首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the analysis of experimental data on the viscosity of mafic to ultramafic magmatic melts with the use of our structure-chemical model for the calculation and prediction of the viscosity of magmas, we have first predicted that diamond-carryihg kimberlite magma must ascend from mantle to crust with considerable acceleration. The viscosity of kimberlite magma decreases by more than three times during its genesis, evolution, and ascent from mantle to crust despite the significant decrease in the temperature of the ascending kimberlite magma (~ 150 °C) and its partial crystallization and degassing. In the case of partial melting (< 1 wt.%) of carbonated peridotite in the mantle at depths of 250-350 km, high-viscosity (~ 35 Pas) kimberlite melts can be generated at ~ 8.5 GPa and ~ 1350 °C, the water content in the melt being up to ~ 8 wt.%, C(OH-) = 0-2 wt.%, and C(H2O) = 0-6 wt.%. On the other hand, during the formation of kimberlite pipes, dikes, and sills, the viscosity of near-surface kimberlite melts is much lower (~ 10 Pa s) at ~ 50 MPa and 1200 °C, the volume contents of crystals (Vcr) and the fluid phase (bubbles) (Vfl) are 35 and 5 vol.%, respectively, and the water content in magma, C(OH-), is 0.5 wt.%. On the contrary, the viscosity of basaltic magmas increases by more than two orders of magnitude during their ascent from mantle to crust. The basaltic magmas which can be generated in the asthenosphere at depths of ~ 100 km have the minimum viscosity (up to ~ 2.3 Pas) at ~ 4.0 GPa, 1350 °C, C(OH-) - 3 wt.%, and C(H2O) - 5 wt.%. However, at the final stage of evolution (e.g., during volcanic eruptions), the viscosity of basaltic magma is considerably higher (600 Pa s) at ~ 10 MPa, 1180 °C, Vcr - 30 vol.%, Vf - 15 vol.%, and C(OH-) - 0.5 wt.%.  相似文献   

2.
Modeling of the seismic, thermal, and density structure of the Siberian craton lithospheric mantle at depths of 100-300 km has been performed along the superlong Meteorite and Rift seismic profiles. The 2D velocity sections reflect the specific features of the internal structure of the craton: lateral inhomogeneities, seismic-boundary relief at depths of ~ 100, 150, 240, and 300 km, velocities of 8.3-8.7 km/s, and the lack of low-velocity zone in the lower lithosphere. Mapping of the thermal state along the Meteorite and Rift profiles shows a significant temperature decrease in the cratonic mantle as compared with the average temperatures of the surrounding Phanerozoic mantle (> 300 °C) estimated from the global reference model AK135. Lateral temperature variations, reflecting the thermal anomalies in the cratonic keel, are observed at depths of < 200 km (with some decrease in temperature in the central part of the craton), whereas at depths of > 200 km, temperature variations are negligible. This suggests the preservation of residual thermal perturbations at the base of the lithosphere, which must lead to the temperature equalization in the transition zone between the lithosphere and the asthenosphere. Variations in chemical composition have a negligible effect on the thermal state but affect strongly the density structure of the mantle. The results of modeling admit a significant fertilization of matter at depths more than 180-200 km and stratification of the cratonic mantle by chemical composition. The thicknesses of chemical (petrologic) and thermal boundary layers beneath the Siberian craton are estimated. The petrologic lithosphere is localized at depths of ~ 200 km. The bottom of the thermal boundary layer is close to the 1450 °C isotherm and is localized at a depth of 300 km, which agrees with heat flow and seismic-tomography data.  相似文献   

3.
In order to identify the mud diapirs and mud volcanoes off SW Taiwan, we have examined ∼1500 km long MCS profiles and related marine geophysical data. Our results show ten quasi-linear mud diapirs, oriented NNE–SSW to N–S directions. Thirteen mud volcanoes are identified from the multibeam bathymetric data. These mud volcanoes generally occur on tops of the diapiric structures. Moreover, the active mud flow tracks out of mud volcanoes MV1, MV3 and MV6 are observed through the high backscatter intensity stripes on the sidescan sonar images. The heights of the cone-shaped mud volcanoes range from 65 m to 345 m, and the diameters at base from 680 m to 4100 m. These mud volcanoes have abrupt slopes between 5.3° and 13.6°, implying the mudflow is active and highly viscous. In contrast, the flat crests of mud volcanoes are due to relative lower-viscosity flows. The larger cone-shaped mud volcanoes located at deeper water depths could be related to a longer eruption history. The formation of mud diapirs and volcanoes in the study area are ascribed to the overpressure in sedimentary layers, compressional tectonic forces and gas-bearing fluids. Especially, the gas-bearing fluid plays an important role in enhancing the intrusion after the diapirism as a large amount of gas expulsions is observed. The morphology of the upper Kaoping Slope is mainly controlled by mud diapiric intrusions.  相似文献   

4.
A high-resolution passive seismic experiment in the Kachchh rift zone of the western India has produced an excellent dataset of several thousands teleseismic events. From this network, 500 good teleseismic events recorded at 14 mobile broadband sites are used to estimate receiver functions (for the 30–310° back-azimuth ranges), which show a positive phase at 4.5–6.1 s delay time and a strong negative phase at 8.0–11.0 s. These phases have been modeled by a velocity increase at Moho (i.e. 34–43 km) and a velocity decrease at 62–92 km depth. The estimation of crustal and lithospheric thicknesses using the inversion of stacked radial receiver functions led to the delineation of a marked thinning of 3–7 km in crustal thickness and 6–14 km in lithospheric thickness beneath the central rift zone relative to the surrounding un-rifted parts of the Kachchh rift zone. On an average, the Kachchh region is characterized by a thin lithosphere of 75.9 ± 5.9 km. The marked velocity decrease associated with the lithosphere–asthenoshere boundary (LAB), observed over an area of 120 km × 80 km, and the isotropic study of xenoliths from Kachchh provides evidence for local asthenospheric updoming with pockets of partial melts of CO2 rich lherzolite beneath the Kachchh seismic zone that might have caused by rifting episode (at 88 Ma) and the associated Deccan thermal-plume interaction (at 65 Ma) episodes. Thus, the coincidence of the area of the major aftershock activity and the Moho as well as asthenospheric upwarping beneath the central Kachchh rift zone suggests that these pockets of CO2-rich lherzolite partial melts could perhaps provide a high input of volatiles containing CO2 into the lower crust, which might contribute significantly in the seismo-genesis of continued aftershock activity in the region. It is also inferred that large stresses in the denser and stronger lower crust (at 14–34 km depths) induced by ongoing Banni upliftment, crustal intrusive, marked lateral variation in crustal thickness and related sub-crustal thermal anomaly play a key role in nucleating the lower crustal earthquakes beneath the Kachchh seismic zone.  相似文献   

5.
Increased seismicity and occurrences of hot springs having surface temperature of 36–58 °C are observed in the central part of India (74–81° E, 20–25° N), where the NE trending Middle Proterozoic Aravalli Mobile Belt meets the ENE trending Satpura Mobile Belt. Earlier Deep Seismic Sounding (DSS) studies along Thuadara-Sendhwa-Sindad profile in the area has showed Mesozoic Sediments up to around 4 km depth covered by Deccan Trap and the Moho depth with a boundary velocity (Pn) of 8.2 km/s. In the present study, surface heat flow of 48 ± 4 mW m?2 has been estimated based on Pn velocity, which agrees with the value of heat flow of 52 ± 4 mW m?2 based on Curie point isotherms estimates. The calculated temperature-depth profile shows temperature of 80–120 °C at the basement, which is equivalent to oil window temperature in Mesozoic sediments and around 570–635 °C at Moho depth of 38–43 km and the thermal lithosphere is about 110 km thick, which is comparatively higher than those of adjoining regions. The present study reveals the brittle–ductile transition zone at 14–41 km depth (temperature around 250–600 °C) where earthquake nucleation takes place.  相似文献   

6.
Using the HyMap instrument, we have acquired visible and near infrared hyperspectral data over the Maqsad area of the Oman ophiolite (~ 15 × 60 km). This survey allowed us to identify and map the distribution of clinopyroxene-rich cumulates (inter-layered clinopyroxenites and wehrlites) whose occurrence was previously undocumented in this area. The cumulates reach several hundred meters in thickness and crop out at distances exceeding 15 km on both sides of the Maqsad former spreading centre. They occur either in mantle harzburgites, as km-sized layered intrusions surrounded by fields of pegmatitic dykes consisting of orthopyroxene-rich pyroxenite and gabbronorites, or at the base of the crustal section where they are conformably overlain by cumulate gabbros. These ultramafic cumulates crystallized from silica- and Mg-rich melts derived from a refractory mantle source (e.g. high Cr#, low [Al2O3], low [TiO2]). These melts are close to high-Ca boninites, although, strictly speaking, not perfect equivalents of present-day, supra-subduction zone, boninites. Chemical stratigraphy reveals cycles of replenishment, mixing and fractional crystallization from primitive (high Mg#) melts, typical of open magma chambers and migration of inter-cumulus melts. The TiO2 content of clinopyroxene is always low (≤ 0.2 wt.%) but quite variable compared to the associated pegmatites that are all derived from a source ultra-depleted in high field strength elements (HFSE). This variability is not caused by fractional crystallization alone, and is best explained by hybridization between the ultra-depleted melts (parent melts of the pegmatites) and the less depleted mid-ocean ridge basalts (MORB) parent of the dunitic–troctolitic–gabbroic cumulates making up the crustal section above the Maqsad diapir.We propose that, following a period of magma-starved spreading, the Maqsad mantle diapir, impregnated with tholeiitic melts of MORB affinity, reached shallow depths beneath the ocean ridge. This diapir induced melting of the formerly accreted and hydrothermally altered lithosphere. At this stage, these boninitic-like lithospheric melts crystallized as pegmatitic dykes. As the diapir continued to rise, the amount of MORB reaching shallow depths increased, together with the surrounding temperature, leading to the formation of magma chambers where the crystallization of layered cumulates became possible. These cumulates remained rich in pyroxene and devoid of plagioclase as long as the contribution of MORB-derived melts was moderate relative to the lithospheric-derived melts. As the contribution of MORB to the refilling of the magma chamber increased, gabbroic cumulates started to crystallize.  相似文献   

7.
Metapelites are exposed at Wadi Ba’ba, east of Abu Zenima city; represent the northwestern extension of the Fieran-Solaf Metamorphic Complex, Sinai Peninsula, Egypt. The metapelites are characterized by qtz + pl (An24–28) + bt + grt ± crd ± sil mineral assemblage, indicating upper amphibolite facies with peak metamorphic conditions of 700 °C and pressures of 7 kbar, as determined by conventional geothermobarometeric methods. This resulted in incipient migmatization, forms patches of leucosomes and melanosomes. Geochemical investigation indicates that the precursor sediments of the metapelites had been deposited as immature Fe-rich shales from source materials of dominantly intermediate composition. Source area exhibited weak to moderate chemical weathering in a tectonically active continental marginal basin within a continental-arc system. A strong shallow-dipping foliation, characterizing the metapelites, was folded around an open antiform with sub-horizontal south plunging hinge.Phase equilibria calculations in the KFMASH system indicate that the peak metamorphic conditions formed at 730–750 °C and 6.8–7.9 kbar. This was followed by a retrogression formed at 770–785 °C and 3.9–4.5 kbar. Hence, this implies an isothermal decompression and rapid exhumation of the metapelites from depth (25–29 km) in the lower crustal level at peak conditions, continuous to include shallow to middle crustal level (14–17 km), at overprint retrograde conditions. Subsequent isobaric cooling took place at 720–750 °C and 3.6–4.5 kbar. The resulting isothermal decompression followed by isobaric cooling clockwise P–T path of the metapelites is more likely, in which the high-temperatures attained maximum conditions during isothermal decompression were enhanced by heat flux, due to the presence of an active magmatic arc that formed on top of subducting young lithosphere. This is supported by a moderate geothermal gradient of 27–43 °C/km and dating compatibility of the Sinai granitoids and the metamorphic complexes. The P–T path segment records the tectonothermal histories of crustal thickening as a result of the East and West Gondwana collision at the metamorphic peak. This was subsequent by extensional and crustal thinning with syn-metamorphic magmatic intrusions, during P–T path retrogression, which resulted in the final assembly of the Arabian–Nubian Shield during Neoproterozoic.  相似文献   

8.
In this study potential iron isotope fractionation by magmatic processes in the Earth's crust was systematically investigated. High precision iron isotope analyses by MC-ICP-MS were performed on a suite of rock samples representative for the volcanic evolution of the Hekla volcano, Iceland. The whole series of Hekla's rocks results from several processes. (i) Basaltic magmas rise and induce partial melting of meta-basalts in the lower part of the Icelandic crust. The resulting dacitic magma evolves to rhyolitic composition through crystal fractionation. During this differentiation the δ56/54FeIRMM-014 values increase successively from 0.051 ± 0.021‰ for the primitive dacites to 0.168 ± 0.021‰ for the rhyolites. This increase can be described by a Rayleigh fractionation model using a constant bulk fractionation factor between all mineral phases (M) and the silicate liquid (L) of Δ56/54FeM–L = ? 0.1‰. (ii) The basaltic magma itself differentiates by crystal fractionation to basaltic andesite composition. No Fe isotope fractionation was found in this series. All basalts and basaltic andesites have an average δ56/54FeIRMM-014 value of 0.062 ± 0.042‰ (2SD, n = 9), identical to mean terrestrial basaltic values reported in previous studies. This observation is consistent with the limited removal of iron from the remaining silicate melt through crystal fractionation and small mineral-melt Fe isotope fractionation factors expected at temperatures in excess of 1050 °C. (iii) Andesites are produced by mixing of basaltic andesite with dacitic melts. The iron isotope composition of the andesites is matching that of the basaltic andesites and the less evolved dacites, in agreement with a mixing process. In the Hekla volcanic suite Li concentrations are positively correlated with indicators of magma differentiation. All Hekla rocks have δ7Li values typical for the upper mantle and demonstrate the absence of resolvable Li isotope fractionation during crystal fractionation. As a fluid-mobile trace element, Li concentrations and isotopes are a potential tracer of magma/fluid interaction. At Hekla, Li concentrations and isotope compositions do not indicate any extensive fluid exsolution. Hence, the heavy Fe isotope composition of the dacites and rhyolites can be predominately attributed to fractional crystallisation. Iron isotope analyses on single samples from other Icelandic volcanoes (Torfajökull, Vestmannaeyjar) confirm heavy Fe isotope enrichment in evolving magmas. Our results suggest that the iron isotope composition of highly evolved crust can be slightly modified by magmatic processes.  相似文献   

9.
The Duolong district in central Tibet hosts a number of porphyry as well as high sulfidation epithermal copper–gold deposits and prospects, associated with voluminous calc-alkaline volcanism and plutonism. In this study, we present new geochronological, geochemical, isotopic and mineralogical data for both economically mineralized and barren porphyritic intrusions from the Duobuza and Naruo porphyry Cu–Au deposits. Zircon U–Pb analyses suggest the emplacement of economically mineralized granodiorite porphyry and barren granodiorite porphyry at Naruo deposit took place at 119.8 ± 1.4 Ma and 117.2 ± 0.5 Ma, respectively. Four molybdenite samples from the Naruo deposit yield an isochron Re–Os age of 119.5 ± 3.2 Ma, indicating mineralization occurred synchronously with the emplacement of the early granodiorite porphyry. At Duobuza deposit, the barren quartz diorite porphyry intruded at 119.5 ± 0.7 Ma, and two economically mineralized intrusions intruded at 118.5 ± 1.2 Ma (granodiorite porphyry) and 117.5 ± 1.2 Ma (quartz diorite porphyry), respectively. Petrographic investigations and geochemical data indicate that all of the porphyritic intrusions were oxidized, water rich, and subduction-related calc-alkaline magmas. Zircons from the porphyritic intrusions have a wide range in the εHf (0–11.1) indicating that they were sourced from mixing of mantle-derived mafic, and crust-derived felsic melts. Moreover, the variation of trace element content of plagioclase phenocrysts indicates that the magma chambers were recharged by mafic magmas.Comparison of the composition of amphibole phenocrysts indicates the porphyry copper–gold mineralization at Duolong was generated in magma chambers at low crystallization temperatures and pressures (754° to 791 °C, 59 M to 73 MPa, n = 8), and under highly oxidizing conditions (ΔNNO 2.2 to 2.7, n = 8). In contrast, barren intrusions were sourced from the magma chambers with higher crystallization temperatures and pressures (816° to 892 °C, 111 to 232 MPa, n = 22) that were less oxidizing (ΔNNO 0.6 to 1.6, n = 22). The requirement for a thermal contrast is supported by the declining of Ti content in magnetite crystals in barren intrusions (12,550 to 34,200 ppm) versus those from economically mineralized intrusions (600 to 3400 ppm). Moreover, the V content in magnetite crystals from economically mineralized intrusions (990 to 2510 ppm) is lower than those recorded from barren intrusions (2610 to 3510 ppm), which might reflect the variation in oxidation state of the magma. The calculated water solubility of the magma forming the economically mineralized intrusions (3.2–3.7 wt%) is lower than that of magma forming the barren intrusions (4.6–6.4 wt%). Based on the chemical–physical characteristics of economically mineralized magma, our study suggests that the development of porphyry Cu–Au mineralization at Duolong was initiated by shallow-level emplacement of a magma that crystallized at lower temperatures and pressures. Experimental studies show that copper and water solubilities in silicate melts decrease with falling temperatures and pressures, indicating metals and ore-forming fluids are more likely to be released from a magma reservoir emplaced at shallow crustal levels. We propose the magnetite might be a convenient exploration tool in the search for porphyry copper mineralization because the variations in Ti and V content of mineral concentrates and rock samples are indicative of barren versus mineralized intrusions.  相似文献   

10.
Geochemical characteristics of spinel lherzolite xenoliths, enclosed in Miocene alkali basalt from Boeun, Korea, provide important clues for understanding the lithosphere composition, equilibrium temperature and pressure conditions, and depletion and enrichment processes of subcontinental lithospheric mantle beneath Boeun. The spinel lherzolite xenoliths with protogranular to porpyroclastic textures were accidentally trapped by the ascending alkali basalt magma. The spinel lherzolite xenoliths originated at depths between 50 and 63 km with equilibrium temperatures ranging from 847 to 1030 °C. These xenoliths may have undergone small degrees (1–2%) of partial melting and cryptic metasomatism by an alkali basaltic melt. Based on Sr and Nd isotope compositions, the subcontinental lithospheric mantle beneath Boeun was heterogeneous and similar to that beneath East China and Central Mongolia rather than the Japanese Island Arc.  相似文献   

11.
The mantle structure in Central Asia was investigated by surface-wave tomography from dispersion of the fundamental mode of the Rayleigh wave group velocities along more than 3200 earthquake-station paths within 40° N to 60° N and 80° E to 132° E. The velocities were processed by the frequency-time analysis at periods from 10 to 250 s to obtain their dispersion curves. Then group velocity maps were computed separately for each period, at different sampling intervals: at every 5 s for the short periods from 10 to 30 s, at 10 s for periods between 30 and 100 s, and at 25 s for the longest periods of 100 to 250 s. Resolution was estimated according to the effective averaging radius (R) and presented likewise in the form of maps. To estimate the depths of the revealed inhomogeneties, locally averaged dispersion curves were calculated using the group velocity maps, with reference to the radius R, and were then inverted to S-wave velocity-depth profiles. The resulting three-dimensional S-wave velocity structure to depths of about 700 km revealed large lateral inhomogeneties through the entire depth range. This pattern may be due to the history of the major tectonic structures, as well as to ongoing processes in the mantle.  相似文献   

12.
Temperature measurements carried out on 9 hydrocarbon exploration boreholes together with Bottom Simulating Reflectors (BSRs) from reflection seismic images are used in this study to derive geothermal gradients and heat flows in the northern margin of the South China Sea near Taiwan. The method of Horner plot is applied to obtain true formation temperatures from measured borehole temperatures, which are disturbed by drilling processes. Sub-seafloor depths of BSRs are used to calculate sub-bottom temperatures using theoretical pressure/temperature phase boundary that marks the base of gas hydrate stability zone. Our results show that the geothermal gradients and heat flows in the study area range from 28 to 128 °C/km and 40 to 159 mW/m2, respectively. There is a marked difference in geothermal gradients and heat flow beneath the shelf and slope regions. It is cooler beneath the shelf with an average geothermal gradient of 34.5 °C/km, and 62.7 mW/m2 heat flow. The continental slope shows a higher average geothermal gradient of 56.4 °C/km, and 70.9 mW/m2 heat flow. Lower heat flow on the shelf is most likely caused by thicker sediments that have accumulated there compared to the sediment thickness beneath the slope. In addition, the continental crust is highly extended beneath the continental slope, yielding higher heat flow in this region. A half graben exists beneath the continental slope with a north-dipping graben-bounding fault. A high heat-flow anomaly coincides at the location of this graben-bounding fault at the Jiulong Ridge, indicating vigorous vertical fluid convection which may take place along this fault.  相似文献   

13.
《Gondwana Research》2010,17(3-4):622-632
Peculiar magmatic rocks were erupted and emplaced at depth at the margin of the Gondwana supercontinent during the Cambro-Ordovician transition. These rocks are characterized by high contents in silica and iron but they do not have equivalents in the high-silica members of the calc-alkaline series. They have particular geochemical signatures, with Al saturation index, ASI > 1, FeO > 2.5 wt.%, MgO > 0.8 wt.% for very low contents in calcium (CaO < 2.0 wt.%), supporting a derivation from near-total melting (> 80 vol.% melt) of metagreywackes. The results from inverse experiments indicate that the most plausible conditions are within the range 1000 °C (excess water) and 1100–1200 °C (subsaturated and dry) at pressures of 1.5 to 2.0 GPa. A tectonic scenario implying melting of subducted sediments within an ascending mantle-wedge plume is suggested for the generation of primary ferrosilicic melts at the Gondwana continental margin during Upper Cambrian to Lower Ordovician times.  相似文献   

14.
Different continental collision belts show contrasting metamorphic trend along their length, including the distribution of extreme metamorphism; i.e., ultrahigh-pressure (>100 km depth) and ultrahigh-temperature (900–1150 °C) metamorphisms. However, no previous study has succeeded in explaining these trends. The present study investigates the main factors that control the metamorphic trends along collision belts, with reference to the Dabie–Hongseong collision belt between the North and South China blocks and the Himalayan collision belt between the Indian and Asian blocks. In the Dabie–Hongseong collision belt, collision began in the east before 245 Ma and propagated westward until ca. 220 Ma. In the eastern part of the belt, the amount of oceanic slab that subducted before collision was insufficient to pull down the continental crust to the depths of ultrahigh-pressure metamorphism; however, ultrahigh-pressure metamorphism occurred in the western part of the belt. Slab break-off also migrated from east to west, with a westward increase in the depth of break-off (from ca. 10 kbar in the west to ca. 35 kbar in the east). These lateral trends along the belt resulted in a westward change from ultrahigh-temperature (915–1160 °C, 9.0–10.6 kbar) to high-pressure (835–860 °C, 17.0–20.9 kbar) and finally ultrahigh-pressure metamorphism (680–880 °C, 30–40 kbar). In the Himalayan collision belt, collision started from the west at 50 Ma and propagated eastward. The amount of oceanic slab subducted prior to collision was sufficient to pull down the continental crust to the depths of ultrahigh-pressure metamorphism in the west, but not in the east. Slab break-off started in the west at ca. 46 Ma and propagated eastward, with an eastward decrease in the depth of slab break-off from 27–29 to 17–18 kbar. Consequently, the metamorphic trend along the belt changes eastward from ultrahigh-pressure (690–750 °C, 27–29 kbar) to high-pressure and finally high-pressure granulite facies metamorphism (890 °C, 17–18 kbar). The differences in metamorphic trend between the Dabie–Hongseong and Himalayan collision belts reflect the amount of oceanic crust subducted prior to collision and the depth and timing of slab break-off along each belt.  相似文献   

15.
《Applied Geochemistry》2005,20(6):1099-1105
Fluorite is one of the secondary minerals precipitated in pore spaces at the future nuclear waste repository site at Yucca Mountain, Nevada. The authors have conducted (U–Th)/He dating of this fluorite in an attempt to constrain the temperature and timing of paleo-fluid flux into the site. Repeated analysis of colourless fluorite yielded a weighted average age of 9.7 ± 0.15 Ma (2σ), younger than previously determined sanidine 40Ar/39 Ar ages (12.8 Ma) for deposition of the tuff.Laboratory He-diffusion experiments conducted on the Yucca fluorite yield a preliminary He closure temperature (Tc) of 90 ± 10 °C (cooling rate of 10 °C/Ma) and previous studies have determined that the fluorite precipitated from warm fluids (65–80 °C) at depths of <400 m. However, minerals can experience partial He loss at temperatures well below the Tc and therefore the (U–Th)/He age of 9.7 Ma is interpreted to be a cooling age. This result implies that the last period of elevated temperature fluid circulation through the Yucca site was approximately 9.7 Ma ago.It was observed that the purple coloured outer portion of the fluorite nodule yielded non-reproducible and invariably older ages than colourless fluorite. Several possible reasons are suggested.  相似文献   

16.
Gravity models of the crust and upper mantle to a depth of 100 km are analyzed to study structural relationships of tectonic and tectonophysical media of different rigidities with the distribution of shallow ore deposits above the Aldan-Zeya plume. The spatial correlation of ore clusters and districts with high crustal viscosity inhomoheneities at depths of 10, 20, and 35 km shows distinct stepwise behavior. On the other hand, media of decreased viscosity are observed in the lower crust (at depths of 25–30 km), subcrustal (40–50 km) layers, and asthenosphere (at a depth below 70 km). They are related to chambers of the complete or partial melting (heat sources) of magmatic and ore occurrences near the Earth’s surface. Lateral metallogenic zoning in the spatial distribution of the ore deposits is due to the spread and redistribution of magmas and ore-forming fluids, shielded by rigid plates in the lower crust. A naturally determined series of ore parageneses is observed from center to flanks of the plume: Au, Mo  Au, Ag, Pb, Zn  Au, Pb, Zn  Au, W  Au, Sb  W, Sn  Sn. The mutual position of the tectonomagmatic structures of different ranks within the plume head obeys hierarchical and fractal laws.  相似文献   

17.
In the Panxi region of the Late Permian (~ 260 Ma) Emeishan large igneous province (ELIP) there is a bimodal assemblage of mafic and felsic plutonic rocks. Most Emeishan granitic rocks were derived by differentiation of basaltic magmas (i.e. mantle-derived) or by mixing between crustal melts and primary basaltic magmas (i.e. hybrid). The Yingpanliangzi granitic pluton within the city of Panzhihua intrudes Sinian (~ 600 Ma) marbles and is unlike the mantle-derived or hybrid granitic rocks. The SHRIMP zircon U–Pb ages of the Yingpanliangzi pluton range from 259 ± 8 Ma to 882 ± 22 Ma. Younger ages are found on the zircon rims whereas older ages are found within the cores. Field relationships and petrography indicate that the Yingpanliangzi pluton must be < 600 Ma, therefore the older zircons are interpreted to represent the protolith age whereas the younger analyses represent zircon re-crystallization during emplacement. The Yingpanliangzi granites are metaluminous and have negative Ta–NbPM anomalies, low εNd(260 Ma) values (? 3.9 to ? 4.4), and high ISr (0.71074 to 0.71507) consistent with a crustal origin. The recognition of a crustally-derived pluton along with mantle-derived and mantle–crust hybrid plutons within the Panxi region of the ELIP is evidence for a complete spectrum of sources. As a consequence, the types of Panxi granitoids can be distinguished according to their ASI, Eu/Eu*, εNd(T), εHf(T), TZr(°C) and Nb–TaPM values. The diverse granitic magmatism during the evolution of the ELIP from ~ 260 Ma to ~ 252 Ma demonstrates the complexity of crustal growth associated with LIPs.  相似文献   

18.
The Eocene and Miocene volcanic rocks between the cities of Trabzon and Giresun in the Eastern Pontides (NE Turkey) erupted as mildly and moderately alkaline magmas ranging from silica-saturated to silica-undersaturated types. 40Ar-39Ar dating and petrochemical data reveal that the studied volcanic rocks are discriminated in two: Lutetian (Middle Eocene) mildly alkaline, (basaltic rocks: 45.31 ± 0.18 to 43.86 ± 0.19 Ma; trachytic rocks: 44.87 ± 0.22 to 41.32 ± 0.12 Ma), and Messinian (Late Miocene) moderately alkaline volcanic rocks (tephrytic rocks: 6.05 ± 0.06 and 5.65 ± 0.06 Ma). The trace and the rare earth element systematic, characterised by moderate light earth element (LREE)/heavy rare earth element (HREE) ratios in the Eocene basaltic and trachytic rocks, high LREE/HREE ratios in the Miocene tephrytic rocks, and different degrees of depletion in Nb, Ta, Ti coupled with high Th/Yb ratios, show that the parental magmas of the volcanic rocks were derived from mantle sources previously enriched by slab-derived fluids and subducted sediments. The Sr, Nd and Pb isotopic composition of the Eocene and Miocene volcanic rocks support the presence of subduction-modified subcontinental lithospheric mantle. During the magma ascent in the crust, parental magmas of both the Eocene and Miocene volcanic rocks were mostly affected by fractional crystallisation rather than assimilation coupled with fractional crystallisation and mixing. The silica-undersaturated character of the Miocene tephrytic rocks could be attributed to assimilation of carbonate rocks within shallow-level magma chambers. The parental magmas of the Eocene volcanic rocks resulted from a relatively high melting degree of a net veined mantle and surrounding peridotites in the spinel stability field due to an increase in temperature, resulting from asthenospheric upwelling related to the extension of lithosphere subsequent to delamination. The parental magmas for the Miocene volcanic rocks resulted from a relatively low melting degree of a net veined mantle domain previously modified by metasomatic melts derived from a garnet peridotite source after decompression due to extensional tectonics, combined with strike-slip movement at a regional scale related to ongoing delamination.  相似文献   

19.
Hasandağ and Erciyes stratovolcanoes, which produced both calc-alkaline and alkaline eruptive products, are the two important volcanic complexes in Central Anatolia. There are three geochemical evolution stages in the history of the Hasandağ strato volcanic complex: (1) Keçikalesi tholeiitic, (2) Hasandağ calc-alkaline and (3) Hasandağ alkaline. Volcanologic and petrologic characteristics of the Hasandağ and Erciyes calc-alkaline series show that water played an important role on the genesis of these rocks. These rocks are phenocryst-rich with vesicular texture, and contain hydrous mineral phases. The approximate pressure and temperature estimates obtained from the mineral chemistry studies of the Hasandağ strato volcanic complex indicate crystallization temperature of 1100 °C with 2.5–3.4 kbar pressure interval for the first stage of Keçikalesi tholeiitic volcanism, and about 850 °C temperatures with 4.3–9.6 kbar pressure intervals for the second stage of Hasandağ calc-alkaline volcanism.The geochemical evolution of Erciyes volcanic complex also exhibits three distinct evolutionary stages: (1) Koçdağ alkaline, (2) Koçdağ calc-alkaline and (3) Erciyes calc-alkaline. The temperature of Koçdağ alkaline volcanism is 1097–1181 °C and in a range of 5.1–6.7 kbar pressure, for Koçdağ calc-alkaline volcanism 850–1050 °C temperature to 2.0–6.6 kbar pressure interval, and for Erciyes calc-alkaline volcanism about 950 °C temperature, to 3.2–7.9 kbar pressure intervals were calculated. Polybaric origin of magma chambers for calc-alkaline and alkaline rocks and disequilibrium parameters observed in phenocrysts indicate that the rocks were affected by magma mixing processes in crustal magma chambers. The disequilibrium features of amphibole and plagioclase phenocrysts in these rocks point the latent heat in magma chambers and periodic recharging with mafic magma chambers and also show that magmas reequilibrate before the eruption.  相似文献   

20.
The Kozbudaklar scheelite skarn deposit in the Tavşanlı Zone, located approximately 22 km southeast of Bursa, is hosted by the Triassic calcic İnönü Marble and Eocene Topuk Pluton. At least four stages have been recognized through skarn evolution. Scheelite skarn distributed close to the Topuk Pluton occurred during the early (stage 1) and late (stage 2) prograde substages. The early prograde endo and exoskarn are composed of hedenbergite (Hd96Joh4)–plagioclase (An55–64) and hedenbergite (Hd61–94Joh4–7), accompanied by calcic garnet (Grs38–94Sps1–5Alm0) and scheelite (Pow1–6). The second stage represents a relatively oxidized mineralogy dominated by diopside (Hd16–48Joh0–9), subcalcic garnet (Grs24–92Sps0–11Alm0–31) and scheelite (Pow7–32). The stage 3 and 4 mineral assemblages are characterized by few hydrous minerals in the retrograde stage and intense fracturing.Fluid inclusions from skarn rocks are indicative of multiple fluid events: (1) low-moderate salinity (5–16 wt.%NaCl equiv.) inclusions homogenized dominantly by a high-temperature (308 °C to > 600 °C) liquid phase in stage 1. Fluid inclusions in an early garnet homogenized over a similar temperature range (440 °C and 459 °C) into both liquid and vapor phases. Eutectic temperatures ranging from − 61.7 °C to − 35.0 °C that indicate the presence of H2O–NaCl–(± MgCl2 ± CaCl2)–CO2 solutions; (2) coexisting daughter mineral-bearing high salinity (29.5  70 wt.%NaCl equiv.) and vapor-rich moderate salinity (11.5–16.7 wt.%NaCl equiv.) inclusions that homogenized in the liquid phase by the disappearance of the vapor phase at a similar temperature range (308 °C to > 600 °C) in stage 2. Eutectic temperatures range from − 67.9°C to − 51.8°C that shows the presence of H2O–NaCl–CO2–(± CH4/N2) solutions; (3) low-moderate salinity (12.5–7.6 wt.%NaCl equiv.) and temperature (320 °C to 215 °C) inclusions homogenized by the liquid phase in stage 3. Eutectic temperatures range from − 59.5 °C to − 44.2 °C indicating the presence of H2O–NaCl–(± MgCl2 ± CaCl2)–CO2 solutions; (4) inclusions of low salinity (9.9–0.9 wt.%NaCl equiv.) and homogenization temperature (183 °C to 101 °C) in stage 4.These data show that the Kozbudaklar skarn deposit was formed in a magmatic–hydrothermal system. In this model, carbonaceous fluids may have been exsolved from the plutonic rock during its emplacement and crystallization. Fluid inclusion data indicate that fluid boiling and immiscibility occurred at temperatures between 440 °C and 459 °C and pressures ranging from 50 MPa to 60 MPa based on hydrostatic considerations. Early scheelite was precipitated with relatively reduced mineral compositions. As a result of depressurization, Mo-rich scheelite with oxidized minerals formed via high salinity and vapor-rich inclusions. The second scheelite mineralization occurred in a normal hydrothermal system by an infiltration mechanism at pressures between approximately 40 and 1.5 MPa. At shallow depths (< 1.5 MPa) with increasing permeability, sulfide and oxide minerals were deposited in the retrograde stage, greatly assisted by meteoric water. Finally, as a result of the diminishing of ore-forming fluids, post-depositional barren quartz and calcite veins were formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号