首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was conducted to relate the cross-shore distribution of longshore sediment transport and grain size characteristics to cross-shore and longshore current velocities on a sandy low-energy beach in a non-tidal embayment of the Baltic Sea. Simultaneous measurements of current velocities and amount of sand caught in streamer traps were made on 31 sampling runs on 6 d in April 1999 at three fixed sites including the swash zone on the upper foreshore, the lower foreshore, and the crest of the most landward of four bars. Spilling waves broke frequently on the bar but rarely on the lower foreshore, even during onshore wind speeds up to 11.0 m s−1. Waves always broke as plunging waves at the step at the base of the upper foreshore and were converted directly into swash. The greatest longshore current velocities in the swash occurred when wind speeds and water levels were greatest, but wind direction was nearly directly onshore. Longshore velocities were greater in the swash zone than at other sites except when relatively strong winds blew nearly parallel to the shoreline, causing a pronounced wind-induced current at the other two sites. Calculated longshore shear stress and rate of sediment trapped were highly correlated on the bar (r=0.90), less highly correlated in the swash zone, and least highly correlated (r=0.66) on the lower foreshore. Mean trapping rates in the swash were 14.6 times greater than on the lower foreshore and 7.2 times greater than on the bar. Greater trapping rates in the swash are attributed to the greater turbulence mobilizing sediments in the uprush and backwash. Little of the finer-grained sediment on the offshore sites was reworked under low energy conditions. The study reveals the dominance of swash transport on steep, reflective, low-energy beaches where wave energy dissipation takes place over small distances on the upper foreshore.  相似文献   

2.
The dynamic sediment budget on the intertidal face of sandy surf beaches is influenced by interaction of swash/backwash flows with the beach watertable. Watertable height variations are coupled to tides and pass into the beach as a slow wave of diminishing amplitude and increasing lag. High-frequency pulses from the onshore wave train also propagate into the beach. The height at which the watertable outcrops on the beach face is affected by antecedent tide and wave history and influences balance of sand deposition and entrainment during swash and backwash. Experimental lowering of the watertable by pumping an array of wells induces sand deposition. Energy expended in pumping is less than 0.3% of the onshore flux in the wave train.  相似文献   

3.
BRIAN J. BLUCK 《Sedimentology》2011,58(4):994-1006
The height of accretionary gravel beaches, determined by the vertical distance between the large sphere zone at the seaward margin and the large disc zone at the landward margin, is determined mainly by tidal range. As the beach builds seaward, this height translates into thickness and so the complete thickness of gravel beach accumulations is a good indicator, in the geological record, of tidal range. Beaches with a small tidal range have the zone between the large discs and the large spheres compressed and sometimes steepened. These beaches are characterized mainly by cusps and berms, both of which yield steeply dipping, seaward building, cross‐strata. Beaches built by large, persistent waves generally have a steep profile, whereas those with small wave height appear to have a shallow profile. Cusps generally have extremely well‐sorted gravels, often in an openwork fabric and with a landward crown of coarse gravel that may grade seaward into shape‐sorted, gently dipping gravels. Berms, which may extend for hundreds of metres along the coast, comprise, in section, very well‐sorted cross‐stratified gravels that may intermittently build seaward for a distance >15 m. Extensive selection pavements typify beaches with a high tidal range and comprise sheets of gravel which are well‐sorted and dip at comparatively low angles towards the sea. These selection pavements form beds that, in section, can be >50 m in seaward length; they grow from clasts, supplied to them from swash or backwash, and which are selected by the fabric of the existing sheet. In some cases, the selection pavements can be very mature having only a specific clast shape and size remaining. Total preservation of the beach sequence in the geological record is more likely to take place in areas of rapid deposition of sediments, such as the marine fringes to a fan delta.  相似文献   

4.
The effects of wave action and horseshoe crab spawning on the topography and grain-size characteristics on the foreshore of an estuarine sand beach in Delaware Bay, New Jersey, USA were evaluated using data collected over six consecutive high tides. Data were gathered inside and outside a 25 m long exclosure constructed to create a control area free of disturbance by crabs. The density of crabs in the swash zone outside the exclosure was 8·1 organisms m−2. The maximum depth of sediment activation on the upper foreshore where spawning occurred was 0·103 m during periods characterized by low significant wave heights: < 0·08 m. This depth is greater than the depth of activation by waves alone during moderate significant wave heights of 0·16–0·18 m but less than the maximum depth (0·127 m) recorded when spawning occurred during periods of moderate wave heights. Spawning, combined with moderate wave heights, creates a concave upper foreshore that is similar to the type of profile change that occurs during storms, thus lowering the wave-energy threshold for morphological response. Spawning during low wave heights increases the mean grain size and sorting of surface sediments caused by the addition of gravel to the swash. Sedimentological differences are most pronounced on the upper foreshore, and data from this location may be most useful when using grain-size characteristics to interpret the effect of spawning in the sedimentary record. Depths of sediment reworking by horseshoe crabs can be greater than those by subsequent storm waves, so evidence of spawning can be preserved on non-eroding beaches. Greater depth of activation by horseshoe crab spawning than by waves alone, even during moderate-energy conditions, reveals the importance of crab burrowing in releasing eggs to the water column and making them available for shore birds.  相似文献   

5.
The experimental study of the hydrodynamics of the sediments and the physical analysis of the process of exchange at the water-sediment interface in a zone of swash are essential for the understanding of the sedimentary transport processes in coastal environments, in particular to control and forecast the evolution of the coastline. The objective of this study was to exploit the technique of Ultrasonic Doppler Velocimetry (UDV) to examine the evolution of the velocity field at the water-sediment interface in a zone of swash in various conditions of incidental regular waves in a wave flume. The velocities were measured in different conditions of the swash within the sediment bed, and in the fluid vein at the swash edge. These measurements show: an exponential distribution of velocities inside the sediment bed; a difference in the velocity gradient at the water-sediment interface, between the velocity in the water vein at the swash edge and the interstitial flow in the swash. The measurements obtained in the wave flume made it possible to observe an evolution of the velocity profiles according to the phases of the swash, which are characterized by a phase shift between the free flow at the swash edge and the interstitial flow during the two phases of the swash: uprush and backwash.  相似文献   

6.
This paper describes the morphological and sedimentological evolution of a macrotidal beach over a 20 day period under varying hydrodynamic conditions (significant breaker heights of 0·3–2 m and tidal ranges of 2–5 m). During the field campaign, an intertidal bar developed around the mid‐tide level, migrated onshore, welded to the upper beach and was then flattened under energetic wave conditions. The bar had a wave breakpoint origin and its formation was triggered by a reduction in tidal range, causing more stationary water‐level conditions, rather than an increase in wave height. Most of the onshore bar migration took place while the bar was positioned in the inner to mid‐surf zone position, such that the bar moved away from the breakpoint and exhibited ‘divergent’ behaviour. The depth of disturbance over individual tidal cycles was 10–20% of the breaker height. Such values are more typical of steep reflective beaches, than gently sloping, dissipative beaches, and are considered to reflect the maximum height of wave‐generated ripples. The grain size distribution of surficial sediments did not vary consistently across the beach profile and temporal changes in the sedimentology were mostly unrelated to the morphological response. The lack of clear links between beach morphology and sedimentology may be in part due to shortcomings in the sampling methodology, which ignored the vertical variability in the sediment size characteristics across the active layer.  相似文献   

7.
Sediments exposed at low tide on the transgressive, hypertidal (>6 m tidal range) Waterside Beach, New Brunswick, Canada permit the scrutiny of sedimentary structures and textures that develop at water depths equivalent to the upper and lower shoreface. Waterside Beach sediments are grouped into eleven sedimentologically distinct deposits that represent three depositional environments: (1) sandy foreshore and shoreface; (2) tidal‐creek braid‐plain and delta; and, (3) wave‐formed gravel and sand bars, and associated deposits. The sandy foreshore and shoreface depositional environment encompasses the backshore; moderately dipping beachface; and a shallowly seaward‐dipping terrace of sandy middle and lower intertidal, and muddy sub‐tidal sediments. Intertidal sediments reworked and deposited by tidal creeks comprise the tidal‐creek braid plain and delta. Wave‐formed sand and gravel bars and associated deposits include: sediment sourced from low‐amplitude, unstable sand bars; gravel deposited from large (up to 5·5 m high, 800 m long), landward‐migrating gravel bars; and zones of mud deposition developed on the landward side of the gravel bars. The relationship between the gravel bars and mud deposits, and between mud‐laden sea water and beach gravels provides mechanisms for the deposition of mud beds, and muddy clast‐ and matrix‐supported conglomerates in ancient conglomeratic successions. Idealized sections are presented as analogues for ancient conglomerates deposited in transgressive systems. Where tidal creeks do not influence sedimentation on the beach, the preserved sequence consists of a gravel lag overlain by increasingly finer‐grained shoreface sediments. Conversely, where tidal creeks debouch onto the beach, erosion of the underlying salt marsh results in deposition of a thicker, more complex beach succession. The thickness of this package is controlled by tidal range, sedimentation rate, and rate of transgression. The tidal‐creek influenced succession comprises repeated sequences of: a thin mud bed overlain by muddy conglomerate, sandy conglomerate, a coarse lag, and capped by trough cross‐bedded sand and gravel.  相似文献   

8.
Although sandy foreshore facies are generally characterized by parallel lamination, wavy lamination is predominant in the mixed sand and gravel foreshore facies of the Pleistocene Hosoya Sandstone, which crops out along the Pacific coast of the Atsumi Peninsula, Aichi, central Japan. The foreshore facies consists of three sedimentary subfacies; interbeds of gravel and parallel laminated sand of the lower foreshore facies, parallel laminated fine to medium sand beds containing scattered pebbles and cobbles of the middle foreshore facies, and wavy laminated fine to medium sand beds containing scattered pebbles and cobbles of the upper foreshore facies. A lack of erosional surfaces in the middle foreshore facies indicates the continuous accumulation of sand in flat beds under upper plane bed flow. The wavy laminated sands of the upper foreshore facies exhibit erosional surfaces indicative of repeated deposition and erosion. The erosional surfaces are undulatory, with depressions (10 cm wide and 3 cm deep) that contain scattered pebbles and cobbles. These depressions reflect backwash erosion of sand around and below the pebbles and cobbles. Sand draping over the undulating erosional surfaces forms the wavy lamination. The wavy laminated sand with scattered pebbles and cobbles is a key facies of an upper foreshore or swash zone, and is a good sea-level marker.  相似文献   

9.
现代滨岸风暴沉积--以舟山普陀岛、朱家尖岛为例   总被引:5,自引:1,他引:5  
本文以舟山现代滨岸为例,重点阐述了在8114号和8310号两次强台风作用期间,水动力发生的剧烈变化以及对应的沉积物堆积情况。进而从沉积物粒度变化、沉积构造组合、生物特征和沉积物垂向层序诸方面,探讨了滨岸风暴沙滩的沉积特征,并指出它与浅海风暴沉积的区别。总结了风暴砾滩的沉积特征,并指出绝大多数滨岸砾滩是风暴作用的结果。研究现代风暴沉积目的是为了找到更多的古代风暴沉积,文后介绍了已找到的古代风暴沉积的实例。  相似文献   

10.
On the south‐west coast of Vancouver Island, Canada, sedimentological and ichnological analysis of three beach–shoreface complexes developed along a strait margin was undertaken to quantify process–response relations in straits and to develop a model for strait‐margin beaches. For all three beaches, evidence of tidal processes are expressed best in the lower shoreface and offshore and, to a lesser extent, in the middle shoreface. Tidal currents are dominant offshore, below 18 m water depth (relative to the mean spring high tide), whereas wave processes dominate sediment deposition in the nearshore (intertidal zone to 5 m water depth). From 18 to 5 m water depth, tidal processes decrease in importance relative to wave processes. The relatively high tidal energy in the offshore and lower shoreface is manifest sedimentologically by the dominance of sand, of a similar grain size to the upper shoreface/intertidal zone and, by the prevalence of current‐generated structures (current ripples) oriented parallel to the shoreline. In addition, the offshore and lower shoreface of strait‐bound beach–shoreface complexes are recognized ichnologically by traces typical of the Skolithos Ichnofacies. This situation contrasts to the dominantly horizontal feeding traces characteristic of the Cruziana Ichnofacies that are prevalent in the lower shoreface and offshore of open‐coast (wave‐dominated) beach–shorefaces. These sedimentological and ichnological characteristics reflect tidal influence on sediment deposition; consequently, the term ‘tide‐influenced shoreface’ most accurately describes these depositional environments.  相似文献   

11.
为揭示内部渗流对海岸冲流带泥沙起动的影响,系统地开展了斜坡海床冲流特性与泥沙起动机理研究。通过室内水槽开展了孤立波在可渗透和不可渗透斜坡海床上的冲流试验,测试了冲流过程中波高、波速等变化规律;建立了渗透海床冲流数值模型并通过试验结果进行验证;深入分析了床面渗流对其波浪流场动态特征以及床面泥沙起动的影响机理。研究表明,床面渗流作用加剧波浪的不对称性,在波浪上冲过程中因床面强入渗作用而增大了床面切应力;回流过程因入渗所造成流量损失而导致床面切应力减小。床面渗流引起床面颗粒有效重度和切应力变化而导致泥沙希尔兹数大大增加,加剧了泥沙起动现象,且床面切应力改变是引起泥沙希尔兹数变化的主要因素。  相似文献   

12.
The supertankerUrquiola grounded, exploded, and burned at the entrance to La Coruña harbor (Spain) on May 12, 1976. A total of 100,000 tons of Persian Gulf crude oil was lost, of which about 30,000 tons washed onto shoreline environments. From May 17 to June 10, 1976, the impact and interaction of oil on fine-sand, coarse-sand, and gravel beaches and on sheltered and exposed rocky coasts was monitored in detail. At 32 localities, the beach was profiled, trenched, extensively sampled, and photographed. Another 67 stations were examined for surficial oil coverage and distribution. The surficial distribution of oil on the beaches was influenced primarily by wave activity, tidal stage, and oil quantity. Heaviest accumulations formed along the high-tide swash line. Within beach sediments, oil was present at distinct oiled sediment layers, which were often deeply buried. The depth of burial was related to wave energy and sediment type. Deepest burial (1 m) was on a high-energy, coarse-sand beach (Mz=0.82φ). Burial on fine-sand beaches was less than 30 cm. The thickness of oiled sediment depended on sedimentary characteristics, the quantity of oil present, wave action, and capillary forces. Oil-soaked sediment, as much as 65-cm thick, occurred on coarse-grained beaches. On fine-sand beaches, oiled sediment was limited to thicknesses of 10 cm or less. On rocky shores, oil distribution was determined primarily by wave energy. Along high-energy, cliffed, or steeply dipping rocky areas, wave reflection kept the oil approximately 5 m offshore and contamination was minimal. In low-energy, sheltered areas, oil readily accumulated, causing apparent environmental damage.  相似文献   

13.
The Ipswichian high‐tide coast in the Bristol Channel and Severn Estuary at the time of the highest sea‐levels (5–10 m OD) was wave‐dominated almost everywhere. It is defined by raised beaches and inshore sand shoals, and only in comparatively long but narrow inlets (Somerset Levels) are estuarine conditions evident. The modern Holocene seaway is wave‐dominated at high tide only up to and including the inner Bristol Channel. A muddy upper shore typifies the large, tide‐dominated Severn Estuary to the east and northeast. The larger depth and width of the Ipswichian seaway may explain its greater wave‐dominance, but it is also possible that differences in the sediment regime also contribute to the contrast observed. With water levels continuing to rise, the Holocene seaway could reach Ipswichian depths within a few thousand years and evolve toward greater wave‐dominance. A secondary effect may be the transgression and substantial removal of the Holocene estuarine sequence associated with the Severn Estuary Levels. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
River mouths on the steep, high-relief coast of the French Riviera exhibit thick sequences of Holocene marine, estuarine, deltaic, and river channel-floodplain sediments that overlie basal fluvial Pleistocene gravel. Gravel is uncommon in most of the early to middle Holocene aggradational-progradational marine, estuarine, deltaic sediments, despite an ample supply from rock units in the steep adjoining uplands. River-mouth gravel is common only in late Holocene river channels and in barrier beaches perched on finer-grained nearshore sediments. Neither downslope grain-size fining on alluvial fans nor sediment stacking patterns during sea-level (base-level) rise readily account for the lack of early to middle Holocene gravel in the river-mouth sediment wedges. Holocene sea-level rise led to the storage of fine-grained sediments in shallow marine, estuarine, and deltaic environments in the present coastal zone. We infer that humid temperate conditions, a dense forest cover, landscape stabilization, and a regular quiescent river flow regime associated with the Atlantic climatic optimum limited gravel supply in the adjoining catchments and gravel entrainment downstream during the early Holocene. Sea-level stabilization in the middle and late Holocene coincided with a marked change in bioclimatic conditions toward the present Mediterranean-type regime, which is characterized by a less dense forest cover, soil erosion, and episodic catastrophic floods. The late Holocene was thus a time of downstream bedload channel aggradation, fine-grained floodplain and paludal sedimentation, and seaward flushing of clasts leading to the formation and consolidation of the gravel barrier beaches that bound the rivermouths and embayments.  相似文献   

15.
A field investigation of temporal and spatial changes in wind and wave characteristics, runup and beach water table elevation was conducted on the foreshore of an estuarine beach in Delaware Bay during neap (April 9, 1995) and spring (April 16, 1995) tides under low wave-energy conditions. The beach has a relatively steep, sandy foreshore and semi-diurnal tides with a mean range of 1.6 m and a mean spring range of 1.9 m. Data from a pressure transducer placed on the low tide terrace reveal a rate of rise and fall of the water level on April 16 of 0.09 mm s−1 resulting in a steeper tidal curve than the neap tide on April 9. Data from three pressure transducers placed in wells in the intertidal foreshore reveal that the landward slope of the water table during the rising neap tide was lower than the slope during spring tide, and there was a slower rate of fall of the beach water table relative to the fall of the tide. Wave heights were lower on April 9 (significant height from 17.1 min records <0.16 m). The water table elevation was 0.08 m higher than the water in the bay at the time of high water, when maximum runup elevation was 0.29 m above high water and maximum runup width was 2.0 m. The elevation of the water table was 0.13 m higher than the maximum elevation of water level in the bay 74 min after high water, when wave height was 0.12 m and wave period was 2.7 s. The use of mean bay water level at high tide will underpredict the elevation of the water table in the beach, and demarcation of biological sampling stations across the intertidal profile based on mean tide conditions will not accurately reflect the water content of the sandy beach matrix.  相似文献   

16.
三亚海岸演变与人工海滩设计研究*   总被引:12,自引:0,他引:12  
三亚海岸位于海南岛南部,属弱潮海区,以来自开阔外海的偏南向风浪为海岸优势动力。三亚海岸经历了从基岩港湾海岸到岬角与港湾相间的海蚀-海积海岸的发育演化过程,沙坝(沙咀)发育始于中更新世初期,珊瑚礁发育始于8kaB.P. ,目前海岸总体处于相对平衡发展阶段。对三亚地区海岸地貌、动力及泥沙运动的调查研究,总结三亚湾及其周边不同类型海滩的特点,提取其海滩参数。依据处于不同发展时期的自然海滩形成演变的条件和规律,设计建构三亚白排人工海滩的关键参数。设计海滩总长度约400m,宽度\{40~\}50m,坡度4.5°~5.0°,相对高度约2m,填砂M为0.5,以粒径1.0~\}0.5mm的粗砂为主,总填砂量48000m3。从滩面物质和滩面坡度两个关键方面,利用代表性的数学模型,检验了设计海滩的稳定性。本项研究旨在服务白排人工海滩建设,研究方法对海滩侵蚀防护与同类海岸工程建设等具有参考价值。  相似文献   

17.
The lower part of the Cretaceous Sego Sandstone Member of the Mancos Shale in east‐central Utah contains three 10‐ to 20‐m thick layers of tide‐deposited sandstone arranged in a forward‐ and then backward‐stepping stacking pattern. Each layer of tidal sandstone formed during an episode of shoreline regression and transgression, and offshore wave‐influenced marine deposits separating these layers formed after subsequent shoreline transgression and marine ravinement. Detailed facies architecture studies of these deposits suggest sandstone layers formed on broad tide‐influenced river deltas during a time of fluctuating relative sea‐level. Shale‐dominated offshore marine deposits gradually shoal and become more sandstone‐rich upward to the base of a tidal sandstone layer. The tidal sandstones have sharp erosional bases that formed as falling relative sea‐level allowed tides to scour offshore marine deposits. The tidal sandstones were deposited as ebb migrating tidal bars aggraded on delta fronts. Most delta top deposits were stripped during transgression. Where the distal edge of a deltaic sandstone is exposed, a sharp‐based stack of tidal bar deposits successively fines upward recording a landward shift in deposition after maximum lowstand. Where more proximal parts of a deltaic‐sandstone are exposed, a sharp‐based upward‐coarsening succession of late highstand tidal bar deposits is locally cut by fluvial valleys, or tide‐eroded estuaries, formed during relative sea‐level lowstand or early stages of a subsequent transgression. Estuary fills are highly variable, reflecting local depositional processes and variable rates of sediment supply along the coastline. Lateral juxtaposition of regressive deltaic deposits and incised transgressive estuarine fills produced marked facies changes in sandstone layers along strike. Estuarine fills cut into the forward‐stepped deltaic sandstone tend to be more deeply incised and richer in sandstone than those cut into the backward‐stepped deltaic sandstone. Tidal currents strongly influenced deposition during both forced regression and subsequent transgression of shorelines. This contrasts with sandstones in similar basinal settings elsewhere, which have been interpreted as tidally influenced only in transgressive parts of depositional successions.  相似文献   

18.
海南岛三亚湾海滩研究*   总被引:11,自引:1,他引:11       下载免费PDF全文
海南岛三亚湾及其周边海滩可分为两种主要类型:一类是岩礁海岸海滩,发育于基岩和珊瑚礁岛波影区或珊瑚礁平台后侧,多为背叠式砂砾滩,滩窄、坡陡,具有数道陡坎,在岛礁背风侧常发育不同阶段的连岛坝,如白排人工岛西南端海滩、鹿回头湾大洲后侧及对岸的海滩、鹿回头湾和小东海海滩;另一类是沙坝海岸海滩,发育于向外海敞开的大沙坝的向海侧,海湾内砂质沉积物丰富,形成滩脊式或背叠式砂质滩,滩面宽坦,物质较细,如三亚湾和大东海海滩。因湾口朝向与湾内岛礁分布发育情况不同,湾内受常浪和台风强浪作用的强度与频率不同,加之现代泥沙补给情况的差异,这一类海滩的形态结构亦不尽相同。如三亚湾西侧近岬角处,波能辐聚,动力强,侵蚀作用突出,滩面呈近直线形倾斜,并形成两道陡坎;三亚湾中部,受岛礁保护,滩面宽阔,波浪消能空间充足,物质丰富,发育滩脊型海滩,滩面呈上凸形,基本稳定;三亚湾东侧,虽有岛礁掩蔽,但由于人为修建的绿地草坪带和水泥碎砖石小径等,建设高度过低, 束狭了激浪带的自由作用宽度,减小了波浪消能范围,破坏了海滩的整体结构,同时阻断了沙坝向海滩的供沙, 使滩面坡度加大,物质粗化,局部与小径相接处形成侵蚀陡坎、椰树等倾斜,呈侵蚀状态。  相似文献   

19.
The salinity intrusion in the Fraser estuary, Canada, migrates landward during the rising tide and is flushed downstream on the falling tide. Suspended sediment concentrations are higher during unstratified flows than during stratified conditions. Mixing between the upper layer and the salinity intrusion is restricted by a strong density interface on the rising tide but enhanced mixing occurs across a weak salinity gradient on the falling tide. A weakly-developed estuarine turbidity maximum (ETM) and positive internal waves occur at the tip of the salinity intrusion as it migrates seaward. Spectral analyses of optical backscatter probe time series indicate that sediment movement from the upper layer is restricted by the density interface on the rising tide. During the falling tide, sediment mixing is enhanced by internal waves at the surface of the ETM. Internal waves generated at the density interface have a higher frequency during the rising tide than the falling tide.  相似文献   

20.
Wave-dominated sandy shores occur along much of the coast of Western Australia. Despite local variations there is a characteristic distribution of lithofacies (corresponding to different geomorphic zones). Five lithofacies are recognised: (1) trough-bedded sand/gravel; (2) laminated sand; (3) laminated/bubble sand; (4) laminated/disrupted sand; and (5) aeolian cross-stratified sand.The trough-bedded sand/gravel lithofacies is being deposited in the shallow shoreface below LWL. The laminated sand and laminated/bubble sand lithofacies are sands with gravel layers being deposited on the foreshore swash zone; extensive bubble (or vesicular) sand is common towards HWL especially in berms. The laminated/disrupted sand lithofacies is being deposited on the backshore between HWL and storm water levels and consists of horizontally layered to homogeneous sands with storm debris, especially wood, weed and floatable skeletons (e.g. Sepla and Spirula). The aeolian cross-stratified sand lithofacies is forming in beach ridge/dune areas and consists of fine sands with large-scale, generally landward-dipping forests; soils and rootlets are common.Recognition of these lithofacies within a sedimentary sequence enables reconstruction of gross shoreline conditions in terms of wave and eolian environments, tidal and storm heights, and palaeogeography. Each of these lithofacies with their characteristic features is recognised in Pleistocene sequences in Perth Basin. The Pleistocene sequences fit a model of coastal progradation with the trough-bedded sand/gravel lithofacies at the base and the aeolian sand lithofacies at the top. The value of such a stratigraphic sequence, however, extends beyond the Pleistocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号