首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geology and mineralogy of the Ulakhan Au-Ag epithermal deposit (northeastern Russia, Magadan Region) are considered. A four-stage scheme of mineral formation sequence is proposed. Concentrations of Au and Ag in minerals of early and late parageneses were determined. It has been established that uytenbogaardtite is associated with native gold and hypergenesis stage minerals — goethite, hydrogoethite, or limonite replacing pyrite. The compositions of uytenbogaardtite (Ag3AuS2), acanthite (Ag2S), and native gold were studied. The composition of the Ulakhan uytenbogaardtite is compared with those of Au and Ag sulfides from other deposits. Thermodynamic calculations in the system H2O–Fe–Au–Ag–S–C–Na–Cl were carried out, which simulate the interaction of native gold and silver with O2- and CO2-saturated surface waters (carbonaceous, sulfide-carbonaceous, and chloride-sodium-carbonaceous) in the presence and absence of acanthite and pyrite at 25 °C and 1 bar. In closed pyrite-including systems, native silver and kustelite are replaced by acanthite; electrum, by uytenbogaardtite, acanthite, and pure gold; and native gold with a fineness of 700–900‰, by pure gold and uytenbogaardtite. Under the interaction with surface waters in the presence of Ag2S and pyrite, Au-Ag alloys form equilibrium assemblages with petrovskaite or uytenbogaardtite and pure gold. The calculation results confirmed that Au and Ag sulfides can form after native gold in systems involving sulfide-carbon dioxide solutions (H2Saq > 10–4 m). The modeling results support the possible formation of uytenbogaardtite and petrovskaite with the participation of native gold in the hypergenesis zone of epithermal Au-Ag deposits during the oxidation of Au(Ag)-containing pyrite, acanthite, or other sulfides.  相似文献   

2.
The relationships and chemical compositions of silver sulfoselenides in the ores of the Rogovik gold-silver deposit (northeastern Russia) were studied to refine the low-temperature region of the Ag2S-Ag2Se phase diagram and identify contradictions between natural and experimental data. Two types of relationships between the phases of the system Ag2S-Ag2Se have been recognized using optical and scanning electron microscopy: (1) Se-acanthite and S-naumannite occur as monomineral microinclusions or fill cracks in the grains or the interstices of other minerals, and acanthite (free of impurities) forms rims on Fe-sphalerite; (2) Se-acanthite forms rims on S-naumannite. Electron probe microanalysis of silver sulfoselenides from the Rogovik ores revealed 0–7.9 wt.% Se in acanthite and 0–3.2 wt.% S in naumannite, which corresponds to the acanthite series Ag2S-Ag2S0.74Se0.26 and naumannite series Ag2S0.28Se0.72-Ag2Se. The composition ranges of the studied acanthite and naumannite series are wider than those of natural silver sulfoselenides from the Guanajuato (Mexico), Silver City (USA), Salida (Indonesia), and other deposits (Ag2S-Ag2S0.85Se0.15 and Ag2S0.12Se0.88-Ag2Se, respectively) but are significantly narrower than the composition ranges of synthetic samples: Ag2S-Ag2S0.4Se0.6 and Ag2S0.3Se0.7-Ag2Se. The presence of intergrowths of two phases of the Ag2S-Ag2Se series in the form of Se-acanthite rims on S-naumannite in the Rogovik ores and the absence of three-phase intergrowths of silver sulfoselenides Ag2S1 -xSex from this and other deposits do not confirm the assumption on the existence of the third solid solution. The results of earlier studies of natural Ag2(S,Se) solid solutions show the existence of two solid solutions (of the acanthite and naumannite series) in the Ag2S-Ag2Se system and confirm the experimental data. It is necessary to carry out a detailed examination of natural silver sulfoselenides falling in the interval from Ag2S0.4Se0.6 to Ag2S0.3Se0.7 in order to identify the limits of two-phase immiscibility.  相似文献   

3.
We studied the typomorphic features of native gold in orebodies with veinlet-disseminated quartz-sulfide mineralization at the Degdekanskoe deposit localized in Permian black-shale strata of the Ayan–Yuryakh anticlinorium in the upper-Yana–Chukchi folded area. With a successive HF and HNO3 dissolution of samples, the abundance of native gold intimately intergrown with sulfides (on the average, 42.1%) and carbonaceous substance was revealed. It is shown that most of its grains are small and fine (the <0.25 mm fraction averages 90.2%) and are accumulated mainly in interstices. Two gold generations have been revealed: low-medium-grade (751–840‰) (main) and high-grade (885–931‰). The zonal structure of mineralization has been established. The upper, most enriched horizons bear coarser-grained gold of the two generations, which are localized in both sulfide and silicate minerals. With depth, the total content of gold decreases, the share of sulfide gold increases, and the grain size and grade also diminish, with the low-medium-grade generation prevailing.  相似文献   

4.
5.
6.
The Tomtor massif of Paleozoic ultramafic alkaline rocks and carbonatites is located in the northern part of the Sakha Republic (Yakutia). The massif (its total area is ~ 250 km2) is ~ 20 km in diameter, with a rounded shape and a concentrically zoned structure. The core of the massif consists of carbonatites surrounded by a discontinuous ring of ultramafic rocks and foidolites. The outer part is composed of alkali and nepheline syenites. All rocks are weathered and covered with eluvium, which is the thickest after carbonatites enriched in phosphates and REE. The weathering profile consists of four layers, from the top: kaolinite-crandallite, siderite, goethite, and francolite. The highest-grade ores are observed in the bedded deposit which fills depressions in “sagging” eluvium. The ores are laminated and cryptogranular, with high Nb, Y, Sc, and REE contents (on average, 4.5% Nb2O5, 7-10% REE2O3, 0.75% Y2O3, and 0.06% Sc2O3). The highest-grade ores are natural Nb and REE concentrates. The total REE content in some layers is > 10%. The morphologic features of the highest-grade phosphate ores from the northern part of the Burannyi site were studied. The ore-forming minerals belong to the pyrochlore group, crandallite group (goyazite), and monazite-Ce. The pyrochlore group minerals occur mainly as crystals that were completely replaced by barium-strontium pyrochlore and/or plumbopyrochlore but retained the original faces; also, they occur as numerous conchoidal fragments. The grains of the pyrochlore group minerals sometimes have a zonal structure, with an unaltered pyrochlore core and a reaction rim. Goyazite occurs predominantly as colloform grains. According to SEM and TEM data, monazite occurs in the ores as ~ 50 nm particles, which cover the outer part of halloysite tubes (800–3000 nm long and 300 nm in diameter) as a dense layer and make up peculiar biomorphic aggregates. The mineralogical data, the occurrence of biomorphic aggregates, and the close association of organic remains with ore minerals suggest that the high-grade ores of the Tomtor deposit, including the Burannyi site, resulted from a hydrothermal-sedimentary process with a presumably important role of bioaccumulation of REE phosphates.  相似文献   

7.
New data on the composition, assemblages, and formation conditions of platinum-group minerals (PGM) identified in platinum-group element (PGE) occurrences of the Monchetundra intrusion (2495 +- 13 to 2435 ± 11 Ma) are described. This intrusion is a part of the Paleoproterozoic pluton of the Monche-Chuna-Volch’i and Losevy tundras located in the Pechenga-Imandra-Varzuga Rift System. The rhythmically layered host rocks comprise multiple megarhythms juxtaposed to mylonite zones and magmatic breccia and injected by younger intrusive rocks in the process of intense and long magmatic and fluid activity in the Monchetundra Fault Zone. The primary PGM and later assemblages that formed as a result of replacement of the former have been identified in low-sulfide PGE occurrences. More than 50 minerals and unnamed PGE phases including alloys, Pt and Pd sulfides and bismuthotellurides, PGE sulfarsenides, and minerals of the Pd-As-Sb, Pd-Ni-As, and Pd-Ag-Te systems have been established. The unnamed PGE phases—Ni6Pd2As3, Pd6AgTe4, Cu3Pt, Pd2NiTe2, and (Pd, Cu)9Pb(Te, S)4—are described. The primary PGM were altered due to the effect of several mineral-forming processes that resulted in the formation of micro- and nanograins of Pt and Pd alloys, sulfides, and oxides, as well as in the complex distribution of PGE, Au, and Ag mineral assemblages. New types of complex Pt and Pd oxides with variable Cu and Fe contents were identified in the altered ores. Pt and Pd oxides as products of replacement of secondary Pt-Pd-Cu-Fe alloys occur as zonal and fibrous nanoscale Pt-Pd-Cu-Fe-(±S)-O aggregates.  相似文献   

8.
The molybdenum mineralization at the Tigriny tin deposit is considered for the first time in the light of possible recovery of Mo as a by-product of selective mining. It is established that Mo has a positive correlation with Bi and does not show a correlation with Sn, W, or Zn. The highest Mo grade (>0.1%) in the ore stockwork is related to hornfels near the exposed granite porphyry stock and decreases downward by an order of magnitude. At the level of adit 5, the most numerous quartz-molybdenite veinlets develop at a distance of 50–100 m from the granite porphyry stock. The molybdenite-quartz, pegmatoid, and autogreisen generations of molybdenum mineralization are related to different substages of the first ore stage. All these generations predated crystallization of wolframite, cassiterite, and other ore minerals. The formation temperature for each molybdenite generation was determined by homogenization of fluid inclusions in quartz and decrepitation of samples characterizing each molybdenite-bearing assemblage. These data allowed us not only to estimate the crystallization temperature of each molybdenite generation but also to establish that the molybdenite crystallized from a pneumatolytic-hydrothermal melt-solution at the early stage of the deposit formation. The molybdenum mineralization is genetically related to the granite porphyry stock. The structure of the quartz-molybdenum stockwork was studied to determine the clusters of quartz-molybdenite veinlets and establish their orientation. Molybdenite 1 occurs in variably oriented veinlets that make up a stockwork around the apical portion of the porphyry stock. Disseminations and pockets of molybdenites 2 and 3 are hosted in pegmatoid rocks, greisen, and greisenized granite porphyry. The density of the Tigriny stockwork varies from 0 to 40–50 quartz-molybdenite veinlets per 5 m. Their orientation and spatial distribution were studied in quantitative terms. The most promising targets for selective mining of molybdenite from the Tigriny deposit are the framework of the Minor porphyry stock and the apical portion of the Main stock. The Tigriny deposit demonstrates a clear relationship between ore formation and granitic magmatism.  相似文献   

9.
The results of investigation of heavy fraction minerals from the Degdekan deposit hosted by the lower portion of stratified Mid Permian sediments are presented; the investigation was conducted via electron microscopy using a QEMSCAN hardware and software instrument equipped with a QUANTAX quantitative analysis system. The following mineral phases of platinoids have been detected for the first time: native osmium, rutheniridosmine, osmiridium, ruthenosmiridium, laurite, iridarsenite, and Ru, Os, and Ir arsenide.  相似文献   

10.
The mineral composition and geochemical characteristics of the ores of the Malinovskoe gold-ore deposit are studied by the data from mining works (ditches, cleanings, and boreholes). It is found that the ore–magma system of the deposit was formed in several stages of mineralization characterized by two phases of magmatism differing in age. In terms of the set of features (the geological–structural position of the deposit, as well as the material composition and geochemical characteristics of the ores), the deposit is attributed to the gold–tourmaline type of mineralization associated spatially and genetically with the “raremetal” granitoid magmatism. This type has not previously been found in Primorskii Krai. The studies of the material composition and geochemical characteristics of the ores allow us to ascertain the correlations between the elements along with the reasons of their origination. By analogy with other gold-ore formations of the Russian Far East, the mineralogical and geochemical model of the deposit is developed (Be–Sn–Cr–Ba–Au–Cu–Mo–Pb–V–Ti–Co–W–Ag–Bi–Ni–Mn–Sr–Zn–Sb–As modeling element series of vertical zoning), which enables us to estimate the levels of the erosion section of the ore bodies and to evaluate their prospects. It is found that the most productive associations in the deposit are the gold–bismuth geochemical association (Au–Ag–Bi–Cu–As–Co) and, to a lesser degree, the gold–tungsten association (W–Au–Ag–Cu–Bi–As).  相似文献   

11.
吉林小西南岔金铜矿床的金属矿物及矿石特征。   总被引:3,自引:0,他引:3  
陈殿芬  周文茂 《矿床地质》1995,14(2):127-149
小西南岔矿床是与燕山期花岗岩有关的斑岩矿床,以金、铜为主,伴有银、铋矿化。金属硫化物主要是黄铁矿、毒砂、磁黄铁矿、黄铜矿。金矿物是金-银系列的自然金、银金矿及金银矿。金的成色低,平均成色728,且变化在305~993这一较大范围内。另外,还发现了碲银矿、硫碲银铋铅矿、自然铋、赫啼铋矿、富硫铋铅矿等多种银、铋矿物。成矿早期只有微弱的铜(钼)矿化,大量金和铜富集于成矿中期(210~475℃),而银、铋矿化则出现在成矿作用晚期(160~240℃)。  相似文献   

12.
Hypogene uytenbogaardtite, acanthite, and native gold parageneses have been revealed at the epithermal Yunoe gold-silver deposit, Magadan Region, Russia. Thermodynamic calculations in the system Si–Al–Mg–Ca–Na–K–Fe–Pb–Zn–Cu–Ag–Au–S–C–Cl–H2O were carried out at 25–400 °C and 1–1000 bars to elucidate the role of hydrothermal solutions in the formation of gold and silver sulfides. Several most probable scenarios for ore-forming processes in the deposit are considered: (1) interaction between cold and heated meteoric waters percolating along cracks from surface to depth and reacting with the host rock—rhyolite; (2) evolution of ascending postmagmatic fluid resulting in chloride–carbonic acid solution, which interacts with rhyolite at 100–400 °C; (3) stepwise cooling of hydrothermal ore-bearing solutions; (4) rapid cooling of ore-bearing hydrotherms on their mixing with cold surface waters. Rhyolite with Pb, Zn, Cu, Cl, S, Ag, and Au clarke contents was taken as an initial host rock. Calculations by model 3 showed the possible formation of uytenbogaardtite and petrovskaite at low-temperature stages. Gold and silver sulfides can be deposited during the mixing of ore-bearing acid chloride–carbonic acid hydrothermal solutions with surface alkaline waters.  相似文献   

13.
Summary Drill cores from the newly discovered Baronskoe-Kluevsky Pd–Au deposit (Volkovsky massif, Central Urals) have been investigated by reflected-light and electron microscopy, and the ore minerals were analyzed by electron microprobe. The most abundant Platinum-group mineral (PGM) is vysotskite, ideally PdS, characterized by an unusual Pt,Ni-poor composition. Palladium also occurs in kotulskite (PdTe), stillwaterite (Pd8As3), and unknown Pd–As–Te compounds with vincentite-type Pd3(As,Te), stillwaterite-type Pd8(As,Te)3, and Pd7(As,Te)2 stoichiometries. The main carrier of Au is Pd-rich electrum, approaching the composition Au75Ag15Pd10, with minor Fe, Cu, Ni and Pt. The precious minerals are closely associated with minute blebs of chalcopyrite+magnetite disseminated throughout serpentinized olivine-apatite host rock. Paragenetic relationships among the ore minerals define a succession of crystallization events in the order: 1) Cu–Pd sulfides+electrum, 2) replacement by Pd–Te–As and late Pd–As PGM, 3) final replacement by magnetite. The paragenesis is tentatively related with cooling of a fluid phase in the late- to post-magmatic stage.  相似文献   

14.
This study of the behavior of trace and rare earth elements in ores from the Natalka gold deposit allows us to draw several conclusions. It is suggested that ore formation is related to the regional metamorphism of the host terrigenous carbonaceous rocks, which could be the major source for trace and rare earth elements. Minor enrichment of the Natalka ores in W is evidence of the contribution of magmatic fluid, which could be superimposed on early quartz veins, in ore formation. Our results support the metamorphic–magmatic model of formation of economic gold–quartz deposits of the Yana–Kolyma Belt. The similarity of metasomatites of the Natalka deposit with disseminated gold–sulfide refractory ores from the Nezhdaninskoe and Bakyrchik deposits points to the possible presence of such ores in the Natalka deposit. Our data are important for forecasting regional metallogenic reconstructions, search, and evaluation of gold deposits.  相似文献   

15.
高家堡子银矿床是在辽东青城子铅锌矿田内发现的一大型独立银矿床,赋存于辽河群大石桥组第三段以大理岩为主的地层之中,矿体形态及产状受层间破碎带构造控制。矿区矿石分为硅化石英脉型及碎裂大理岩型两类,其中前者为矿区主要的富银矿石。该类矿石晶洞构造极其发育,根据地质及流体包裹体研究成果,认为矿石中的晶洞构造是岩浆来源富CO2流体溶蚀赋矿的大理岩围岩形成的溶洞,被晚期以大气降水为主流体充填形成晶簇状石英。  相似文献   

16.
High-carbonaceous stratified formations and related metasomatic rocks of global abundance are among highly promising sources of gold and platinum-group metals (PGMs) in the 21st century. The Au-PGM mineralization of the black-shale type hosted in the Early Karelian Kursk and Oskol groups in central Russia is characterized by complex multicomponent and polymineralic composition (more than 60 ore minerals, including more than 20 Au and PGM phases) and diverse speciation of noble metals in form of (1) native elements (gold, palladium, platinum, osmium, silver); (2) metallic solid solutions and intermetallic compounds (Pt-bearing palladium, Fe-bearing platinum, gold-platinum-palladium, osmiridium, rutheniridosmin, platiridosmin, platosmiridium, Hg-Te-Ag-bearing gold, gold-silver amalgam, arquerite, palladium stannide (unnamed mineral), platinum-palladium-gold-silver-tin); (3) PGM, Au, and Ag sulfoarsenides, tellurides, antimonides, selenides, and sulfosalts (sperrylite, irarsite, hessite, Pd and Pt selenide (unnamed mineral)), testibiopalladinite, Pd antimonide (unnamed mineral), etc.; and (4) impurities in ore-forming sulfides, sulfoarsenides, tellurides, antimonides, and selenides. The chemical analyses of PGM and Au minerals are presented, and their morphology and microstructure are considered.  相似文献   

17.
Gold and silver minerals from the Kupol epithermal deposit, Chukotka, were studied. A schematic sequence of mineral formation has been compiled. Specific mineral assemblages have been revealed in jarosite breccias: with native gold, uytenbogaardtite, fischesserite, acanthite, and native sulfur. We considered a possible mechanism of formation of gold and silver sulfides and selenides in volcanogenic deposits: They might have formed during solfatara and postsolfatara processes with the participation of volcanic gases or their condensates and sublimates as well as liquid sulfur (and selenium) and sulfuric hydrotherms produced under the interaction of volcanic gases with meteoric waters. The specific features of the Kupol deposit confirm the solfatara genesis of Au–Ag sulfides and selenides.  相似文献   

18.
19.
20.
内蒙古白音哈尔金矿床矿石及金矿物特征   总被引:2,自引:0,他引:2  
内蒙古白音哈尔金矿床矿石类型以贫硫化物含Au石英脉型为主,深部见含Au破碎蚀变岩型,主要载金矿物是石英,黄铁矿和褐铁矿,金的赋存状态为包裹体金,裂隙金和晶隙金,金矿物主要以中粗粒以上颗粒为主,占面积比的91.21%。矿床的形成经历2个成矿期4个成矿阶段,即热液期的石英,多金属贫硫化物及碳酸盐阶段和表生期的氧化淋滤阶段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号