首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Currents, particle fluxes and ecology were studied in the Palamós submarine canyon (also known as the Fonera canyon), located in the northwestern Mediterranean. Seven mooring arrays equipped with current meters and sediment traps were deployed along the main canyon axis, on the canyon walls and on the adjacent slope. Additionally, local and regional hydrographic cruises were carried out. Current data showed that mean near surface and mid-depth currents were oriented along the mean flow direction (NE–SW), although at 400 and 1200 m depth within the canyon current reversals were significant, indicating a more closed circulation inside the canyon. Mean near-bottom currents were constrained by the local bathymetry, especially at the canyon head. The most significant frequency at all levels was the inertial frequency. A second frequency of about three days, attributed to a topographic wave, was observed at all depths, suggesting that this wave was probably not trapped near the bottom. The current field observed during the most complete survey revealed a meandering pattern with cyclonic vorticity just upstream from and within the canyon. The associated vertical velocity ranged between 10 and 20 m/day and was constrained to the upper 300 m. This latter feature, together with other computations, suggests that during this survey the meander was not induced by the canyon but by some kind of instability of the mean flow.In the canyon, suspended sediment concentration, downward particle fluxes, chlorophyll and particulate C and N were significantly higher up-canyon from about 1200 m depth than offshore, defining, along with the different hydrodynamics, two canyon domains: one from the canyon head to about 1200 m depth more affected by the canyon confinement and the other deeper than 1200 m depth more controlled by the mean flow and the shelf-slope front. The higher near-bottom downward total mass fluxes were recorded in the canyon axis at 1200 m depth along with sharp turbidity increases and are related to sediment gravity flows. During the deployment period, the increase in downward particle fluxes occurred by mid-November, when a severe storm took place. On the canyon walls at 1200 m depth, suspended sediment concentrations, downward particle fluxes, chlorophyll and particulate C and N were higher on the southern wall than on the northern wall inversely to the current’s energy. This could be caused by an upward water supply on the southern canyon wall and/or the mean flow interacting with the canyon bathymetry. In the swimmers collected by the sediment traps, the dominant species was an elasipod holothurian, which has not been recorded in other canyons or elsewhere in the Mediterranean, indicating particular speciation.  相似文献   

2.
Internal tidal currents and associated water-mass displacements were investigated during multiple cruises in the Kaoping Submarine Canyon off southwestern Taiwan. Observations from both moored and shipboard Acoustic Doppler Current Profilers and hydrographic casts were conducted along the canyon. The velocity data showed that in the lower layer the major axis of the tidal currents aligned with the orientation of the canyon, and currents moved up-canyon during flood and down-canyon during ebb. The vertical-phase shift and amplitude of the currents indicated that the semidiurnal internal tide dominated with intensity increasing with depth toward the canyon head. Tidal energy was channeled from the shelf landward with a beamlike internal wave, guided by bottom topography. The estimated phase velocity was 1.4–1.7 m s−1, based on normal mode analysis and the phase lag between sampling stations. Empirical orthogonal function analysis of hydrographic profiles confirmed that the first mode (M2 internal tide) explained 70% of the total variance. The strong convergence of internal tidal currents near the canyon head during flood may play an important role in the daily migration of cherry shrimps, which burrow along the canyon wall.  相似文献   

3.
This study examines the influence of a submarine canyon on the dispersal of sediments discharged by a nearby river and on the sediment movement on the inner shelf. The study area includes the head region of the Kao-ping Submarine Canyon whose landward terminus is located approximately 1 km seaward from the mouth of the Kao-ping River in southern Taiwan. Within the study area 143 surficial sediment samples were taken from the seafloor. Six hydrographic surveys along the axis of the submarine canyon were also conducted over the span of 1 yr. Three different approaches were used in the analysis of grain-size distribution pattern. They include (1) a combination of ‘filtering’ and the empirical orthogonal (eigen) function (EOF) analysis technique, (2) the McLaren Model, and (3) the ‘transport vector’ technique. The results of the three methods not only agree with one another, they also complement one another. This study reveals that the Kao-ping Submarine Canyon is relatively a stratified and statically stable environment. The hydrographic characteristics of the canyon display seasonal variability controlled primarily by the temperature field and the effluent of the Kao-ping River. The hydrographic condition and the bottom topography in the canyon suggest the propagation of internal tides during the flood season (summer) of the Kao-ping River. The submarine canyon acts as a trap and conduit for mud exchange between the Kao-ping River and offshore. Near the head of the canyon there is a region of sediment transport convergence. This region is also characterized by high mud abundance on the seafloor that coincides with the presence of high suspended sediment concentration (SSC) spots in the bottom nepheloid layer. Outside the submarine canyon on the shelf where the evidence of wave reworking is strong, the northwestward alongshore transport dominates over the southeastward transport, which is a common theme on the west coast in southern Taiwan.  相似文献   

4.
The upper part of the continental slope in the northern South China Sea is prone to submarine landslide disasters,especially in submarine canyons. This work studies borehole sediments, discusses geotechnical properties of sediments, and evaluates sediment stability in the study area. The results show that sediment shear strength increases with increasing depth, with good linear correlation. Variations in shear strength of sediments with burial depth have a significantly greater rate of change in the canyon head and middle part than those in the canyon bottom. For sediments at the same burial depth, shear strength gradually increased and then decreased from the head to the bottom of the canyon, and has no obvious correlation with the slope angle of the sampling site. Under static conditions, the critical equilibrium slope angle of the sediments in the middle part of the canyon is 10° to 12°, and the critical slope angle in the head and the bottom of the canyon is 7°. The results indicate that potential landslide hazard areas are mainly distributed in distinct spots or narrow strips on the canyon walls where there are high slope angles.  相似文献   

5.
Deep slope currents and particulate matter concentrations were studied on the Barcelona continental margin in and around the Foix submarine canyon from May 1993 to April 1994. This year-long moored experiment revealed that near-bottom slope currents are strongly influenced by the bottom topography, being oriented along isobaths and along the canyon axis. The deep slope current fluctuations are controlled by the local inertial motion (18.3 h) and also by low-frequency oscillations at periods of 6–10 days, related to the passage of atmospheric pressure cells. Particulate matter concentrations recorded during the experiment do not show a clear seasonal variability, except outside the canyon, where significant peaks of particulate matter concentrations were recorded only during the winter-fall deployment. In addition, the temporal evolution of suspended particulate matter concentration is not linked to changes in the cross-slope or along-slope current components and did not show a clear relationship with river avenues or wave storm events. This suggests that suspended particulate matter exported from the shelf is dispersed on the slope by advective processes, which attenuate the signal of the shelf-slope sediment transfer. Mean particulate matter concentrations differed among sampling sites, but the magnitude of the mean horizontal suspended particle flux reflects a quite similar value in the whole study area, ranging from 2.53 to 4.05 mg m−2 s−1. These horizontal suspended particle fluxes are 27 (canyon head) to 360 (open slope) times higher than the settling particle fluxes measured at the same sampling sites, indicating that the suspended particulate transport on the Barcelona continental slope dominates over the settling particle fluxes, even inside the Foix submarine canyon.  相似文献   

6.
Semidiurnal internal tides in Monterey Canyon are shown to be partially responsible for macronutrient enrichment of surface waters in Monterey Bay, California. CTD time series at five stations in the canyon revealed the presence of semidiurnal internal tides with heights between 50 and 120 m. p Thermistor data demonstrated an internal tidal bore at the head of the canyon. Data and theory suggest that internal tidal bores may be breaking, due to either shear instability or direct overturning, thereby enriching the immediate area near the canyon head.Transects normal to Monterey Canyon showed a 20-m thick lens of 12 °C water moving out of the canyon at high internal tide. This lens was then pinched off from the canyon, and led to a density-induced divergence. The nutrient transport associated with the internal tidal divergence could support as much as 30% of the daily primary productivity in the northern part of Monterey Bay during non-upwelling periods.  相似文献   

7.
The composition and structure of megabenthic communities in the Blanes canyon and adjacent open margin (Northwestern Mediterranean) were studied. The aim was to assess the effect of the canyon and commercial fishing intensity on the community composition and structure of benthic megafauna by (i) describing the megabenthic community composition, (ii) quantifying faunal abundance and biomass and (iii) describing community structure with MDS analyses and biodiversity indices. The results are compared between three sites (canyon head, canyon wall and open margin) located between 435 m and 700 m. Samples were collected using a commercial bottom trawl between April 2003 and March 2004. These sites are exploited by the local fishing fleet that targets the rose shrimp Aristeus antennatus . A total of 131 megabenthic species were identified from the three sites, with fishes and decapod crustaceans being the most speciose, most abundant and of higher biomass. The species richness, abundance and biomass of non-crustacean invertebrates were low. There were no significant differences in total abundance and biomass between the three sites. However, community structure analysis suggests that the open margin community is significantly different from the canyon head and canyon wall, with a lower species richness, lower diversity and lower evenness. The open margin community also reflects a higher degree of disturbance compared to the two canyon habitats. The results indicate that there is a canyon effect on the community structure of benthic megafauna, but this may be modulated by differing fishing pressure, which adds an additional factor to margin heterogeneity.  相似文献   

8.
Most submarine canyons are erosive conduits cut deeply into the world’s continental shelves through which sediment is transported from areas of high coastal sediment supply onto large submarine fans. However, many submarine canyons in areas of low sediment supply do not have associated submarine fans and show significantly different morphologies and depositional processes from those of ‘classic’ canyons. Using three-dimensional seismic reflection and core data, this study contrasts these two types of submarine canyons and proposes a bipartite classification scheme.The continental margin of Equatorial Guinea, West Africa during the late Cretaceous was dominated by a classic, erosional, sand-rich, submarine canyon system. This system was abandoned during the Paleogene, but the relict topography was re-activated in the Miocene during tectonic uplift. A subsequent decrease in sediment supply resulted in a drastic transformation in canyon morphology and activity, initiating the ‘Benito’ canyon system. This non-typical canyon system is aggradational rather than erosional, does not indent the shelf edge and has no downslope sediment apron. Smooth, draping seismic reflections indicate that hemipelagic deposition is the chief depositional process aggrading the canyons. Intra-canyon lateral accretion deposits indicate that canyon concavity is maintained by thick (>150 m), dilute, turbidity currents. There is little evidence for erosion, mass-wasting, or sand-rich deposition in the Benito canyon system. When a canyon loses flow access, usually due to piracy, it is abandoned and eventually filled. During canyon abandonment, fluid escape causes the successive formation of ‘cross-canyon ridges’ and pockmark trains along buried canyon axes.Based on comparison of canyons in the study area, we recognize two main types of submarine canyons: ‘Type I’ canyons indent the shelf edge and are linked to areas of high coarse-grained sediment supply, generating erosive canyon morphologies, sand-rich fill, and large downslope submarine fans/aprons. ‘Type II’ canyons do not indent the shelf edge and exhibit smooth, highly aggradational morphologies, mud-rich fill, and a lack of downslope fans/aprons. Type I canyons are dominated by erosive, sandy turbidity currents and mass-wasting, whereas hemipelagic deposition and dilute, sluggish turbidity currents are the main depositional processes sculpting Type II canyons. This morphology-based classification scheme can be used to help predict depositional processes, grain size distributions, and petroleum prospectivity of any submarine canyon.  相似文献   

9.
海底峡谷是陆源沉积物向深海运移的主要通道,也是陆架/陆坡区重要的地貌单元。随着多波束测深技术的发展,如何快速而准确地从海量数据中识别并提取海底峡谷的特征要素,是一个亟待解决的重要热点问题。文中根据海底峡谷谷底下切、谷壁高而陡等地形特征,基于水文分析法和坡度分析等原理,通过ArcGIS中的数据建模工具建立了一种从数字高程模型(DEM)数据快速识别和提取海底峡谷特征要素的方法。以南海北部陆坡神狐峡谷区为例进行算例分析,结果表明,该方法在快速了解海底峡谷的发育位置和特征要素等方面是可行的,并可以获得峡谷头尾部水深、轴线长度、峡谷范围等特征信息。为获得该方法适用于研究区的最优参数组,文中讨论分析了峡谷形态、重分类阈值及数据分辨率等影响峡谷识别的因素。结果分析表明,峡谷形态会在一定程度上影响识别结果的准确性,但不影响对峡谷的总体了解;零值汇流累积量重分类阈值和DEM数据的空间分辨率是影响峡谷识别结果准确度的两个重要因素,在神狐峡谷群区,空间分辨率200 m且重分类阈值0.4时,海底峡谷识别和特征要素提取效果最佳。  相似文献   

10.
Three mooring arrays were deployed in the Palamós Canyon axis with sediment traps, current meters and turbidimeters installed near the bottom and in intermediate waters. Frequent sharp and fast turbidity peaks along with current speed increases were recorded, particularly at 1200 m depth in spring and summer. During these events, near-bottom water turbidity increased by up to more than one order of magnitude, current velocity by two to four times and horizontal sediment fluxes by one to three orders of magnitude. When these events occurred, 9–11 days integrated downward particle fluxes collected by the near-bottom sediment trap increased by two to three times. These events were identified as sediment gravity flows triggered by trawling activities along the northern canyon wall. Sediment eroded by the trawling nets at 400–750 m depth on this wall seems to be channeled through a gully and transported downslope towards the canyon axis, where the 1200 m mooring was located. The sediment gravity flows recorded at the 1200 m site were not detected at deeper instrumented sites along the canyon axis, suggesting that they affect local areas of the canyon without traveling long distances downcanyon. These observations indicate that trawling can generate frequent sediment gravity flows and increase sediment fluxes locally in submarine canyons. Furthermore, in addition to the various natural processes currently causing sediment gravity flows and other sediment transport events, human activities such as trawling must be taken into account in modern submarine canyon sediment dynamics studies.  相似文献   

11.
Within the framework of the multidisciplinary RECS project and with the aim of describing the particle flux transfer from the continental shelf to the deep basin, an array of five mooring lines equipped with a total of five pairs of PPS3/3 sequential-sampling sediment traps and RCM-7/8 current meters were deployed 30 m above the bottom from March 2003 to March 2004 inside and outside the Blanes Canyon. One mooring line was located in the upper canyon at 600 m depth, one in the canyon axis at 1700 m depth and other two close to the canyon walls at 900 m depth. A fifth mooring line was deployed in the continental open slope at 1500 m water depth.The highest near-bottom downward particle flux (14.50 g m−2 d−1) was recorded at the trap located in the upper canyon (M1), where continental inputs associated with the presence of the Tordera River are most relevant. On the other hand, the downward fluxes (4.35 g m−2 d−1) in the canyon axis (M2) were of the same order as those found in the western flank (M3) of the canyon. Both values were clearly higher than the value (1.95 g m−2 d−1) recorded at the eastern canyon wall (M4). The open slope (M5) mass flux (5.42 mg m−2 d−1) recorded by the sediment trap located outside the canyon system was three orders of magnitude lower than the other values registered by the inner canyon stations. The relevance of our data is that it explains how the transport pathway in the canyon occurs through its western flank, where a more active and persistent current toward the open ocean was recorded over the entire year of the experiment.Off-shelf sediment transport along the canyon axis showed clear differences during the period of the study, with some important events leading to strong intensifications of the current coupled with large transport of particle fluxes to the deepest parts of the canyon. Such events are primarily related to increases in river discharge and the occurrence of strong storms and cascading events during the winter.In summary, in this study it is shown that the dynamics of the water masses and the currents in the study area convert the sharp western flank of the Blanes Canyon in a more active region that favors erosion processes than the eastern flank, which has a smoother topography and where the absence of erosional conditions yields to steadier sedimentary processes.  相似文献   

12.
The transfer of sediment from the upper continental slope to rise is poorly documented along the southeast African passive margin. New swath bathymetric and sub-bottom data collected in the Natal Valley, southwest Indian Ocean, provide insight into the evolution of the Tugela canyon and fan system. Several distinct downslope changes in canyon morphology are noted. The canyon increases in relief and widens with depth. Basement outcrop is restricted to the head of the canyon becoming less prominent with depth. Step-like terracing of the canyon walls and floor becomes prominent in the mid-slope portions of the canyon and is related to a marked increase in the cross sectional asymmetry of the canyon profile. The contemporary Tugela canyon rests within a depression of the last phase of infilling. The canyon is the product of downslope erosion, and incision, caused by several phases of hinterland uplift in the mid Oligocene, mid Miocene and late Pliocene. Each phase was followed by pelagic infilling of the palaeo-canyon form. Downslope, the uplift phases are preserved in the cut-terraces and axial incisions within the main canyon thalweg. The contemporary canyon is a moribund feature, sediment starvation of the shelf area by current sweeping of the Agulhas current has decreased the material available for canyon incision and fan development. Additional current sweeping by the North Atlantic Deep Water current has stunted the development of the associated fan complex.  相似文献   

13.
During the latest Early Miocene a large drainage system developed in the Alpine-Carpathian Foreland transporting sediments through a prominent submarine canyon along the narrow corridor between the south-eastern Bohemian Massif and the Waschberg-Ždánice Unit. The canyon followed the Alpine-Carpathian Foredeep from Lower Austria towards the north and northeast into the Czech Republic. 3-D seismic data allow the mapping of this 600 m deep structure over a distance of 25 km and a width of 5 km. Despite its dimension, making it the largest submarine erosive and sedimentary structure of the Neogene Alpine-Carpathian Foredeep, this canyon has not been previously recognised. Herein, it is interpreted as shelf-indenting canyon that formed due to a combination of isostatic rebound along a terminating thrust front and sea-level change during the terminal Early Miocene.The canyon fill comprises reworked littoral deposits with a typical Early Miocene, tropical micro- and macrofauna. The exact timing of this refilling remains unclear. Smaller channel structures in surface outcrops, representing potential tributaries of the canyon, suggest a more or less synsedimentary filling soon after indention. Finally, the top part of the canyon was eroded around the Early/Middle Miocene boundary, probably related to a global 3rd order sea level drop, and caped by marine marls during the subsequent early Middle Miocene transgression. With the sudden onset of the subsidence of the Northern Vienna Basin during that time, the drainage system abruptly moved southward shedding its sediments into the newly opening Vienna Basin. This explains the rather abrupt abandonment of the huge canyon feature, whose fan deposits are unknown so far.  相似文献   

14.
We investigated Oceanographer Canyon, which is on the southeastern margin of Georges Bank, during a series of fourteen dives in the “Alvin” and “Nekton Gamma” submersibles. We have integrated our observations with the results of previous geological and biological studies of Georges Bank and its submarine canyons. Fossiliferous sedimentary rocks collected from outcrops in Oceanographer Canyon indicate that the Cretaceous—Tertiary boundary is at 950 m below sea level at about 40°16′N where at least 300 m of Upper Cretaceous strata are exposed; Santonian beds are more than 100 m thick and are the oldest rocks collected from the canyon. Quaternary silty clay, deposited most probably during the late Wisconsin Glaciation, veneers the canyon walls in many places, and lithologically similar strata are present beneath the adjacent outer shelf and slope. Where exposed, the Quaternary clay is commonly burrowed by benthic organisms that cause extensive erosion of the canyon walls, especially in the depth zone (100–1300 m) inhabited by red crabs (Geryon) and/or jonah crabs (Cancer). Bioerosion is minimal on high, near-vertical cliffs of sedimentary rock, in areas of continual sediment movement, and where the sea floor is paved by gravel. A thin layer of rippled, unconsolidated silt and sand is commonly present on the canyon walls and in the axis; ripple orientation is most commonly transverse to the canyon axis and slip-faces point downcanyon. Shelf sediments are transported from Georges Bank over the eastern rim and into Oceanographer Canyon by the southwest drift and storm currents; tidal currents and internal waves move the sediment downcanyon along the walls and axis. Large erratic boulders and gravel pavements on the eastern rim are ice-rafted glacial debris of probable late Wisconsinan age; modern submarine currents prevent burial of the gravel deposits. The dominant canyon megafauna segregates naturally into three faunal depth zones (133–299 m; 300–1099 m; 1100–1860 m) that correlate with similar zones previously established for the continental slope epibenthos. Faunal diversity is highest on gravelly sea floors at shallow and middle depths. The benthic fauna and the fishes derive both food and shelter by burrowing into the sea floor. In contrast to the nearby outer shelf and upper slope, Oceanographer Canyon has not been extensively exploited by the fishing industry, and the canyon ecosystem probably is relatively unaltered.  相似文献   

15.
Analysis of living (Rose Bengal-stained) benthic foraminifera in 13 multicorer samples taken along the Cap Breton canyon (Bay of Biscay) revealed that the combination of organic-rich material and sediment instability provides very specific benthic ecosystem conditions. The active canyon hosts different foraminiferal assemblages that appear to be determined by different types and frequencies of environmental disturbance at the sites. Most of them are strongly dominated by shallow-infaunal living taxa that combine a tolerance for low-quality organic matter with a high reproductive potential. Foraminiferal assemblages characterized by high densities, very superficially living taxa and strong dominance of bolivinids and buliminids, follow a poor pioneer fauna dominated by Technitella melo. These assemblages are observed in the narrow canyon axis, where frequent sediment resuspension occurs and affects habitat stability. Assemblages studied from sites outside the canyon axis are still dominated by shallow-infaunal species but show lower foraminiferal densities and higher diversities. Deep-infaunal taxa are only present in some inner meanders and more distal stations. These assemblages are typical for ecological niches that are relatively stable and unaffected by re-sedimentation processes. They have attained a more advanced stage of ecosystem stability. They are influenced by neither lateral sediment nor enriched organic matter input.  相似文献   

16.
Megafaunal diversity in the deep sea shows a parabolic pattern with depth. It can be affected by factors such as low oxygen concentration, which suppresses diversity, or the presence of submarine canyons, which enhances it. Barkley Canyon, located off the west coast of British Columbia, Canada, is a submarine canyon that extends from the continental margin (200 m) into the deep ocean (2,000 m). This canyon receives drift kelp from shoreline kelp forests and contains an oxygen minimum zone (OMZ) at 500 to 1,500 m depth. Our study investigated the abundance and diversity of epibenthic megafauna over a range of depths (200–2,000 m) and oxygen concentrations (0.5–5.0 ml/L) within Barkley Canyon, as well as changes in abundance near detrital kelp. Video was collected using the remotely operated vehicle ROPOS along seven 1‐km cross‐canyon (i.e., across the axis of the canyon) transects and three 40‐m perpendicular cross‐transects over kelp. Taxonomic groups were associated with depth, temperature, and the presence of pebbles. The OMZ restricted pennatulids, and edge effects along OMZ boundaries were observed for ophiuroids. The geomorphology of the sea floor affected the distribution of taxa across the canyon, with Porifera mainly found along the walls and Echinoidea within the canyon axis. Expected richness exhibited a bimodal pattern, peaking at 300 and 2,000 m, possibly due to the combined effect of the OMZ and the submarine canyon. Echinoidea aggregated near drift kelp at 200 and 300 m. We found that faunal communities in Barkley Canyon were influenced by several confounded factors including depth, oxygen and substrate. Understanding faunal patterns is paramount with increased exploitation and a changing climate.  相似文献   

17.
The function of a submarine conduit under typhoon conditions is examined. The study site is the Kao-ping river, shelf, and submarine canyon (KPRSC) system located off southern Taiwan on a wave-dominated microtidal coast. The head of the canyon is located approximately 1 km off the river mouth. Two comprehensive 1-month field experiments were carried out in 2000 and 2002 during the flood season of the river. Both experiments encountered typhoons that generated significant river discharge and wave resuspension events. Particle samples collected in 2000 by sediment-traps were analyzed for coarse fraction by the wet sieving method. Among the coarse fraction, foraminiferal species and their abundance were recorded as a tracer for biogenic particles of marine origin. Stable isotopes of carbon (δ13C) of organic particles of sediment-trap samples were analyzed as a tracer for particles of terrestrial origin. All the measured flow and particle concentration records were analyzed by conventional time-series analytical methods. Simultaneously observed records of suspended sediment concentration at the river mouth and the volume concentration of suspended particles near the canyon floor were compared. Instantaneous flux and cumulative transport of suspended particles near the canyon floor were estimated during the deployment period. Results show that Kao-ping Submarine Canyon is a multi-level and process-dependant two-way conduit for particles of terrestrial and marine origins. In general, terrestrial signals are stronger than the marine signals in sediment-trap samples near the head of the canyon. During typhoon events, in the early distal phase of their influence nonlithogenic and biogenic marine sources are enhanced; in the later proximal phase signals of locally generated terrestrial lithogenic sources are enhanced. An episode of momentary downcanyon flushing of suspended particles near the canyon floor is observed during one typhoon occurrence. This flushing suggests nondeposition during the typhoon at the locale of deployment despite increased input of particles to the canyon floor. It also suggests a mechanism by which turbidity currents could be triggered. Yet, this flushing phenomenon is not observed in another typhoon occurrence, suggesting it is not universal in the canyon's response to the typhoon.  相似文献   

18.
《Ocean Modelling》2002,4(3-4):221-248
Three-dimensional numerical simulations of the generation and propagation of the semidiurnal internal tide in a submarine canyon with dimensions similar to those of the Monterey Canyon are carried out using a primitive equation model. Forcing with just sea level at the offshore boundary in an initially horizontally homogeneous ocean with realistic vertical stratification, internal tides are generated at the canyon foot and rim, and along portions of the canyon floor. The results compare favorably with observations, both indicating enhancement of energy along the canyon floor propagating at an angle consistent with linear internal wave theory. Due to the earth's rotation, internal tide energy is distributed asymmetrically in the cross-canyon direction, favoring the southern side. The effect of canyon floor slope is explored, with the finding that small changes in the slope result in large changes in the amount and distribution of the internal tide energy. Canyons whose floors are subcritical with respect to the semidiurnal frequency along their entire length have very little baroclinic energy, whereas canyons that are near-critical along much of their length, such as the Monterey Canyon, develop strong internal tides that propagate shoreward. Canyons that are near-critical at their mouths but supercritical further inshore generate the most internal tidal energy overall, although little of it makes it onto the continental shelf shoreward of the canyon head. The effects of internal tides within the canyons can be seen outside the canyons as well. Water is transported from depth onto the adjacent continental shelf along the canyon rims. This tidal pumping can be responsible for alongshore internal tide propagation and tidal-period surface currents with relatively small horizontal scales of variability.  相似文献   

19.
Living (Rose Bengal stained) benthic foraminifera were investigated at 18 deep-sea stations sampled in the Whittard Canyon area (NE Atlantic). The stations were positioned along 4 bathymetric transects ranging from 300 to 3000 m depth: two along the main canyon axes (Western and Eastern branches) and two along adjacent open slopes (Western and Eastern slopes). The aim of this study was to assess changes of foraminiferal standing stock, composition and microhabitat in relation to the physico-chemical conditions prevailing at and below the sediment-water interface in various canyon and open-slope environments. Minimal oxygen penetration depths and maximal diffusive oxygen uptakes were recorded at upper canyon stations, suggesting a high mineralisation rate. This is confirmed by the high phytopigment concentrations measured in the sediment of the upper canyon axes. Foraminiferal abundance was positively correlated with diffusive oxygen uptake and phytopigment concentration in the sediment. This suggests a control of organic matter fluxes on the foraminiferal communities. Foraminiferal abundance was generally higher along the canyon axis compared to open-slope sites at comparable water depths. The species composition varied with water depth along all four transects, but was also different between canyon branches and adjacent slopes. The silty/sandy intercalations at many of the deeper canyon stations may have been rapidly deposited by fairly recent gravity flows. At station 51WB (3002 m), the faunal characteristics (strong dominance, shallow infaunal microhabitats) suggest that the foraminiferal community is in an early state of ecosystem colonisation after these recent sedimentation events, which would have supplied the important amounts of phytopigments.  相似文献   

20.
The Yithi submarine canyons,composed of four canyons less than 60 km in length,are located on the narrowest part of the East China Sea(ECS) slope.They extend from the shelf break at 160 m down to water depth of 1 500 m with an average gradient(along the canyon axis) of 3°(<1 000 m) and 0.7°(>1000 m).The sinuosity of the canyons ranges form 1.02 to 1.14 and their pathways extend radially from the shelf break to the axis of the Okinawa Trough.Structural and evolution pattern of the Yithi canyons are mainly controlled by sediment mass-movements and turbidity current and similar with that of the canyons in Ebro continental slope.The whole canyon system consists of three parts:the canyon,the channel and the fan.Slumps and slides often develop in the upper part of canyon where the water depth is less than 1000 m,and the turbidities usually developed on the fan.The scale of turbidites becomes smaller and their inner structures become more regular towards the ends of the canyons.Canyon-fans are often associated with small angle progradational reflection.Most canyon-fans and levees were transversely cut by active normal faults with NEE-SWW trending that are coupled to the modern extension of the Okinawa Trough.According to the age of formation of canyon-fans and sediments incised by canyons,we can infer that the Yithi canyons were formed since the middle the Medio-Pleistocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号