demonstrating that δ18O proxy‐based temperature equations are not reliable for water temperature calculations of fast‐growing tufa on cascades. Because Mg is bound to the terrigenous dolomite fraction in the Krka tufa samples, the Mg/Ca was also found to be an unreliable temperature proxy yielding over up to 20°C higher calculated water temperatures.  相似文献   

19.
Carbon and oxygen isotopic analyses have been performed on live-stained aragonitic and calcitic benthic foraminifera and dissolved inorganic carbon (DIC) from the Southern California Borderland to examine carbon isotopic fractionation in foraminifera. Temperature, salinity and pH data have also been collected to permit accurate determination of the δ13C of bicarbonate ion and thus aragonite-HCO3 and calcite-HCO?3 isotopic enrichment factors (?ar-b and ?cl-b, respectively). Only species which precipitate in 18O equilibrium have been considered.?ar-b values based on Hoeglundina elegans range from 1.9%. at 2.7°C to 1.1%. at 9.5°C. Only the lower temperature values agree with a tentative carbon isotope equilibrium equation for aragonite based on the data of Rubinson and Clayton (1969) and Emrich et al. (1970). The temperature dependence of ?ar-b is considerably greater than the equilibrium equation would predict and may be due to a vital effect.The calcitic foraminifera Cassidulina tortuosa, Cassidulina braziliensis, and Cassidulina limbata, Bank and Terrace dwellers, have similar δ13C values and yield an average ?cl-b value of ?0.2 ± .1%. between 8° and 10°C. Calcitic Uvigerina curticosta, Uvigerina peregrina, and megalospheric B. argentea, Slope and Basin dwellers, are ?0.7 ± .1%. enriched relative to ambient bicarbonate for 3 to 9°C. No temperature dependence for ?cl-b was observed for the species in either habitat. The ?cl-b values for Cassidulina species are close (± 0.3%.) to the values given by the tentative equilibrium curve for calcite, while Uvigerina and Bolivina species give values 0.2–0.8%. less. The ?cl-b difference between the Cassidulina species and the Uvigerina and Bolivina species is attributed to the incorporation of 13C-depleted pore water DIC by the latter group rather than to taxonomic or temperature differences.  相似文献   

20.
Vaterite is shown to be unstable with respect to calcite at 25°C by measurements of the enthalpies of solution in 0·1 N HCl under 0·97 atm CO2 and the solubilities in water under 0·97 atm CO2 of the two polymorphs. For a pure, synthetic vaterite ΔH (tr) = ?1036 ±16 cal mol?1 and ΔG(tr) = ?790 ± 25 cal mol?1 for the transition to calcite. For other vaterites aged longer during preparation ΔH(tr) is smaller and shows a linear relationship with the X-ray line broadening which extrapolates to ΔH(tr) = ?545 ± 30 cal mo?1 for zero broadening. The use of X-ray line broadening as a measure of crystal imperfection and stability is discussed for various synthetic and natural vaterites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号