首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lunar crater degradation can be divided into two time periods based on differing styles and rates of crater degradation processes. Comparison of lunar radiometric age scales and the relative degradation of crater morphologic features for craters larger than about 5 km diam shows that Period I, prior to about 3.85–3.95 b.y. ago, is characterized by a high influx rate and by formation of large, multi-ringed basins. Period II, from about 3.85–3.95 b.y. to present, is characterized by a much lower influx rate and lack of large multi-ringed basins. Craters formed throughout Period II show generally constant morphologic characteristics. Craters formed in Period I show markedly different characteristics although their residence time could not have increased more than 15% over the total time of Period II. The vast majority of crater degradation of Period I craters took place nearly coincident with their time of formation. Elements of crater degradation and modification during Period I include destruction of crater exterior, rim, and wall facies and structures, decrease in crater depth, and increase in crater floor width. Examination of fresh crater geometry reveals that major changes in crater depth and floor width parameters can occur with the addition of only minor volumes of material as crater fill. Volumes sufficient to produce these characteristic changes are readily available in the surrounding crater wall and rim deposits and can be derived by erosion associated with the observed morphologic changes. Depositional mechanisms associated with lunar landslides are capable of moving material across the crater floor-wall boundary while maintaining and propagating the characteristic break in slope. A prime source of crater degradation during Period I is related to the formation of multiringed basins. The widespread ballistic sedimentation associated with the formation of these basins produces a near-saturation bombardment which excavates and mobilizes large volumes of local material and preferentially moves it into nearby low regions. Seismic effects contribute to degradation by enhancing slope instability and by mobilizing material for downslope movement. The net effect for a crater influenced by multi-ringed basin formation is a tendency toward destruction of crater facies and structure by near-saturation bombardment and seismic effects, the erosion and mobilization of crater material, and the redeposition of this material in nearby low regions, primarily on the crater floor. This process appears to be of major importance in the degradation and modification of craters, in generation of interior crater fill, and in the formation and propagation of Cayley-type plains surfaces.  相似文献   

2.
Recently a number of studies have identified small lunar geologic structures to be <100 Ma in age using standard remote sensing techniques. Here we present new crater size frequency distributions (CSFDs) and model ages using craters D > 10 m for five small target units: one irregular mare patch (IMP) in Mare Nubium and four regions located on lunar wrinkle ridges in Mare Humorum. For comparison we also date another IMP found in a recent study in Mare Tranquillitatis (Braden et al. 2014 ). Absolute model age (AMA) derivation corresponds to 46 ± 5 Ma and 22 ± 1 Ma for Nubium and Sosigenes IMP, respectively. We show that for IMPs and in nearby control mare regions, similar production-like cumulative log–log SFD slopes of −3 are observed. In contrast, control mare regions in Mare Humorum exhibit shallower equilibrium slopes from −1.83 to −2. Three out of four wrinkle ridges appear to be in equilibrium but with crater lifetimes lower than on the corresponding maria. Low crater frequencies on one wrinkle ridge result in an age of 8.6 ± 1 Ma. This study region contains 80% fresh craters, which suggests that the crater population is still in production indicative of a recent resurfacing event.  相似文献   

3.
The first part of the paper describes the relationship between the erosional stage of craters and the crater areal density. It is shown that class-2 and -3 craters are progressively more abundant as the crater areal density increases, while craters of class 4 and 5 are more abundant with decreasing crater areal densities. A geological model is proposed, in which the class of a newly foormed crater is 1. As time progresses, erosional agents will increase the class of the crater to class 2, then 3, and, in some cases, to 4. The length of time between classification steps is not known in terms of years, but is equivalent to the time necessary for the crater density to increase by 2 to 8 craters per unit area for creaters larger than 10 km, and by 10 to 20 for craters larger than 3.5 km. Craters of class 5 and some of class 4 are not formed by the same erosional agents, but are catastrophic, caused either by a mare-producing impact or by flooding of mare material.The second part of the paper presents a method for relatively dating large lunar areas. The method uses the model previously developed. A relative time sequence is constructed using the density of craters of classes 1, 2, and 3 and the percentage of these which is of class 1. As an example, 18 large areas are defined on the lunar near side and are put in temporal order. Mare Serenitatis appears to have the youngest terrain, and an area southwest of the Rupes Altai appears to have the oldest.In the final part of the paper a geological model is developed in order to explain age differences in the terrae. The model calls for rejuvenation of lunar terrains, caused by the seismic waves and ballistic sedimentation resulting from large impacts. The area surrounding Mare Orientale is cited as an example of a terrain so affected. A similar effect on the terrae of the near side could explain the apparent age relationships measured.  相似文献   

4.
Analysis of the Chandrayaan-1 Terrain Mapping Camera image of a 20 km×27 km area in the Mare Imbrium region revealed a cluster of thousands of fresh and buried impact craters in the size range of 20-1300 m. A majority of the large fresh craters with diameter ranging from 160 to 1270 m exhibit near-circular mounds (30-335 m diameter and 10-40 m height) in the crater floor, and their size depends on the host crater size. The origin of this cluster of secondary craters may be traced to Copernicus crater, based on global lunar image and the analysis of Chandrayaan-1 Hyper Spectral Imager data. Our findings provide further evidence for secondary crater formation by low-velocity impact of a cloud of clustered fragments. The presence of central mounds can also distinguish the secondary craters from the primary craters and refine the chronology of lunar surface based on counting of small craters.  相似文献   

5.
Regolith thickness distributions associated with crater populations observed on selected maria surfaces have been calculated using a Monte Carlo computer technique. The calculations assume that the crater type produced and the volume of debris ejected and added to the growing regolith depends on the ratio of crater diameter and regolith thickness present at the time and place of formation of each crater. Calculated thickness distributions obtained are in agreement with those estimated using a previously described statistical method based on the morphology of small lunar craters. Additionally, the Monte Carlo calculations accurately predict the size frequency distributions of the same types of small, fresh lunar craters used in the statistical method. The model employed is therefore realistic. Furthermore, the model calculations presented are shown to have value (a) in predicting the thickness of the regolith from crater populations at various lunar sites, (b) relative dating applications in which crater populations are compared, and (c) in interpreting the origin and history of regolith deposits at specific locations.  相似文献   

6.
Floor-fractured lunar craters   总被引:1,自引:0,他引:1  
Numerous lunar craters (206 examples, mean diameter = 40km) contain pronounced floor rilles (fractures) and evidence for volcanic processes. Seven morphologic classes have been defined according to floor depth and the appearance of the floor, wall, and rim zones. Such craters containing central peaks exhibit peak heights (approximately 1km) comparable to those within well-preserved impact craters but exhibit smaller rim-peak elevation differences (generally 0–1.5km) than those (2.4km) within impact craters. In addition, the morphology, spatial distribution, and floor elevation data reveal a probable genetic association with the maria and suggest that a large number of floor-fractured craters represent pre-mare impact craters whose floors have been lifted tectonically and modified volcanically during the epochs of mare flooding. Floor uplift is envisioned as floating on an intruded sill, and estimates of the buoyed floor thickness are consistent with the inferred depth of brecciation beneath impact craters, a zone interpreted as a trap for the intruding magma. The derived model of crater modification accounts for (1) the large differences in affected crater size and age; (2) the small peak-rim elevation differences; (3) remnant central peaks within mare-flooded craters and ringed plains; (4) ridged and flat-topped rim profiles of heavily modified craters and ringed plains; and (5) the absence of positive gravity anomalies in most floor-fractured craters and some large mare-filled craters. One of the seven morphologic classes, however, displays a significantly smaller mean size, larger distances from the maria, and distinctive morphology relative to the other six classes. The distinctive morphology is attributed, in part, to the relatively small size of the affected crater, but certain members of this class represent a style of volcanism unrelated to the maria - perhaps triggered by the last major basin-forming impacts.  相似文献   

7.
The existence of large terrestrial impact crater doublets and Martian crater doublets that have been inferred to be impact craters demonstrates that simultaneous impact of two or more bodies occurs at nearly the same point on planetary surfaces. An experimental study of simultaneous impact of two projectiles near one another shows that doublet craters with ridges perpendicular to the bilateral axis of symmetry result when separation between impact points relative to individual crater diameter is large. When separation is progressively less, elliptical craters with central ridges and central peaks, circular craters with flat floors containing ridges and peaks, and circular craters with deep round bottoms are produced. These craters are similar in structure to many of the large lunar craters. Results suggest that the simultaneous impact of meteoroids near one another may be an important mechanism for the production of central peaks in large lunar craters.  相似文献   

8.
Abstract— Knowledge of regolith depth structure is important for a variety of studies of the Moon and other bodies such as Mercury and asteroids. Lunar regolith depths have been estimated using morphological techniques (i.e., Quaide and Oberbeck 1968; Shoemaker and Morris 1969), crater counting techniques (Shoemaker et al. 1969), and seismic studies (i.e., Watkins and Kovach 1973; Cooper et al. 1974). These diverse methods provide good first order estimates of regolith depths across large distances (tens to hundreds of kilometers), but may not clearly elucidate the variability of regolith depth locally (100 m to km scale). In order to better constrain the regional average depth and local variability of the regolith, we investigate several techniques. First, we find that the apparent equilibrium diameter of a crater population increases with an increasing solar incidence angle, and this affects the inferred regolith depth by increasing the range of predicted depths (from ~7–15 m depth at 100 m equilibrium diameter to ~8–40 m at 300 m equilibrium diameter). Second, we examine the frequency and distribution of blocky craters in selected lunar mare areas and find a range of regolith depths (8–31 m) that compares favorably with results from the equilibrium diameter method (8–33 m) for areas of similar age (~2.5 billion years). Finally, we examine the utility of using Clementine optical maturity parameter images (Lucey et al. 2000) to determine regolith depth. The resolution of Clementine images (100 m/pixel) prohibits determination of absolute depths, but this method has the potential to give relative depths, and if higher resolution spectral data were available could yield absolute depths.  相似文献   

9.
We investigate the elevated crater rims of lunar craters. The two main contributors to this elevation are a structural uplift of the preimpact bedrock and the emplacement of ejecta on top of the crater rim. Here, we focus on five lunar complex mare craters with diameters ranging between 16 and 45 km: Bessel, Euler, Kepler, Harpalus, and Bürg. We performed 5281 measurements to calculate precise values for the structural rim uplift and the ejecta thickness at the elevated crater rim. The average structural rim uplift for these five craters amounts to SRU = 70.6 ± 1.8%, whereas the ejecta thickness amounts to ET = 29.4 ± 1.8% of the total crater rim elevation. Erosion is capable of modifying the ratio of ejecta thickness to structural rim uplift. However, to minimize the impact of erosion, the five investigated craters are young, pristine craters with mostly preserved ejecta blankets. To quantify how strongly craters were enlarged by crater modification processes, we reconstructed the dimensions of the transient crater. The difference between the transient crater diameter and the final crater diameter can extend up to 11 km. We propose reverse faulting and thrusting at the final crater rim to be one of the main contributing factors of forming the elevated crater rim.  相似文献   

10.
Geology of the lunar farside crater Necho   总被引:1,自引:0,他引:1  
The lunar farside crater Necho (30 km diameter) displays intricate morphological and structural characteristics. The highland setting provides a complex impact site when compared with the relatively uniform setting of mare craters. Therefore, the effects of pre-impact topography and structure play a dominant role in Necho's formation and modification. Necho's bright ejecta, extensive rays, fresh morphology, and lack of superposed craters indicate that it is extremely young. The asymmetric distribution of ejecta materials may be due to substrate effects, topographic shalowing, or oblique impact.Necho's interior is divided into five physiographic units based on morphologic differences: three floor units (Necho does not display a true flat floor), one hilly central unit, and the wall unit which includes terraces and smooth walls. The interior of the crater also exhibits an unusual asymmetry in the prevalence of terraced units on the western wall. Interior morphology and terrace orientations are probably the result of pre-impact effects. Structural and topographic orientations associated with three large pre-existing degraded craters dominate the impact site.  相似文献   

11.
Raymond E. Arvidson 《Icarus》1974,22(3):264-271
A computer data bank containing information on crater sizes, locations, and morphologies for all craters visible on Mariner 9 wide-angle mapping photography was used to construct a crater morphologic classification. Four general classes were constructed that can be interpreted to represent increasing degrees of crater degradation. Fresh class craters are nearly unmodified and consist of deep bowl-shaped craters and deep, flat-floored craters with terraced walls. The slightly modified class consists of deep flat-floored craters that usually have raised rims, but lack the terracing, central peaks, and hummocky floors indicative of unmodified impact crater morphology. Craters in the modified class are rimless and shallow and those in the ghost class are rimless and extremely shallow. Retention ages for fresh (i.e. unmodified) class craters on equatorial cratered terrain range from millions to billions of years, depending on the impact flux history used. If the trend is toward billions of years, then present degradation rates on Mars are low relative to earlier history and most craters in the degraded classes were probably modified in an early (>3.3 b.y.?) period.  相似文献   

12.
The surface of the Moon is highly cratered due to impacts of meteorites, asteroids, comets and other celestial objects. The origin, size, structure, age and composition vary among craters. We study a total of 339 craters observed by the Lunar Reconnaissance Orbiter Camera(LROC). Out of these 339 craters, 214 craters are known(named craters included in the IAU Gazetteer of Planetary Nomenclature) and 125 craters are unknown(craters that are not named and objects that are absent in the IAU Gazetteer). We employ images taken by LROC at the North and South Poles and near side of the Moon. We report for the first time the study of unknown craters, while we also review the study of known craters conducted earlier by previous researchers. Our study is focused on measurements of diameter, depth, latitude and longitude of each crater for both known and unknown craters. The diameter measurements are based on considering the Moon to be a spherical body. The LROC website also provides a plot which enables us to measure the depth and diameter. We found that out of 214 known craters, 161 craters follow a linear relationship between depth(d) and diameter(D), but 53 craters do not follow this linear relationship. We study physical dimensions of these 53 craters and found that either the depth does not change significantly with diameter or the depths are extremely high relative to diameter(conical). Similarly, out of 125 unknown craters, 78 craters follow the linear relationship between depth(d) and diameter(D) but 47 craters do not follow the linear relationship.We propose that the craters following the scaling law of depth and diameter, also popularly known as the linear relationship between d and D, are formed by the impact of meteorites having heavy metals with larger dimension, while those with larger diameter but less depth are formed by meteorites/celestial objects having low density material but larger diameter. The craters with very high depth and with very small diameter are perhaps formed by the impact of meteorites that have very high density but small diameter with a conical shape. Based on analysis of the data selected for the current investigation, we further found that out of 339 craters, 100(29.5%) craters exist near the equator, 131(38.6%) are in the northern hemisphere and 108(31.80%) are in the southern hemisphere. This suggests the Moon is heavily cratered at higher latitudes and near the equatorial zone.  相似文献   

13.
Hiroyuki Sato  Kei Kurita 《Icarus》2010,207(1):248-264
Floor-fractured craters (FFC) are a peculiar form of degradation of impact craters defined by the presence of crevice networks and mesas affecting crater floors. They are preferentially distributed near chaotic terrains and outflow channels. The scope of this paper is to present a detailed systematic analysis of FFC at Xanthe Terra. FFC morphologies in this region are classified into five types making a picture of different stages of the same degradation process. FFC are geographically intermixed with un-fractured normal craters (non-FFC). Young craters are less prone to show this type of degradation, as suggested by fresh ejecta layer with preserved crater floor. Size distributions of FFC and non-FFC indicate that larger craters are preferentially fractured. Careful examinations of the crater floor elevations reveal that the crevices often extend deeper than the original crater cavity. Furthermore, an onset depth for the formation of FFC is evidenced from the difference of spatial distributions between FFC and non-FFC. Roof-collapsed depressions observed in the same region have been also documented and their characteristics suggest the removal of subsurface material at depth from about 1200 to 4000 m. These observations taken together suggest a subsurface zone of volume deficit at depth from 1 to 2 km down to several kilometers responsible for FFC formation. Then a scenario of FFC formations is presented in the context of groundwater discharge events at the late Hesperian. This scenario involves two key processes, Earth fissuring and piping erosion, known to occur with rapid groundwater migrations on Earth.  相似文献   

14.
Radar, infrared, and photogeologic properties of lunar craters have been studied to determine whether there is a systematic difference in blocky craters between the maria and terrae and whether this difference may be due to a deep megaregolith of pulverized material forming the terra surface, as opposed to a layer of semi-coherent basalt flows forming the mare surface. Some 1310 craters from about 4 to 100 km diameter have been catalogued as radar and/or infrared anomalies. In addition, a study of Apollo Orbital Photography confirmed that the radar and infrared anomalies are correlated with blocky rubble around the crater.Analysis of the radar and infrared data indicated systematic terra—mare differences. Fresh terra craters smaller than 12 km were less likely to be infrared and radar anomalies than comparable mare craters: but terra and mare craters larger than 12 km had similar infrared and radar signatures. Also, there are many terra craters which are radar bright but not infrared anomalies.Our interpretation of these data is that while the maria are rock layers (basaltic flow units) where craters eject boulder fields, the terrae are covered by relatively pulverized megaregolith at least 2 km deep, where craters eject less rocky rubble. Blocky rubble, either in the form of actual rocks or partly consolidated blocks, contributes to the radar and infrared signatures of the crater. However, aging by impacts rapidly destroys these effects, possibly through burial by secondary debris or by disintegration of the blocks themselves, especially in terra regions.PSI Contribution No. 110.  相似文献   

15.
Abstract— The dimensions of large craters formed by impact are controlled to a large extent by gravity, whereas the volume of impact melt created during the same event is essentially independent of gravity. This “differential scaling” fosters size-dependent changes in the dynamics of impact-crater and basin formation as well as in the final morphologies of the resulting structures. A variety of such effects can be observed in the lunar cratering record, and some predictions can be made on the basis of calculations of impact melting and crater dimensions. Among them are the following: (1) as event magnitude increases, the volume of melt created relative to that of the crater will grow, and more will be retained inside the rim of the crater or basin. (2) The depth of melting will exceed the depth of excavation at diameters that essentially coincide with both the inflection in the depth-diameter trend and the simple-to-complex transition. (3) The volume of melt will exceed that of the transient cavity at a cavity diameter on the order of the diameter of the Moon; this would arguably correspond to a Moon-melting event. (4) Small lunar craters only rarely display exterior flows of impact melt because the relatively small volumes of melt created can become choked with clasts, increasing the melt's viscosity and chilling it rapidly. Larger craters and basins should suffer little from such a process. (5) Deep melting near the projectile's axis of penetration during larger events will yield a progression in central-structure morphology; with growing event magnitude, this sequence should range from single peaks through multiple peaks to peak rings. (6) The minimum depth of origin of central-peak material should coincide with the maximum depth of melting; the main central peak in a crater the size of Tycho should have had a preimpact depth of close to 15 km.  相似文献   

16.
Abstract— Using the Terrain Camera onboard the Japanese lunar explorer, SELENE (Kaguya), we obtained new high‐resolution images of the 22‐kilometer‐diameter lunar crater Giordano Bruno. Based on crater size‐frequency measurements of small craters (<200 m in diameter) superposed on its continuous ejecta, the formation age of Giordano Bruno is estimated to be 1 to 10 Ma. This is constructive evidence against the crater's medieval age formation hypothesis.  相似文献   

17.
Mark Settle  James W. Head 《Icarus》1977,31(1):123-135
The variation of rim topography as a function of range from the crater rim has been determined for a group of morphologically fresh lunar craters (D = 10–140 km) using the recent series of Lunar Topographic Orthophotomaps. The rate at which exterior crater topography converges with the surrounding surface is highly variable along different radial directions at individual craters as well as between different craters. At several craters, oblique impact appears to have contributed to azimuthal elevation/range variations. The topographic expression of a crater above the surrounding surface typically decreases to one-tenth of the estimated rim height at a range of 1.3R–1.7R, well within the rough-textured ejecta deposit surrounding the crater. Comparisons with terrestrial craters suggest that the topographic crater rim is predominantly a structural feature. In most craters large portions of the hummocky facies and virtually all of the radial facies, in spite of their rough appearance and local topographic variations, provide no significant net topographic addition to the preexisting surface. The extreme variability of crater rim topography strongly suggests that ejecta thicknesses are highly variable and that a unique power-law expression cannot truly represent the radial variation of ejecta deposit thickness.  相似文献   

18.
The Apollo 17 ALSE VHF radar provided imagery and continuous profiling data around the Moon during two revolutions. The imagery data are used to derive depth and diameter measurements of small craters (diameter <30 km). The profiling data are used to study the topography of a few large craters: the bulged floors in Hevelius, Neper, and Aitken; central peaks in Neper and Buisson; and the depressed floor of Maraldi. The same data provided accurate (better than 25 m) profiles of Mare Crisium and Mare Serenitatis.  相似文献   

19.
Eugene I. Smith 《Icarus》1976,28(4):543-550
New central peak-crater size data for Mars shows that a higher percentage of relatively unmodified Martian craters have central peaks than do fresh lunar craters below a diameter of 30 km. For example, in the diameter range 10 to 20 km, 60% of studied Martian craters have central peaks compared to 26% for the Moon. Gault et al. (1975, J. Geophys. Res.80, 2444–2460) have demonstrated that central peaks occur in smaller craters on Mercury than on the Moon, and that this effect is due to the different gravity fields in which the craters formed. Similar differences when comparing Mars and the Moon show that gravity has affected the diameter at which central peaks form on Mars. Erosion on Mars, therefore, does not completely mask differences in crater interior structure that are caused by differences in gravity. Effects of Mars' higher surface gravity when compared to the Moon are not detected when comparing terrace and crater shape data. The morphology-crater size statistics also show that a full range of crater shapes occur on Mars, and craters tend to become more morphologically complex with increasing diameter. Comparisons of Martian and Mercurian crater data show differences which may be related to the greater efficacy of erosion on Mars.  相似文献   

20.
Mare material is asymmetrically distributed on the Moon. The Earth-facing hemisphere, where the crust is believed to be 26 km thinner than on the farside, contains substantially more basaltic mare material. Using Lunar Topographic Orthophoto Maps, we calculated the thickness of the mare material in three farside craters, Aitken (0.59 km), Isaev (1.0 km), and Tsiolkovskiy (1.75 km). We also studied crater frequency distribution in five farside mare units (Aitken, Isaev, Lacus Solitudinis, Langemak, and Tsiolkovskiy) and one light plains unit (in Mendeleev). Nearly 10 000 farside craters were counted. Analysis of the crater frequency on the light plains unit gives an age of 4.3 billion yr. Crater frequency distributions on the mare units indicate ages of 3.7 and 3.8 billion yr, suggesting that the units are distributed over a narrow time period of approximately 100 million yr. Returned lunar samples from nearside maria give dates as young as 3.1 billion yr. The results of this study suggest that mare basalt emplacement on the far side ceased before it did on the near side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号