首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Helium, neon, argon, krypton and xenon data are presented from stepwise heating of samples of the mineral whitlockite from the chondritic meteorite St. Severin. The xenon is shown to be a uniform mixture derived from 244Pu fission and rare-earth element spallation. The krypton similarly contains spallation products and 86Kr from 244Pu fission. Plutonium-244 fission yields of 86Kr/129Xe/131Xe/132Xe/134Xe/136Xe = 1.9 ± 0.5/4.8 ± 5.5/24.6 ± 2.0/88.5 ±3.0/93.9 ± 0.8/  100 are obtained. The helium, neon and argon are dominated by spallation and radiogenic 4He and 40Ar. A pile neutron irradiation experiment does not yield a unique Pu/U ratio for this mineral but yields ratios varying from 0.045 down to 0.017. Both the high concentration of 244Pu fission xenon and the high ratio of Pu/U previously reported by Wasserburget al. (J. Oeophys. Res. 74, 4221–4232, 1969) are thus confirmed.  相似文献   

2.
3.
4.
An integrated study of the cosmic ray exposure history of the San Juan Capistrano meteorite was carried out using measurements of rare gas isotopic abundances, particle track densities and radioisotope concentrations. Spallation systematics determined for Kr isotopes in lunar samples are shown to be valid also for the San Juan Capistrano and St. Severin meteorites, thus allowing us to determine a reliable 81Kr/83Kr production ratio as needed for applying the 81Kr-Kr dating method. The 81Kr-Kr age of SJC is 28.7 ± 2.0 Myr, about 35% longer than ages determined by spallation He or Ne. The minimum observed track production rate (2.6 × 105 tracks/cm2 · Myr) sets a minimum of 8 cm for the preatmospheric radius of an assumed spherical body. Track density gradients and the low 60Co activity (<2.9 dpm/g Co) both set an upper limit of 10 cm to the radius. Track results show that ablation losses have averaged 6cm. The relative spallation yields of 78Kr and 83Kr, and the ratios 3He/21Ne and 22Ne/21Ne are all compatible with a hard irradiation as would be experienced by a sample depth of about 6 cm in a body of 8–10 cm. The low activities of 54Mn, 22Na and 26Al are also consistent with these irradiation conditions.  相似文献   

5.
We report an age of crystallization for spinel-troctolite (VHA basalt) 62295 of 4.00 ± 0.06 × 109 yr (I = 0.69956 ± 6) and an age of crystallization for KREEP-rich basalt 14310 of [3.94 ± 0.03 × 109yr (I = 0.70041 ± 5). The ages probably date the cooling of shock melts.  相似文献   

6.
He, Ne, Ar, Kr and Xe were measured mass spectrometrically in eight bulk fines and one sample of 2–4 mm fines (15603) from stations LM-ALSEP, 2, 6, 61, 7a, and 9. We have also measured these gases in size fractions of samples 15091 and 15601. These samples come from three morphologically distinct selenographic settings: the Appenine Front, the Mare and Hadley Rille. Measured gas contents in these samples are comparable to those from previous Apollo missions. He4 and the other trapped gases are inversely proportional to grain diameter in the size fractions of 15091 and 15601. More than 90 per cent of the trapped gas in 15601 is surface correlated; hence is probably directly implanted solar wind. Size fractions of 15091 contain large volume correlated amounts of He4, Ne20 and Ar36. He4/Ne20 ranges from about 20 to 60; Ne20/Ar36 from 5 to 8: Ar36/Kr84 from 2400 to 3200; and Kr84/Xe132 from 3·2 to 7·3. The lowest He4/Ne20 ratios occur in samples rich in green glass spherules which have He4/Ne20 ≤ 10 (Lakatos, Heymann, and Yaniv, unpublished). He4/He3 ranges from about 210 to 2700; Ne20/Ne22 from 12·7 to 13·2; Ne21/Ne22 from 0·035 to 0·041; and Ar36/Ar38 from 5·26 to 5·45. The measured Ar40/Ar36 ratios range from 0·757 to 3·56; when corrected for radiogenic Ar40, the range becomes 0·6 to 3·4. The largest corrected Ar40/Ar36 ratios occur in samples from the Apennine Front, the smallest occur in the Mare. This could be due to slope effects between the front as opposed to the mare terrain. An alternative possibility is that the Front fines acquired their atmospheric Ar40 at a time when the concentration of neutral Ar40 in the lunar atmosphere was relatively large.Ne21 radiation ages were calculated for all samples. There is evidence in the landing area for debris from craters with ages less than 100 × 106 yr, but these craters cannot be firmly identified from the data.  相似文献   

7.
Solubilities of noble gases in magnetite were determined by growing magnetite in a noble-gas atmosphere between 450 and 700°K. Henry's law is obeyed at pressures up to 10?2 atm for He, Ne, Ar and up to 10?5 atm for Kr, Xe, with the following distribution coefficients at 500° (cc STP g?1 atm?5): He 0.042, Ne 0.016, Ar 3.6, Kr 1.3, Xe 0.88, some 102–105 times higher than previous determinations on silicate and fluoride melts. Apparent heats of solution in kcal/mole are: He ?2.42 ±0.12, Ne ?2.20 ±0.10, Ar ?15.25 ±0.25, Kr ?13.0 ±0.3, Xe ?12-5 ± 0.5. These values, too, stand in sharp contrast with earlier determinations on melts which were small and positive, but are comparable to the values for clathrates. Presumably the gases are held in anion vacancies.Extrapolation of the magnetite data to the formation temperature of C1 chondrites, 360°K, shows that the Arp36 content of Orgueil magnetite could be acquired by equilibrium solubility at a total nebular pressure of 4 × 10?6 atm. In the absence of data for silicates (the principal host phase of planetary gas), an attempt is made to estimate the solubilities required to account for planetary gases in meteorites. These values do not appear grossly unreasonable in the light of the magnetite data, when structural differences between the two minerals are taken into account. It seems that equilibrium solubility may be able to account for four features of planetary gas: elemental ratios, amounts, correlations with other volatiles and retentive siting. It cannot account for the isotopic fractionation of planetary gas, however.  相似文献   

8.
相鹏  崔敏利  吴华英  张晓静  张连昌 《岩石学报》2012,28(11):3655-3669
河北滦平县周台子铁矿位于华北克拉通北缘,是产于前寒武纪单塔子群变质岩系中的鞍山式铁矿,具有条带状铁建造(BIF)特征。矿石主要呈条带状构造,有的呈条纹和致密块状构造。矿石类型主要以石英磁铁矿型为主,含铁介于30%~35%。前寒武纪变质岩是矿床的主要围岩,出露有黑云母(角闪)斜长片麻岩和斜长角闪岩,局部见花岗片麻岩。原岩恢复表明,黑云母(角闪)斜长片麻岩的原岩为英安岩-流纹岩,斜长角闪岩原岩为玄武岩。花岗片麻岩的SiO2含量大于56%,MgO含量小于3%,Al2O3含量大于15%,Sr含量大于500×10-6,Yb含量均小于1.9×10-6,轻重稀土元素分异明显,重稀土元素强烈亏损,并且Eu负异常不明显,表明该片麻岩具埃达克质岩石的地球化学特征。锆石U-Pb定年结果显示出几组年龄,分别是2512±21Ma, 2452±9.6Ma,2394±55Ma。大体看,2512Ma代表了火山喷发和周台子铁矿BIF沉淀年龄,2452Ma左右的锆石年龄代表了TTG质花岗片麻岩的侵位结晶年龄,2394Ma锆石年龄代表了周台子铁矿经历了一次变质作用,并对原有的岩石和矿石进行了改造。锆石Hf同位素特征显示斜长角闪岩和TTG质片麻岩的岩浆源区受到过古老地壳物质的混染。周台子铁矿构造环境可能是与裂谷有关的张性环境。  相似文献   

9.
Analyses of 40Ar-39Ar have been made on a whole rock sample and a maskelynite (feldspar) separate of the shocked Shergotty achondrite. The maskelynite gave a plateau age of 254 ± 10 Myr. The whole rock sample gave a complex release with apparent ages between 240 and 640 Myr. The slightly younger Rb-Sr isochron age of 165 Myr for Shergotty (Nyquistet al., 1978) suggests that the maskelynite as well as the whole rock was incompletely degassed. Reasonable Ar diffusion characteristics for Shergotty for shock heating temperatures of <400°C indicate D/a2 of 10?11?10?13 sec?1. The time required to lose 95% of the 40Ar from the plagioclase would be ~103–104 yr. When this gas diffusion time is introduced into a thermal model of a cooling ejecta blanket of variable thickness, a post-shock cooling time of ? 103 yr and a burial depth of ? 300 m are indicated for Shergotty. These conclusions are not seriously affected by uncertainties in the thermal model. Most likely the shock event occurred ~ 165 Myr ago, but no earlier than 250 Myr ago, when the Shergotty parent object experienced a collision in the asteroid belt. As a result of that collision, feldspar was converted to maskelynite, the K-Ar and Rb-Sr ages were completely or nearly completely reset, and the Shergotty meteorite was heated to <400°C and left to cool slowly inside the parent body.  相似文献   

10.
11.
The host rocks of the porphyry tin deposits in the Yangbin area are principally topaz-bearing porphyry dikes about 2 km long and 2–20m wide. Three lithologie types are identified for the dikes: topaz-bearing potassium feldspar granitic porphyry, topaz-bearing monzonitic granitic porphyry and topaz-bearing quartz porphyry. The content of topaz in the rocks ranges from 10 to 20 vol.%. Porphyritic texture is characteristic, with quartz, potassium feldspar and albite as main phenocryst minerals. The phenocryst occupies 10–20 vol% of the rocks. The rock groundmass consists of subhedral topaz, quartz and protolithionite. Topaz has a unit-cell parameter b=8.797 (Å), and F:OH=1.92:0.18, indicating a F-rich variety formed at high temperature. The topaz-bearing porphyries occurring in this area are strongly peraluminous (A/NKC=1.574–12.94), with high ratios of F/Cl (146–303) and Rb/Sr (5–122). They are rich in incompatible elements (Sn, 313 × 10?6–1042 × 10?6; W, 6 × 10?6–218 × 10?6; Nb, 27 × 10?6–54 × 10?6), but poor in compatible elements (Sr, 10 × 10?6–28 × 10?6; Ba, 58 × 10?6–73 × 10?6; V, 3 × 10?6–12 × 10?6, Cl, 150 × 10?6–226 × 10?6). The rocks are also characterized by high total REE amount (281.69 × 10?6–319.76 × 10?6), with strong Eu depletion (δEu=0.01–0.03) and low ratio of LREE/HREE (0.78–0.84). In summary, the authors propose an idea of S-type genesis for the topaz-bearing porphyries with tin mineralization, instead of I-type.  相似文献   

12.
129Xe, from the decay of the now-extinct 16.7 Ma129I, accumulates in iodine-bearing sites and since most iodine host phases are secondary, the I-Xe system is typically a chronometer for post-formational processes. The validity of the I-Xe chronometer is confirmed by comparison with Pb-Pb ages on phosphate and feldspar separates from twelve meteorites. Phosphate separates are found to be concordant with Pb-Pb for all six samples in which useful I-Xe data were obtained. Feldspar is a better iodine host than apatite in H chondrites, typically providing good I-Xe isochrons. These too are concordant with the Pb-Pb ages of the corresponding phosphates for five out of six feldspar separates. The exception is Allegan whose feldspar yields one of the oldest I-Xe ages observed, similar to those for CI and CM magnetites. We attribute this to a more primary mineralization, predating the secondary phosphate from which the comparison Pb-Pb age was obtained. Absolute I-Xe ages, found using the reported Pb-Pb age of Acapulco phosphate provide an absolute I-Xe age of 4.566 ± 0.002 Ga for both Shallowater and Bjurböle irradiation standards. This allows relative I-Xe ages to be interpreted in the context of absolute ages.  相似文献   

13.
High-resolution γ-ray spectrometry was exploited to determine naturally occurring thorium (Th), uranium (U) and potassium (K) elemental concentrations in the whole area covered by the Troodos Ophiolite Complex of Cyprus. For that purpose, a total of 59 samples from surface soils and 10 from the main rock formations of the region of interest were analysed. Elemental concentrations were determined for Th (range from 2.5×10−3 to 2.0 ppm), U (from 8.1×10−4 to 0.6 ppm), and K (from 1.3×10−4% to 1.0%). The average values (A.M±S.D.) derived are (0.24±0.34) ppm, (0.10±0.10) ppm and (0.21±0.24)%, for Th, U, and K, respectively, in the soils, and (0.52±0.17) ppm, (0.17±0.11) ppm and (0.49±0.87)% in the rocks. From these values, a radioactivity (radioelement) loss of nearly 50% is estimated in the underlying surface soils due to leaching and eluviation during weathering of the rocks. The measured Th/U ratio exhibits values between 2 and 4, whereas the K/Th ratio is highly variable ranging between 1.5×103 and 3.0×104.  相似文献   

14.
To simulate trapping of meteoritic noble gases by solids, 18 samples of Fe3O4 were synthesized in a noble gas atmosphere at 350–720 K by the reactions: 3Fe + 4H2O → Fe3O4 + 4H2 (Ne, Ar, Kr, Xe) 3Fe + 4CO → Fe3O3 + 4C + carbides (Xe only) Phases were separated by selective solvents (HgCl2, HCl). Noble gas contents were analyzed by mass spectrometry, or, in runs where 36 d Xe127 tracer was used, by γ-counting. Surface areas, as measured by the BET method, ranged from 1 to 400 m2/g. Isotopic fractionations were below the detection limit of 0.5%/m.u.Sorption of Xe on Fe3O4 and C obeys Henry's Law between 1 × 10?8 and 4 × 10?5 atm, but shows only a slight temperature dependence between 650 and 720 K (ΔHsol = ?4 ± 2 kcal/mole). The mean distribution coefficient KXe is 0.28 ± 0.09 cc STP/g atm for Fe3O4 and only a factor of 1.2 ± 0.4 greater for C; such similarity for two cogenetic phases was predicted by Lewis et al. (1977). Stepped heating and etching experiments show that 20–50% of the total Xe is physically adsorbed and about 20% is trapped in the solid. The rest is chemisorbed with ΔHs ? ?13 kcal/mole. The desorption or exchange half-time for the last two components is >102 yr at room temperature.Etching experiments showed a possible analogy to “Phase Q” in meteorites. A typical carbon + carbide sample, when etched with HNO3, lost 47% of its Xe but only 0.9% of its mass, corresponding to a ~0.6 Å layer. Though this etchable, surficial gas component was more thermolabile than Q (release T below 1000°C, compared to 1200–1600°C), another experiment shows that the proportion of chemisorbed Xe increases upon moderate heating (1 hr at 450°C). Apparently adsorbed gases can become “fixed” to the crystal, by processes not involving volume diffusion (recrystallization, chemical reaction, migration to traps, etc.). Such mechanisms may have acted in the solar nebula, to strengthen the binding of adsorbed gases.Adsorbed atmospheric noble gases are present in all samples, and dominate whenever the noble gas partial pressure in the atmosphere is greater than that in the synthesis. Many of the results of Lancet and Anders (1973) seem to have been dominated by such an atmospheric component; others are suspect for other reasons, whereas still others seem reliable. When the doubtful samples of Lancet and Anders are eliminated or corrected, the fractionation pattern—as in our samples—no longer peaks at Ar, but rises monotonically from Ne to Xe. No clear evidence remains for the strong temperature dependence claimed by these authors.  相似文献   

15.
Eight C3 chondrites were examined by the I129Xe129 dating method, to see whether their IXe “ages” (better, initial I129I127ratios ≡ R0) correlate with any other properties. The R0's range from 1.60 × 10?4 to 1.09 × 10?4, corresponding to IXe ages from 2.0 Myr before to 6.7 Myr after Murchison magnetite. Three C3O's (Lancé, Felix, Ornans) have essentially indistinguishable R0's of (1.41 ± 0.13) to (1.17 ± 0.10) × 10?4; the fourth C3O, Warrenton, is undatable owing to homogenization of radiogenic and trapped Xe.Four C3V's show a distinct spread: Vigarano and Grosnaja are highest [R0 = (1.60 ± 0.07) and (1.57 ± 0.14) × 10?4], Mokoia is intermediate, and Kaba is lowest [R0 = (1.38 ± 0.06) and (1.09 ± 0.10) × 10?4]. Literature values for Allende place it near Kaba. These R0's correlate inversely with 4 other properties: I-, Br-, and Cd-content, and olivine composition, both percent mean deviation (PMD) and proportion of iron-poor olivine grains (≤2% fayalite).It is difficult to accept the ~9 Myr spread in R0 as a true age, reflecting either nebular or parent-body processes. This time span is more than an order of magnitude longer than the lifetime of the solar nebula inferred from astronomical evidence. Nor does the degree of thermal metamorphism, which is slight for C3's anyway, correlate with R0. A more plausible interpretation is that the variations in R0 reflect mainly isotopic heterogeneity of iodine. The simplest model that accounts for the correlations with R0 involves mixing of two iodine components in the solar nebula, associated with gas and grains, respectively. The second, of lower I129I127 ratio, predominated at later times and thus became enriched in late-formed meteorites, along with other volatiles such as Cd and Br. The low Fe content and large PMD of olivine may reflect either less metamorphism owing to shallow location in the parent body, or greater reduction of Fe2+ during chondrule formation.  相似文献   

16.
Fourty-four isotopic ages have been determined by K-Ar and U-Th-Pb methods for Late Palaeozoic granitic rocks in the Nanling Region, South China. All dating values vary within the range of 231–348 m.y. From the obtained dates, further evidence has been found that there do exist Late Palaeozoic granitic rocks, which can be subdivided into Late Devonian and Permian granitic rocks. Within a Late Devonian terrain, there is a granitic pluton, namely granodiorite with a zircon U-Th-Pb age of 348 m.y., while ten granitic plutons have been recognized within a Permian terrain where granites are predominant, yielding biotite K-Ar ages of 236–289 m.y. (λ β =4.72×10?10yr.?1,λ K=5.57×10?11yr.?1) and zircon U-Th-Pb ages ranging from 231 to 280 m.y., respectively. It is obvious from the dates that intrusive activity of granitic magma extensively took place in the Nanling Region during Late Palaeozoic, although no records of orogenie movements have been found, indicating that the faults are the main factor controlling the activity of granitic magma, whereas the orogenic movements are not the only prerequisite for the formation of granitic magma and the intrusive activity.  相似文献   

17.
1 Introduction According to recent researches, the North China Craton consists of three parts: the eastern block, western block and central zone (Zhao, 2001; Wilde et al., 2002). Paleoarchean continental blocks and zircon residuals have only been found in a few regions, such as Anshan, East Liaoning (Liu et al., 1992; Song et al., 1996; Wan et al., 2002, 2005), Caozhuang, East Hebei (Liu et al., 1992) and Xinyang, West Henan (Zheng et al., 2004), which are mainly distributed in the east…  相似文献   

18.
Three troilite- and pentlandite-rich samples from the Allende C3 chondrite were analyzed for Xe (and in one case Ne and Ar) by mass spectrometry, in 13–22 temperature steps. All samples released a small ‘CCFXe’ component (enriched in the heavy isotopes Xe134, 136) at the relatively low temperature of 700–800°C, ahead of adsorbed atmospheric Xe (~900°C), radiogenic Xe129 (1000°C), and primordial Xe (1250°C). Though such a labile component suggests implanted fission recoils, the simultaneous release of Ne, Ar, and Xe124, 126 shows that it instead comes from carbon and perhaps chromite, two major host phases of CCFXe. Apparently small amounts of these phases are occluded in sulfides, and decompose by chemical reaction upon heating. Thus the experiment fails to resolve the nature of CCFXe.A marked enrichment of Xe124, without corresponding enrichments in Xe126 or Xe131–136, was observed in the 550–650° and 1400–1500° fractions. Though requiring confirmation, it supports earlier evidence for the complexity and variability of the light xenon component, contrary to claims that it is an integral part of CCFXe.  相似文献   

19.
Noble gas data are reported for 12 E-chondrites. Combined with literature data, they show that K-Ar ages are >4 Æ for 14 out of 18 meteorites, yet U, Th-He ages are often shorter, perhaps due to late, mild reheating. Cosmic-ray exposure ages differ systematically between types 4 and 6, with E4's mostly below 16 Myr and E6's above 30 Myr. This may mean that the E-chondrite parent body contains predominantly a single petrologic type on the (~ 1 km) scale of individual impacts, in contrast to the more thoroughly mixed parent bodies of the ordinary chondrites.The heavy noble gases consist of at least two primordial components: the usual planetary component (36Ar132Xe ~ 80) and a less fractionated, ‘subsolar’ component (2700 ≤ 36Ar132Xe ≤ 3800). The latter is found in highest concentration in the E4 chondrite South Oman (36Ar = 760 × 10?8cc/g, 36Ar132Xe = 2700). The isotopic compositions of both components are similar to typical planetary values, indicating that some factor other than mass controlled the noble gas elemental ratios. The heavy Xe isotopes occasionally show some of the lowest 134Xe132Xe and 136Xe132Xe ratios measured in bulk chondrites, suggestive of nearly fission-free Xe (e.g. 136Xe132Xe = 0.3095 ± 0.0020). Amounts of planetary gas in E4 E6 chondrites fall in the range for ordinary chondrites of types 4–6, but, in contrast to the ordinary chondrites. fail to correlate with petrologic type or volatile trace element contents. Another unusual feature of E-chondrites is that primordial Ne is present even in most 4's and 5's (20Nep ~ 1 to 7 × 10?8cc/g). with an isotopic composition consistent with planetary Ne.Analyses of mineral separates show that the planetary gases are concentrated in an HF- and HCl-insoluble mineral similar to phase Q, the poorly characterized, HNO3-soluble carrier of primordial gases in carbonaceous and ordinary chondrites. The subsolar gases, on the other hand, are located in an HCl- and HNO3-resistant phase, possibly enstatite or a minor phase included in enstatite. Much of the 129Xer (50% for E4's, > 70% for E6's) is in HCl-resistant but HF-soluble sites, suggestive of a silicate.A similar subsolar component may be responsible for the high 36Ar132Xe ratios of some C3's, unequilibrated ordinary chondrites, and the unique aubrite Shallowater. The planet Venus also has a high ArKr ratio, well above the planetary range, and hence may have acquired its noble gases from an E-chondrite-like material, similar to South Oman.  相似文献   

20.
We report data on neutron capture products of the secondary cosmic ray component, the inferred proton and neutron fluences, and the identification of double beta decay of 82Se in heavily shielded samples of the Cape York iron meteorite. One purpose of this study is to develop a new chronometer for cosmic ray exposure, based on the nuclides 129I (16 My half-life) and 129Xe from low energy cosmic ray reactions on Te. The abundance ratio of these two nuclides permits the determination of an (effective) exposure age of 93 ± 16 My, which represents the first exposure age datum of Cape York. The very small concentrations of spallogenic 38Ar = 6.5 × 10−10 cm3 STP/g in the metal and troilite (per g Fe) document the heavily shielded locations of our sample. An excess of 129Xe in the troilite is shown to be entirely due to the decay of cosmic-ray-produced 129I. On the other hand, an inclusion in the troilite reveals the presence of 129Xe from extinct 129I and documents its ~4.5 Gy formation age. Mono-isotopic excess of 82Kr is identified as due to ββ-decay of 82Se with an inferred half-life of 1.0 × 1010 y. This represents the first ββ-decay product observed in a meteorite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号