共查询到20条相似文献,搜索用时 11 毫秒
1.
Carbon isotope composition of the Lower Triassic marine carbonates, Lower Yangtze Region, South China 总被引:16,自引:0,他引:16
The Early Triassic is a critical period in earth his- tory. A series of events such as volcano eruptions[1,2], sea-level fluctuations, changes in environmental con- ditions[3], mass extinctions[4,5] as well as global negative carbon isotope excursions[6-9] have been discovered in the uppermost Permian or across the Permian-Triassic boundary. Large scale sea-level rise[10-12], restoration of environment conditions, re- covery of ecosystem[13], including gradual carbon iso- tope rise[14] occur… 相似文献
2.
Geochemical characteristics of pelagic chert sequences across the Permian-Triassic boundary in southwest Japan 总被引:1,自引:0,他引:1
Abstract Geochemical characteristics, mainly of major and trace elements and REE (rare earth elements) of bedded chert and shale/mudstone sequences, across the Permian/Triassic boundary in southwest Japan are examined. The boundary is characterized by the disappearance of bedded cherts, and the interval between the Upper Permian cherts and Lower Triassic (probably Smithian) cherts comprises siliceous shales and organic black mudstones. Bedded cherts are characterized by a gradual depletion of chemical elements from Middle to Upper Permian. However, overlying siliceous shales exhibit a clear enrichment in some elements, especially alkaline metals (such as K, Rb and Cs) and Ti, Th, Y, P2O5, and REE in comparison with elements of the PAAS (post Archean Australian shales). This indicates that average components of the upper continental crust were transported in the boundary interval, possibly caused by volcanic activity. Ce-negative shifting in NASC (North American Shales Composite)-normalized REE patterns is characteristic of this interval, and could be related to the deposition of siliceous rocks in Ce-depleted seawater. This was probably caused by an invasion of water mass with a Ce-negative anomaly into the previously existing water mass of the Paleo-Tethys. Weak negative Eu-anomalies in this interval are suggestive of plagioclase fractionation caused by acid volcanisms and the LREE/HREE ratios in the interval show a slightly light-REE enrichment. Organic black mudstones are characteristically intercalated in the interval. These rocks are usually regarded as a product of oceanic deterioration, but in pelagic conditions, organic materials were formed by high primary production that resulted from the active upwelling of ocean floor water currents with rich nutrients. This may have been caused by the inferred mixing of water masses of the Paleo-Tethys and of the Panthalassa in Early Triassic time which was regarded as an event synchronous with an increase in volcanic activity on highly matured island arcs and/or continents. 相似文献
3.
Abstract Carbon isotope fluctuations of sedimentary organic matter along the two geological traverses in the Yezo Group, Hokkaido, northern Japan, elucidate a detailed chemostratigraphy for the Cenomanian Stage on the northwestern Pacific margin. Visual characterization of the kerogen from mudstone samples shows that the major constituents of sedimentary organic matter originated as terrestrial higher plants. The atomic hydrogen/carbon ratios of the kerogen suggest that the original δ13C values of terrestrial organic matter (TOM) have not been affected significantly by thermal diagenesis. The patterns in two δ13CTOM curves are similar and independent of changes in lithology and total organic carbon contents, which suggests that TOM was mixed sufficiently before the deposition in the Yezo forearc basin for the δ13C composition having been homogenized. In addition, this implies that the Hokkaido δ13CTOM profiles represent the averaged temporal δ13C variations of terrestrial higher‐plant vegetation in the hinterlands of northeast Asia during Cenomanian time. Three shorter‐term (ca. 0.1 my duration) positive‐and‐negative δ13CTOM fluctuations of ∼1‰ are present in the Lower to Middle Cenomanian interval in the Yezo Group. On the basis of the age‐diagnostic taxa (ammonoids, inoceramids and planktic foraminifers), these discrete δ13CTOM events are interpreted to be correlated with those in the δ13C curves of pelagic carbonates from European basins. The correlation of δ13C events between the European and Yezo Group sections suggests that the shorter‐term δ13C fluctuations in Cenomanian ocean‐atmosphere carbon reservoirs are useful for global chemostratigraphic correlation of marine strata. In particular, the correlation of δ13C fluctuations of the so‐called ‘Mid‐Cenomanian event’ (MCE) implies: (i) the δ13C variations of global carbon reservoir during the MCE are precisely recorded in the δ13CTOM records; and (ii) the MCE δ13CTOM event is an efficient chronostratigraphic index for the Lower/Middle Cenomanian boundary of the Mid‐Cretaceous sequences. 相似文献
4.
The Taho Formation in western Shikoku Island, Japan, consists of Triassic carbonates that formed on a seamount in the Panthalassic Ocean. In order to investigate the stratigraphy and paleoceanography of this carbonate succession, we analyzed the biostratigraphy and chemostratigraphy of a 17.6 m-thick section of the upper Taho Formation at the stratotype area in Tahokamigumi, Seiyo City. This section comprises bioclastic limestone containing Triassic bivalves, ammonoids, and conodonts. We recognized six conodont zones (in ascending order): the Novispathodus pingdingshanensis, Novispathodus brevissimus, Triassospathodus symmetricus, Triassospathodus homeri, Chiosella timorensis, and Magnigondolella cf. alexanderi zones. Thus, the studied carbonate succession is latest Smithian to Aegean in age. A δ13C profile of this section shows elevated values during the lowest Spathian followed by a gradual negative excursion, a subsequent positive excursion near the Spathian–Aegean boundary, and relatively constant values during the Aegean. The characteristic series of negative and positive excursions correlates with other δ13C records for this period, including the peak of the upper Smithian–lowest Spathian positive excursion (P3), lower to middle Spathian negative excursion (N4), and middle Spathian–lowest Aegean positive excursion (P4). This represents a new high-resolution Spathian–Aegean δ13C record of the Panthalassic Ocean, for which ages are constrained by conodont biostratigraphy. The Taho δ13C profile exhibits a consistent positive offset of ~2 ‰ as compared with those from other regions (i.e., mostly in the Tethyan Ocean). This can be explained by preferential removal of 12C from seawater during photosynthesis and calcification by marine organisms over the platform, and/or the relatively high δ13C values of dissolved inorganic carbon in the Panthalassic Ocean due to less influence of 12C-enriched terrestrial waters and high marine organic production/burial as compared with the more restricted Tethyan Ocean. 相似文献
5.
Immediately before the extinction of the end‐Guadalupian (Middle Permian; ca 260 Ma), a significant change to the global carbon cycle occurred in the superocean Panthalassa, as indicated by a prominent positive δ13C excursion called the Kamura event. However, the causes of this event and its connection to the major extinction of marine invertebrates remain unclear. To understand the mutual relationships between these changes, we analyzed the sulfur isotope ratio of the carbonate‐associated sulfate (CAS) and HCl‐insoluble residue, as well as the carbon isotope ratio of bulk organic matter, for the Middle‐Upper Permian carbonates of an accreted mid‐oceanic paleo‐atoll complex from Japan, where the Kamura event was first documented. We detected the following unique aspects of the stable carbon and sulfur isotope records. First, the extremely high δ13C values of carbonate (δ13Ccarb) over +5 ‰ during the Capitanian (late Guadalupian) were associated with large isotopic differences between carbonate and organic matter (Δ13C = δ13Ccarb ? δ13Corg). We infer that the Capitanian Kamura event reflected an unusually large amount of dissolved organic matter in the expanded oxygen minimum zone at mid‐depth. Second, the δ34S values of CAS (δ34SCAS) were inversely correlated with the δ13Ccarb values during the Capitanian to early Wuchiapingian (early Late Permian) interval. The Capitanian trend may have appeared under increased oceanic sulfate conditions, which were accelerated by intense volcanic outgassing. Bacterial sulfate reduction with increased sulfate concentrations in seawater may have stimulated the production of pyrite that may have incorporated iron in pre‐existing iron hydroxide/oxide. This stimulated phosphorus release, which enhanced organic matter production and resulted in high δ13Ccarb. Low δ34SCAS values under high sulfate concentrations were maintained and the continuous supply of sulfate cannot by explained only by the volcanic eruption of the Emeishan Trap, which has been proposed as a cause of the extinction. The Wuchiapingian δ34SCAS–δ13Ccarb correlation, likely related to low sulfate concentration, may have been caused by the removal of oceanic sulfate through the massive evaporite deposition. 相似文献
6.
Ocean plate stratigraphy (OPS) within an ancient accretionary complex provides important information for understanding the history of an oceanic plate from its origin at a mid‐ocean ridge to its subduction at a trench. Here, we report a recently discovered chert–clastic sequence (CCS) that comprises a continuous succession from pelagic sediments to terrigenous clastics and which constitutes part of the OPS in the Akataki Complex within the Cretaceous Shimanto Accretionary Complex on the central Kii Peninsula, SW Japan. As well as describing this sequence, we present U–Pb ages of detrital zircons from terrigenous clastic rocks in the CCS, results for which show that the youngest single grain and youngest cluster ages belong to the Santonian–Campanian and are younger than the radiolarian age from the underlying pelagic sedimentary rock (late Albian–Cenomanian). Thus, the CCS records the movement history of the oceanic plate from pelagic sedimentation (until the late Albian–Cenomanian) to a terrigenous sediment supply (Santonian–Campanian). 相似文献
7.
Effect of human‐controlled hydrological regime on the source,transport, and flux of particulate organic carbon from the lower Huanghe (Yellow River) 下载免费PDF全文
Bangqi Hu Jun Li Naishuang Bi Houjie Wang Helong Wei Jingtao Zhao Luhua Xie Liang Zou Ruyong Cui Song Li Ming Liu Guogang Li 《地球表面变化过程与地形》2015,40(8):1029-1042
Evaluating the role of fluvial transfer of terrestrial organic carbon (OC) and subsequent burial in the global carbon cycle requires the sources and fluxes of fluvial OC to be assessed, which remains poorly constrained in the Huanghe (Yellow River). Here, we report the elemental, stable isotopic, and radiocarbon activity of particulate organic carbon (POC) sampled at the outlet of Huanghe in 2012–2013. We show that the Huanghe riverine POC can be explained by binary mixing of fossil (POCfossil) and non‐fossil (POCnon‐fossil) components, the former may reach ~40% of the total POC. The Huanghe POCnon‐fossil is mostly sourced from C3 plants, with a mean residence time of c. 2200 years. The current human‐controlled hydrological regime strongly influenced the POC sources, transport modes, and fluxes. In 2012–2013, the Huanghe delivered 0.73 Tg (1 Tg = 1012 g) of POC to the sea, and about 28% of the annual POC flux occurred within a short human induced flood event. Globally, the Huanghe should be one of the largest rivers in the transfer and re‐burial of fossil OC. However, the fate of Huanghe fossil OC is still unconstrained and needs to be further investigated. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
8.
The stratigraphic division and correlation of the Lower/Middle Cambrian boundary is a global problem that has not yet been solved even up to now. That is because there existed two distinctly different biogeographic regions during the Early and Middle Cambrian[1]—— the Indian-Pacific biogeographic region and the Atlantic biogeographic region. In the Atlantic biogeographic region the traditional Lower/Middle Cambrian boundary was marked by the extinction of Olenellids trilobite and the in… 相似文献
9.
The mafic volcanic rocks and hypabyssal rocks in the Chon Dean‐Wang Pong area are possibly the southern extension of the western Loei Volcanic Sub‐belt, Northeast Thailand. They are least‐altered, and might have been formed in Permian–Triassic times. The rocks are commonly porphyritic, with different amounts of plagioclase, clinopyroxene, orthopyroxene, amphibole, Fe–Ti oxide, unknown mafic mineral, and apatite phenocrysts or microphenocrysts, and are uncommonly seriate textured. The groundmass mainly shows an intergranular texture, with occasionally hyalophitic, intersertal and ophitic–subophitic textures. The groundmass constituents have the same minerals as the phenocrysts or microphenocrysts and may contain altered glass. The groundmass plagioclase laths may show a preferred orientation. Chemically, the studied rock samples can be separated into three magmatic groups: Group I, Group II, and Group III. These magmatic groups are different in values for Ti/Zr ratios. The averaged Ti/Zr values for Group I, Group II, and Group III rocks are 83 ± 6, 46 ± 12, and 29 ± 5, respectively. In addition, the Group I rocks have higher P/Zr, but lower Zr/Nb relative to Group II and Group III rocks. The Group I and Group II rocks comprise tholeiitic andesite–basalt and microdiorite–microgabbro, while the Group III rocks are calc‐alkalic andesite and microdiorite. According to the magmatic affinities and the negative Nb anomalies on normal mid‐oceanic ridge basalt (N‐MORB) normalized multi‐element plot, arc‐related lavas are persuasive. The similarity between the studied lavas and the Quaternary lavas from the northern Kyukyu Arc, in terms of chondrite‐normalized rare earth element (REE) patterns and N‐MORB normalized multi‐element patterns, leads to a conclusion that the mafic volcanic rocks and hypabyssal rocks in the Chon Daen–Wang Pong area have been formed in a volcanic arc environment. 相似文献
10.
Carbon isotope stratigraphy of the Late Jurassic and earliest Cretaceous was revealed from Torinosu‐type limestone, which was deposited in a shallow‐marine setting in the western Paleo‐Pacific, in Japan. Two sections were examined; the Nakanosawa section of the late Kimmeridgian to early Tithonian age (Fukushima Prefecture, Northeast Japan), and the Furuichi section of the late Kimmeridgian to early Berriasian age (Ehime Prefecture, Southwest Japan). The age‐model was established using Sr isotope ratio and fossil occurrence. The limestone samples have a low Mn/Sr ratio (mostly <0.5) and lack a distinct correlation between δ13C and δ18O, indicating a low degree of diagenetic alteration. Our composite δ13C profile from the two limestone sections shows three stratigraphic correlation points that can be correlated with the profiles of relevant ages from the Alpine Tethyan region: a large‐amplitude fluctuation (the lower upper Kimmeridgian, ~152 Ma), a positive anomaly (above the Kimmeridgian/Tithonian boundary, ~150 Ma), and a negative anomaly (the upper lower Tithonian, ~148 Ma). In addition, we found that δ13C values of the Torinosu‐type limestone are ~1‰ lower than the Tethyan values in the late Kimmeridgian. This inter‐regional difference in δ13C values is likely to have resulted from a higher productivity and/or an organic burial in the Tethyan region. The difference gradually reduces and disappears in the late Tithonian, where the Tethyan and our δ13C records show similar stable values of 1.5–2.0‰. This isotopic homogenization is probably due to changes in the continental distribution and the global ocean circulation, which propagated the 13C‐depleted signature from the larger Paleo‐Pacific to the smaller Tethys Ocean during this time. 相似文献
11.
Age gap between the intrusion of gneissose granitoids and regional high‐temperature metamorphism in the Ryoke belt (Mikawa area), central Japan 下载免费PDF全文
Kota Takatsuka Tetsuo Kawakami Etienne Skrzypek Shuhei Sakata Hideyuki Obayashi Takafumi Hirata 《Island Arc》2018,27(1)
The relationships between the intrusion of gneissose granitoids and the attainment of regional high‐T conditions recorded in metamorphic rocks from the Ryoke belt of the Mikawa area, central Japan, are explored. Seven gneissose granitoid samples (tonalite, granodiorite, granite) were collected from three distinct plutonic bodies that are mapped as the so‐called “Older Ryoke granitoids.” Based on bulk‐rock compositions and U–Pb zircon ages obtained by laser ablation inductively coupled plasma mass spectrometry, the analyzed granitoids can be separated into two groups. Gneissose granitoids from the northern part of the area give weighted mean 206Pb/238U ages of 99 ±1 Ma (two samples) and 95 ±1 Ma (one sample), whereas those from the southern part yield 81 ±1 Ma (two samples) and 78–77 ±1 Ma (two samples). Regional comparisons allow correlation of the northern granitoids (99–95 Ma) with the Kiyosaki granodiorite, and mostly with the Kamihara tonalite found to the east. The southern granitoids are tentatively renamed as “78–75 Ma (Hbl)?Bt granite” and “81–75 Ma Hbl?Bt tonalite” (Hbl, hornblende; Bt, biotite). and seem to be broadly coeval members of the same magmatic suite. With respect to available age data, no gneissose granitoid from the Mikawa area shows a U–Pb zircon age which matches that of high‐T metamorphism (ca 87 Ma). The southern gneissose granitoids (81–75 Ma), although they occur in the highest‐grade metamorphic zone, do not seem to represent the heat source which produced the metamorphic field gradient with a low dP/dT slope. 相似文献
12.
A simple geochemical technique using the ratio of total sulfur (TS) to total organic carbon (TOC) was successfully used to reconstruct paleoenvironments in the Jurassic–Cretaceous Tetori Group, central Japan. The TS to TOC ratio is often employed as an effective parameter to separate modern marine or brackish sediments from freshwater deposits. To test the TS/TOC method for paleoenvironmental interpretation of the Tetori Group, we first analyzed TS/TOC for samples for which depositional conditions (i.e. marine, brackish or freshwater) had been recognized paleontologically. The results indicate that the method can effectively separate sedimentary rocks deposited under freshwater from marine and brackish settings. Once we had established the effectiveness of this method, we applied it to three sections of the Tetori Group, central Japan. Stratigraphic fluctuations in TS/TOC values revealed episodic incursions of marine or brackish conditions in the dominantly freshwater depositional sequence in the middle of the Jobu Formation of the Itoshiro Subgroup at the Izumi section, Fukui Prefecture. The same paleoenvironment is also suggested to occur at the top of the Tetori Group in the Tateyama section, Toyama Prefecture. This research provides important information to paleogeographers who currently lack evidence from facies fossils to indicate if the uppermost part of the Tetori Group represents marine or brackish settings. A chemostratigraphy of TS/TOC parameters potentially could provide a correlation among Jurassic–Cretaceous sequences along continental margins over East Asia. 相似文献
13.
Petrogenesis of diabase from accretionary prism in the southern Qiangtang terrane,central Tibet: Evidence from U–Pb geochronology,petrochemistry and Sr–Nd–Hf–O isotope characteristics 下载免费PDF全文
The Bangong–Nujiang suture (BNS) between the Lhasa and Qiangtang terranes is an important boundary and its petrogenesis is controversial. Diabase from the accretionary prism in the southern Qiangtang terrane yields a zircon U–Pb age of 181.3 ± 1.4 Ma. All the diabases show tholeiitic basalt compositions, gentle enrichment patters of light rare earth elements (REE), variable enrichment in incompatible element concentrations (e.g. Th and Rb), and no anomaly in high field strength elements (e.g. Nb and Ta), similar to that of enriched mid‐ocean ridge basalt (E‐MORB). They have relatively homogeneous whole rock Nd (εNd(t) = 7.3–9.1) and zircon Hf–O isotopic compositions (εHf(t) = 14.8–16.1, and δ18O = 4.57–6.12‰), possibly indicating melting of the depleted mantle and no significant crustal contamination during the petrogenesis. The element variations suggest that the diabases were formed by plume–ridge interaction at a mid‐ocean ridge within the Bangong–Nujiang ocean. 相似文献
14.
The stratigraphy and radiolarian age of the Mizuyagadani Formation in the Fukuji area of the Hida‐gaien terrane, central Japan, represent those of Lower Permian clastic‐rock sequences of the Paleozoic non‐accretionary‐wedge terranes of Southwest Japan that formed in island arc–forearc/back‐arc basin settings. The Mizuyagadani Formation consists of calcareous clastic rocks, felsic tuff, tuffaceous sandstone, tuffaceous mudstone, sandstone, mudstone, conglomerate, and lenticular limestone. Two distinctive radiolarian faunas that are newly reported from the Lower Member correspond to the zonal faunas of the Pseudoalbaillella u‐forma morphotype I assemblage zone to the Pseudoalbaillella lomentaria range zone (Asselian to Sakmarian) and the Albaillella sinuata range zone (Kungurian). In spite of a previous interpretation that the Mizuyagadani Formation is of late Middle Permian age, it consists of Asselian to Kungurian tuffaceous clastic strata in its lower part and is conformably overlain by the Middle Permian Sorayama Formation. An inter‐terrane correlation of the Mizuyagadani Formation with Lower Permian tuffaceous clastic strata in the Kurosegawa terrane and the Nagato tectonic zone of Southwest Japan indicates the presence of an extensive Early Permian magmatic arc(s) that involved almost all of the Paleozoic non‐accretionary‐wedge terranes in Japan. These new biostratigraphic data provide the key to understanding the original relationships among highly disrupted Paleozoic terranes in Japan and northeast Asia. 相似文献
15.
Cretaceous granitoids and their zircon U–Pb ages across the south‐central part of the Abukuma Highland,Japan 下载免费PDF全文
Zircons separated from Cretaceous granitoids are dated from a south‐central transect of the Abukuma metamorphic and granitic terrane. The zircon ages do not follow ‘older’ and ‘younger’ granitoid ages that are used conventionally. In the western part of the study area (Zones I, II and III) where the Takanuki and Gosaisho metamorphic rocks are exposed, the Iritono quartz dioritic stock intruding the greenschist facies rocks in Zone III exhibits the oldest age of 121 Ma in the studied region. Quartz diorite located northward shows 112 Ma, but the other four granitoids intruding into the Takanuki and Gosaisho metamorphic rocks are younger and 103–99 Ma. Two‐mica and biotite granites belong to the youngest age group of 99 Ma. The granitic activities of both the Abukuma and Ryoke belts were initiated by intrusion of quartz dioritic magmas and were ended by two‐mica granite activity. The ages of the eastern two batholiths vary from 110 to 106 Ma (four samples), and show no age common to the Kitakami granitoids farther to the north. Throughout the Japanese Islands arc, Cretaceous granitic activities became younger toward the marginal sea side from the Kitakami Mountains, to the Abukuma Highland, and the Ryoke Belt, then to the Sanin belt of the Inner Zone of Southwest Japan. 相似文献
16.
The Long Valley Exploratory Well, at the center of the Resurgent Dome of Long Valley caldera, penetrated pre-caldera basement rocks at a depth of 2101.72–2313.0 m, beneath the caldera-forming Bishop Tuff and post-caldera Early Rhyolite. The basement rocks contain prominent quartzites, with ubiquitous milky white quartz veins (with minor calcite and pyrite) and fractures of varied orientation and geometry. The other members of the basement sequence are very fine-grained quartz-rich graphitic pelites with calcite veins, spotted hornfels, and shallow intrusive rocks. Previous studies established the presence of a post-caldera, paleohydrothermal system (500–100 ka) to a depth of 2000 m that affected the Bishop Tuff and a recent (40 ka to present) hydrothermal system at shallow depth (<1 km). The deeper extent of these hydrothermal activities is established in this paper by a detailed oxygen isotope analysis of the drill core samples. 238 analyses of δ18O in 50 quartz veins within the 163.57 m depth interval of basement rocks reveal extreme heterogeneity in δ18O values (8–19.5‰). Majorities of the 84 bulk analyses of quartzites show variation of δ18O within a narrow range of 14–16‰. However, certain samples of these quartzites near the contacts with veins and fractures exhibit sharp drops in δ18O. The interbedded pelitic rocks and spotted hornfels have whole-rock δ18O ranging from 2.2 to 11.8‰. Clear, euhedral vuggy quartz that partially fills earlier open fractures in both the quartzites and quartz veins, has distinctive δ18O, ranging between −3.2 and +8.4‰. Low values of δ18O are also found in the hydrothermal minerals and whole rocks adjacent to the thin veins, clearly indicating infiltration of meteoric water. Three distinct observed patterns of fractionation in δ18O between veins and host quartzites are analyzed with the principles of mass balance, equilibrium oxygen isotope fractionation in closed system, and kinetically controlled oxygen isotope exchange in an open system. This analysis suggests that the early quartz veins formed due to a magmatic-hydrothermal activity with no influx of external water once the system comprising the sedimentary envelope and a magmatic-hydrothermal fluid phase became closed. Two-stage isotopic exchange processes caused fractionation in the δ values that originally formed arrays with slope 1 in a δvein quartz–δhost quartzite space. Another array in the same space, with near zero slope was also formed due to variation in temperature, initial isotopic compositions of the quartzite sequence and the fluid phase. Variation in temperature was mostly in the range of 300–400°C giving Δ (=δvein quartz–δhost quartzite)≈−2.8 to +2.8. The δ18O of the fluid could range from −5 to +10; however a narrower range of +5 to +10 can explain the data. This episode of hydrothermal activity could take place either as a single pulse or in multiple pulses but each as a closed system. A later, fracture-controlled, meteoric water (δ18O−0.46 to −12.13) flow and interaction (at 250°C) is interpreted from the analysis of δ18O values of the coexisting quartz and calcite pairs and existence of markedly 18O-depleted pelitic horizons interbedded with 18O-enriched quartzite layers. Thus, the interpreted earlier magmatic-hydrothermal activity was overprinted by a later meteoric-hydrothermal activity that resulted in steep arrays of δ18O values in the δvein quartz–δhost quartzite space. Calculations show that the likely life span of the post-caldera, hydrothermal activity in the depth range of 2.1–2.3 km beneath Long Valley was 0.08–0.12 Ma. Diffusive ±advective transport of oxygen isotopes from fracture-channelized meteoric water to nearly impermeable wall rocks caused a lowering of δ18O values in the quartz over short distances and in calcites over greater distances. Thus, the hydrothermal activity appears pervasive even though the meteoric water flow was primarily controlled by fractures. 相似文献
17.
Fluvial to bay sequence stratigraphy and seismic facies of the Cretaceous to Paleogene successions in the MITI Sanriku‐oki well and the vicinities,the Sanriku‐oki forearc basin,northeast Japan 下载免费PDF全文
This paper describes the significant depositional setting information derived from well and seismic survey data for the Upper Cretaceous to Lower Eocene forearc basin sediments in the central part of the Sanriku‐oki basin, which is regarded as a key area for elucidating the plate tectonic history of the Northeast Japan Arc. According to the results of well facies analysis utilizing cores, well logs and borehole images, the major depositional environments were of braided and meandering fluvial environments with sporadically intercalated marine incursion beds. Seismic facies, reflection terminations and isopach information provide the actual spatial distributions of fluvial channel zones flowing in a north–south trending direction. The transgression and regression cycles indicate that the Upper Cretaceous to Lower Eocene successions can be divided into thirteen depositional sequences (Sequences SrCr‐0 to SrCr‐5, and SrPg‐1 to SrPg‐7). These depositional sequences demonstrate three types of stacking patterns: Types A to C, each of which shows a succession mainly comprising a meandering fluvial system, a braided fluvial system with minor meandering aspects in the upper part, and major marine incursion beds in the middle part, respectively, although all show an overall transgressive to regressive succession. The Type C marine incursion beds characteristically comprise bay center and tidal‐dominated bay margin facies. Basin‐transecting long seismic sections demonstrate a roll up structure on the trench slope break (TSB) side of the basin. These facts suggest that during the Cretaceous to Eocene periods, the studied fluvial‐dominated forearc basin was sheltered by the uplifted TSB. The selective occurrences of the Type C sequences suggest that when a longer‐scale transgression occurred, especially in Santonian and early Campanian periods, a large bay basin was developed, creating accommodation space, which induced the deposition of the Cretaceous Kuji Group along the arc‐side basin margin. 相似文献
18.
SHIGERU SUEOKA BARRY P. KOHN TAKAHIRO TAGAMI HIROYUKI TSUTSUMI NORIKO HASEBE AKIHIRO TAMURA SHOJI ARAI 《Island Arc》2012,21(1):32-52
Fission‐track (FT) and (U–Th–Sm)/He (He) analyses are used to constrain the denudation pattern and history of the Kiso Range, a Japanese fault‐block mountain range which has been uplifted since ca 0.8 Ma. We obtained nine zircon FT ages ranging 59.3–42.1 Ma, 18 apatite FT ages ranging 81.9–2.3 Ma, and 13 apatite He ages ranging 36.7–2.2 Ma. The apatite FT and He ages are divided into an older group comparable to the zircon FT age range and a younger group of <18 Ma. The younger ages are interpreted as a reflection of uplift of the Kiso Range because they were obtained only to the east of the Seinaiji‐touge Fault, and the event age estimated from apatite FT data is consistent with the timing of the onset of the Kiso Range uplift. On the basis of the distribution of the younger ages, we propose westward tilting uplift of the Kiso Range between the boundary fault of the Inadani Fault Zone and Seinaiji‐touge Fault, which implies a model of bedrock uplift that is intermediate between two existing models: a pop‐up model in which the Kiso Range is squeezed upward between the two faults and a tilted uplift model which assumes that the Kiso Range is uplifted and tilted to the west by the Inadani Fault Zone. The original land surface before the onset of uplift/denudation of the Kiso Range is estimated to have been uplifted to an elevation of 2700–4900 m. We estimated denudation rates at 1.3–4.0 mm/y and maximum bedrock uplift rates at 3.4–6.1 mm/y since ca 0.8 Ma. The Seinaiji‐touge fault is interpreted as a back thrust of the west‐dipping Inadani Fault Zone. The older group of apatite FT and He ages is interpreted to reflect long‐term peneplanation with a probable denudation rate of <0.1 mm/y. 相似文献
19.
Illite crystallinity, K–Ar dating of illite, and fission‐track dating of zircon are analyzed in the hanging wall (Sampodake unit) and footwall (Mikado unit) of a seismogenic out‐of‐sequence thrust (Nobeoka thrust) within the Shimanto accretionary complex of central Kyushu, southwest Japan. The obtained metamorphic temperatures, and timing of metamorphism and cooling, reveal the tectono‐metamorphic evolution of the complex, and related development of the Nobeoka thrust. Illite crystallinity data indicate that the Late Cretaceous Sampodake unit was metamorphosed at temperatures of around 300 to 310°C, while the Middle Eocene Mikado unit was metamorphosed at 260 to 300°C. Illite K–Ar ages and zircon fission‐track ages constrain the timing of metamorphism of the Sampodake unit to the early Middle Eocene (46 to 50 Ma, mean = 48 Ma). Metamorphism of the Mikado unit occurred no earlier than 40 Ma, which is the youngest depositional age of the unit. The Nobeoka thrust is inferred to have been active during about 40 to 48 Ma, as the Sampodake unit started its post metamorphic cooling after 48 Ma and was thrust over the Mikado unit at about 40 Ma along the Nobeoka thrust. These results indicate that the Nobeoka thrust was active for more than 10 million years. 相似文献
20.
Atsushi Nozaki Ryuichi Majima Koji Kameo Saburo Sakai Atsuro Kouda Shungo Kawagata Hideki Wada Hiroshi Kitazato 《Island Arc》2014,23(2):157-179
We present field and core observations, nannofossil biostratigraphy, and stable oxygen isotope fluctuations in foraminiferal tests to describe the geology and to construct an age model of the Lower Pleistocene Nojima, Ofuna, and Koshiba Formations (in ascending order) of the middle Kazusa Group, a forearc basin‐fill succession, exposed on the northern Miura Peninsula on the Pacific side of central Japan. In the study area, the Nojima Formation is composed of sandy mudstone and alternating sandy mudstone and mudstone, the Ofuna Formation of massive mudstone, and the Koshiba Formation of sandy mudstone, muddy sandstone, and sandstone. The Kazusa Group contains many tuff beds that are characteristic of forearc deposits. Thirty‐six of those tuff beds have characteristic lithologies and stratigraphic positions that allow them to be traced over considerable distances. Examination of calcareous nannofossils revealed three nannofossil datum planes in the sequences: datum 10 (first appearance of large Gephyrocapsa), datum 11 (first appearance of Gephyrocapsa oceanica), and datum 12 (first appearance of Gephyrocapsa caribbeanica). Stable oxygen isotope data from the tests of the planktonic foraminifer Globorotalia inflata extracted from cores were measured to identify the stratigraphic fluctuations of oxygen isotope ratios that are controlled by glacial–interglacial cycles. The observed fluctuations were assigned to marine isotope stages (MISs) 49–61 on the basis of correlations of the fluctuations with nannofossil datum planes. Using the age model obtained, we estimated the ages of 24 tuff beds. Among these, the SKT‐11 and SKT‐12 tuff beds have been correlated with the Kd25 and Kd24 tuff beds, respectively, of the Kiwada Formation on the Boso Peninsula. The Kd25 and Kd24 tuff beds are widely recognized in Pleistocene strata in Japan. We used our age model to date SKT‐11 at 1573 ka and SKT‐12 at 1543 ka. 相似文献