首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

The classical model of faulting predicts that slip planes occur in two conjugate sets. Theoretically, more sets can be contemporarily active if pre-existing structures are reactivated in a three-dimensional strain field. Four to six sets of faults have been active in the Holocene in the Zailiski Alatau mountain range, Kazakstan. Faults strike with the highest frequency ENE and ESE and show mostly left-lateral reverse and right-lateral reverse motions, respectively. These faults have a bimodal distribution of dips, forming four sets arranged in orthorhombic symmetry. Locally, NNW- to NNE- striking vertical faults have also been active in the Holocene and show right-lateral strike-slip and left-lateral strike-slip motions, respectively. All these fault sets accommodated the general three-dimensional deformation, given by N-S-directed horizontal shortening, vertical extension, and E-W-directed horizontal extension. Field evidence also shows that the reverse motions, even if with a minor strike-slip component, occurred on high-angle planes with inclination of 65°-85°. ENE- and ESE-striking faults reactivated older fracture zones, whereas the other sets are newly formed. Comparison of these field results with the structures obtained from published analogue models shows a strong similarity of fault geometry and kinematics.  相似文献   

2.
We used satellite imagery and field data to investigate the south‐westernmost Baikal rift zone. We focus our study in the Mondy and Ikhe Ukhgun valleys, site of an Mw = 6.9 seismic event in 1950. Surface deformations are observed along the E–W‐trending Mondy strike‐slip fault and along the Ikhe Ukhgun thrust. The Mondy fault system is 80 km long and is composed of four segments 10–15 km long. These segments are characterized by subvertical planes with left‐lateral movements. The Ikhe Ukhgun thrust is 20 km long, dips 40° to the south and shows reverse movement with a left‐lateral component. These observations are consistent with the present‐day regional NNE–SSW compression and with the focal mechanism of the 1950 Mondy earthquake that was recently re‐evaluated. These features, like those observed in the Tunka basin, demonstrate a recent change of regional strain regime from transtension to transpression that we place before the Late Pleistocene.  相似文献   

3.
The active kinematics of the eastern Tibetan Plateau are characterized by the southeastward movement of a major tectonic unit, the Chuan-Dian crustal fragment, bounded by the left-lateral Xianshuihe–Xiaojiang fault in the northeast and the right-lateral Red River–Ailao Shan shear zone in the southwest. Our field structural and geomorphic observations define two sets of young, active strike–slip faults within the northern part of the fragment that lie within the SE Tibetan Plateau. One set trends NE–SW with right-lateral displacement and includes the Jiulong, Batang, and Derong faults. The second set trends NW–SE with left-lateral displacement and includes the Xianshuihe, Litang, Xiangcheng, Zhongdian, and Xuebo faults. Strike–slip displacements along these faults were established by the deflection and offset of streams and various lithologic units; these offsets yield an average magnitude of right- and left-lateral displacements of ~15–35 km. Using 5.7–3.5 Ma as the time of onset of the late-stage evolution of the Xianshuihe fault and the regional stream incision within this part of the plateau as a proxy for the initiation age of conjugate strike–slip faulting, we have determined an average slip rate of ~2.6–9.4 mm/year. These two sets of strike–slip faults intersect at an obtuse angle that ranges from 100° to 140° facing east and west; the fault sets define a conjugate strike–slip pattern that expresses internal E–W shortening in the northern part of the Chuan-Dian crustal fragment. These conjugate faults are interpreted to have experienced clockwise and counterclockwise rotations of up to 20°. The presence of this conjugate fault system demonstrates that this part of the Tibetan Plateau is undergoing not only southward movement, but also E–W shortening and N–S lengthening due to convergence between the Sichuan Basin and the eastern Himalayan syntaxis.  相似文献   

4.
Northwest Iran is dominated by two main sets of active strike slip faults that accommodate oblique convergence between the Arabian and Iranian Plates. The best known are the right-lateral North-Tabriz, Qoshadagh, Maragheh and Zagros (Main Recent) strike slip Faults. This work reports that these dominant NW–SE to E–W striking faults are conjugate to smaller, NNE–SSW striking, left-lateral faults with minor dip slip component. All of these active faults displace Precambrian rock units, which suggests that they root in the crystalline basement of the NW Iranian microcontinent. Coulomb stress variance during co-seismic rupture along one of these faults may cause reactivation of the other faults. The minor set of left-lateral fault is therefore important to introduce in seismic risk assessment.  相似文献   

5.
Large earthquakes in strike-slip regimes commonly rupture fault segments that are oblique to each other in both strike and dip. This was the case during the 1999 Izmit earthquake, which mainly ruptured E–W-striking right-lateral faults but also ruptured the N60°E-striking Karadere fault at the eastern end of the main rupture. It will also likely be so for any future large fault rupture in the adjacent Sea of Marmara. Our aim here is to characterize the effects of regional stress direction, stress triggering due to rupture, and mechanical slip interaction on the composite rupture process. We examine the failure tendency and slip mechanism on secondary faults that are oblique in strike and dip to a vertical strike-slip fault or “master” fault. For a regional stress field well-oriented for slip on a vertical right-lateral strike-slip fault, we determine that oblique normal faulting is most favored on dipping faults with two different strikes, both of which are oriented clockwise from the strike-slip fault. The orientation closer in strike to the master fault is predicted to slip with right-lateral oblique normal slip, the other one with left-lateral oblique normal slip. The most favored secondary fault orientations depend on the effective coefficient of friction on the faults and the ratio of the vertical stress to the maximum horizontal stress. If the regional stress instead causes left-lateral slip on the vertical master fault, the most favored secondary faults would be oriented counterclockwise from the master fault. For secondary faults striking ±30° oblique to the master fault, right-lateral slip on the master fault brings both these secondary fault orientations closer to the Coulomb condition for shear failure with oblique right-lateral slip. For a secondary fault striking 30° counterclockwise, the predicted stress change and the component of reverse slip both increase for shallower-angle dips of the secondary fault. For a secondary fault striking 30° clockwise, the predicted stress change decreases but the predicted component of normal slip increases for shallower-angle dips of the secondary fault. When both the vertical master fault and the dipping secondary fault are allowed to slip, mechanical interaction produces sharp gradients or discontinuities in slip across their intersection lines. This can effectively constrain rupture to limited portions of larger faults, depending on the locations of fault intersections. Across the fault intersection line, predicted rakes can vary by >40° and the sense of lateral slip can reverse. Application of these results provides a potential explanation for why only a limited portion of the Karadere fault ruptured during the Izmit earthquake. Our results also suggest that the geometries of fault intersection within the Sea of Marmara favor composite rupture of multiple oblique fault segments.  相似文献   

6.
王鹏  刘静  孙杰  张智慧  许强  文力  孟庆岭 《地质通报》2013,32(4):538-562
5·12汶川Mw7.9级地震为罕见的、地壳尺度位移配分于多条平行断裂的板内逆冲走滑型地震。在2条北东走向、近平行的主要地表破裂间,发育北西走向的小鱼洞地表破裂。介绍了对小鱼洞北西向地表破裂的精细填图。小鱼洞地表破裂空间上位于灌县-江油与映秀-北川断裂间,全长约8km,总体走向310°,为南西盘抬升、逆冲兼具左旋走滑性质。地表破裂在南东端走向变化较大,从300~310°变为南北向,并与灌县-江油地表破裂带的磁峰段相连。小鱼洞地表破裂的垂向位错自北西往南东方向递减,北西端陡坎高度最大3.4m,南东端则小于0.2m,衰减梯度约为0.5m/km。左旋走滑位移测量点较少,集中在中段的小鱼洞镇附近,所测最大左旋走滑位移约为2.2m,一般走滑位错与同处垂直位错具有同步变化的特征。小鱼洞断裂近地表的倾角较缓,为30°±15°。结合已有地貌、地球物理和地质研究结果,提出小鱼洞断裂是向下与灌县-江油断裂交会的侧向断坡,位于映秀-北川断裂中南段间的断面倾角差异的撕裂部位,连接映秀-北川和灌县-江油断裂。在运动学上,认为小鱼洞断裂是以斜向断坡为几何形态的撕裂断裂,调节了北东走向的主断裂的运动学横向差异。小鱼洞断裂上的同震位移矢量与N70°、80°E的区域主压应力场方向匹配。这一方向与龙门山高原边界斜交。  相似文献   

7.
ABSTRACT The precise nature of the transition between the present-day compressional tectonics in central Mongolia and extensional deformation in the central Baikal rift has still to be determined. For that purpose we have built a comprehensive earthquake focal mechanism data base for the Mongolia – southern Siberia area, from which we map the variations of the stress field. We focus our detailed investigations on the largest seismic event in the transition zone, the 1950 (Mw 6.9) Mondy earthquake, for which several discordant focal mechanisms have been proposed. Using a new approach in source inversion, we resolve the focal mechanism (left-lateral strike slip type on a steep south-dipping fault) and depth (14 ± 3 km) of the Mondy earthquake with a satisfactory accuracy. This seismological information, combined with the geological observations, allows us to decipher the connections between the 1950 mainshock, the local stress tensor and the active faults, which strongly suggest a partitioning of the deformation between two faults, namely the Mondy and Ikhe–Ukghun faults.  相似文献   

8.
Abstract: There are two co-seismic faults which developed when the Wenchuan earthquake happened. One occurred along the active fault zone in the central Longmen Mts. and the other in the front of Longmen Mts. The length of which is more than 270 km and about 80 km respectively. The co-seismic fault shows a reverse flexure belt with strike of N45°–60°E in the ground, which caused uplift at its northwest side and subsidence at the southeast. The fault face dips to the northwest with a dip angle ranging from 50° to 60°. The vertical offset of the co-seismic fault ranges 2.5–3.0 m along the Yingxiu-Beichuan co-seismic fault, and 1.5–1.1 m along the Doujiangyan-Hanwang fault. Movement of the co-seismic fault presents obvious segmented features along the active fault zone in central Longmen Mts. For instance, in the section from Yingxiu to Leigu town, thrust without evident slip occurred; while from Beichuan to Qingchuan, thrust and dextral strike-slip take place. Main movement along the front Longmen Mts. shows thrust without slip and segmented features. The area of earthquake intensity more than IX degree and the distribution of secondary geological hazards occurred along the hanging wall of co-seismic faults, and were consistent with the area of aftershock, and its width is less than 40km from co-seismic faults in the hanging wall. The secondary geological hazards, collapses, landslides, debris flows et al., concentrated in the hanging wall of co-seismic fault within 0–20 km from co-seismic fault.  相似文献   

9.
The Bolnay (Hangayn) fault is an active shear system which generated the M = 8.2-8.5 Bolnay earthquake of 23 July 1905, one of world’s largest recorded intracontinental event. The fault follows the Mesozoic suture formed during the closure of the Mongolia-Okhotsk ocean. The Late Cenozoic faulting in the region was induced by propagation of strain from the India-Eurasia collision that had reached Mongolia at about 5 ± 3 Ma. The left-lateral strike slip almost all over the fault length is compensated in its western end by Late Quaternary reverse motion. We estimated coseismic slip associated with the event of 1905 and the previous earthquakes in the eastern fault end and checked whether vertical offset compensates the strike slip in this part as well. The 1905 coseismic slip measured from a displaced dry stream bed and pebble bars in the Hasany-Gol river valley was 6.5-7.5 m. The 13 ± 1 m left-lateral displacement of pebble bars in the same valley represents a cumulative slip of two events. Paleoseismological studies across the strike of surface ruptures reveal at least two generations of rupture in two events that postdated the deposition of sediments with a 14C age of 4689 ± 94 yr. Hypsometry of the alluvial surface in the zone of deformation shows gradual elevation increase toward the mountains, but without abrupt change across the fault. This means the absence of vertical offset and reactivation of the fault as a left-lateral strike slip. The horizontal slip in the eastern extension of the Bolnay fault is compensated rather by parallel fault-bounded pull-apart basins trending northeastward oblique to the principal fault strike. The age of their sedimentary fill suggests no older than middle Pleistocene normal faulting that compensated the Bolnay strike slip.  相似文献   

10.
The Wagner basin occupies the northernmost spreading centre in the Gulf of California, located along the Pacific‐North America plate boundary. It is filled with sediments from the Colorado River that obscure its bathymetric expression; therefore it is not as well defined as other basins in the central and southern Gulf of California. To define the geometry and extension of the Wagner basin, a 2D multi‐channel seismic reflection database was used. Data were collected by Petroleos Mexicanos (PEMEX) in 1979–1980. The most important regional structural features identified are the Consag and Wagner normal faults and the Cerro Prieto strike‐slip fault. These structures play an important role in the development of the basin. The Consag fault, described for the first time in this paper, marks the western side of the basin. The eastern and northwest limits are bound by the Cerro Prieto and Wagner faults respectively. The Wagner fault intersects the Cerro Prieto fault at an angle of 130°, bending the depocentre in a NW direction, adjacent to the Cerro Prieto fault zone. The northernmost segment of the Consag fault bends 25° in a NE direction and joins the Cerro Prieto fault at an angle of 110°. Greater subsidence (up to 300 m) takes place along the northern trace of the Cerro Prieto fault, with a downthrown displacement of 400 m. The Consag and Wagner breaks obliquely intersect the Cerro Prieto fault, and, inasmuch as both are normal faults, they have small horizontal slip components which generated oblique displacement. This structural pattern is different relative to the pattern of basins located south of Wagner basin, such as the Upper and Lower Delfin basins. The orientations of the normal faults are perpendicular to the master fault (Ballenas transform fault). The relationship between normal and transform faults in the Wagner basin and the observed ‘S’ shape are typical of a basin that has not yet reached maturity. As a result of this study, the previously uncertain area (~1330 km2) and perimeter (158 km) of the Wagner basin were defined.  相似文献   

11.
3D field data on mesoscale normal faults were collected to examine the geometries and growth of faults in multilayer systems. Observation and analysis of the fractures include the collection of geometric attributes such as fault dips and fault zone thicknesses, detailed mapping in cross-sections and plan views, and the construction of individual and cumulative displacement profiles. Fault zone growth is consistent with a “coherent model” and is strongly influenced by the multilayer system. In the limestone layers, faults grew in several steps, including opening and frictional sliding on 80° dipping segments. Faulting in clay layers was in the form of 40° dipping faults and sub-horizontal faults, the latter being mostly early features developed under the same extensional regime as normal faults and disturbing the fault architecture. The fault zone thickness increases with the limestone thickness and the presence of sub-horizontal faults in clay beds. Numerous connections occur in clay units. The moderate (≈0.08) and low (<0.03) mean displacement gradients in clays and in limestones respectively indicate that the vertical propagation of faults is inhibited in clay layers. Analysis of displacement along fault strike indicates that a 0.08 displacement gradient is associated with the horizontal propagation of fault segments in limestones. According to this value, the fault zones are much longer than expected. It is associated with ‘flat topped’ displacement profiles along some fault segments and connection between segments to form complex fault zones.  相似文献   

12.
《Geodinamica Acta》2001,14(1-3):197-212
The Karasu Rift (Antakya province, SE Turkey) has developed between east-dipping, NNE-striking faults of the Karasu fault zone, which define the western margin of the rift and west-dipping, N–S to N20°–30°E-striking faults of Dead Sea Transform fault zone (DST) in the central part and eastern margin of the rift. The strand of the Karasu fault zone that bounds the basin from west forms a linkage zone between the DST and the East Anatolian fault zone (EAFZ). The greater vertical offset on the western margin faults relative to the eastern ones indicates asymmetrical evolution of the rift as implied by the higher escarpments and accumulation of extensive, thick alluvial fans on the western margins of the rift. The thickness of the Quaternary sedimentary fill is more than 465 m, with clastic sediments intercalated with basaltic lavas. The Quaternary alkali basaltic volcanism accompanied fluvial to lacustrine sedimentation between 1.57 ± 0.08 and 0.05 ± 0.03 Ma. The faults are left-lateral oblique-slip faults as indicated by left-stepping faulting patterns, slip-lineation data and left-laterally offset lava flows and stream channels along the Karasu fault zone. At Hacılar village, an offset lava flow, dated to 0.08 ± 0.06 Ma, indicates a rate of left-lateral oblique slip of approximately 4.1 mm·year–1. Overall, the Karasu Rift is an asymmetrical transtensional basin, which has developed between seismically active splays of the left-lateral DST and the left-lateral oblique-slip Karasu fault zone during the neotectonic period.  相似文献   

13.
THREE-DIMENSIONAL DEFORMATION ALONG THE ALTYN TAGH FAULT ZONE AND UPLIFT OF THE ALTYN MOUNTAIN, NORTHERN TIBET  相似文献   

14.
Field-based structural analysis of an exhumed, 10-km-long strike-slip fault zone elucidates processes of growth, linkage, and termination along moderately sized strike-slip fault zones in granitic rocks. The Gemini fault zone is a 9.3-km-long, left-lateral fault system that was active at depths of 8–11 km within the transpressive Late-Cretaceous Sierran magmatic arc. The fault zone cuts four granitic plutons and is composed of three steeply dipping northeast- and southwest-striking noncoplanar segments that nucleated and grew along preexisting cooling joints. The fault core is bounded by subparallel fault planes that separate highly fractured epidote-, chlorite-, and quartz-breccias from undeformed protolith. The slip profile along the Gemini fault zone shows that the fault zone consists of three 2–3-km-long segments separated by two ‘zones’ of local slip minima. Slip is highest (131 m) on the western third of the fault zone and tapers to zero at the eastern termination. Slip vectors plunge shallowly west-southwest and show significant variability along strike and across segment boundaries. Four types of microstructures reflect compositional changes in protolith along strike and show that deformation was concentrated on narrow slip surfaces at, or below, greenschist facies conditions. Taken together, we interpret the fault zone to be a segmented, linked fault zone in which geometrical complexities of the faults and compositional variations of protolith and fault rock resulted in nonuniform slip orientations, complex fault-segment interactions, and asymmetric slip-distance profiles.  相似文献   

15.
青藏高原北部发育一系列北西向大型左行走滑断裂带,目前普遍认为这些左行走滑断裂至今仍在活动,在左行走滑作用下,青藏高原东部向东挤出并伴随强烈的地块旋转运动。本文以介于东昆仑左行走滑断裂带与玉树左行走滑断裂带之间的巴颜喀拉山中央断裂(及其周缘的构造形迹)为主要研究对象,根据断层构造的直接解译标志——清晰的线性形迹和构造地貌标志如断层陡坎、断层谷地、挤压脊、地裂缝、断层走滑造成的水系错动、新老洪积扇的侧向叠加等,在高分辨率的SPOT5及中等分辨率ETM遥感影像上对研究区内北西向活动断层与北东向活动断层的空间分布、规模、活动性质、相对活动时代及活动幅度等进行了遥感分析和野外验证,并结合对断层周缘沿共轭张裂隙展布的水系与地裂缝的规模、展布方向等的统计分析,对晚第四纪应力场进行了恢复。研究表明:北西向活动断层具右行走滑兼有逆冲运动特征,北东向活动断层具左行走滑兼有正滑运动特征,二者为晚第四纪NNE向(2°)挤压应力条件下产生的北西向与北东向走滑作用的产物。北西向右行走滑作用的发现,预示着青藏高原北部第四纪以来普遍存在的北西向左行走滑作用可能在晚更新世就已终止。在此基础上,探讨了处于不同展布方向上的湖盆在同一应力条件下表现出的不同演化趋势:即在NNE向挤压应力作用下,呈北东向展布的错坎巴昂日东湖处于近东西向拉张状态,呈北西向展布的卡巴纽尔多湖变化不明显。  相似文献   

16.
华北地区上新世至第四纪断裂作用型式与左旋扩展   总被引:10,自引:2,他引:8  
华北地区包含两个新生代引张构造域,即太行山以西的鄂尔多斯周缘地堑系和以东的华北-渤海平原盆地。鄂尔多斯周缘地堑系上新世~第四纪的断裂作用表征为正向倾滑活动为主,同时具有右旋或左旋走滑分量的运动型式,指示了NW-SE向地壳引作用,华北-渤海盆地内上新世~第四纪的断裂作用发生在NNE至NE走向的断鲜明带上,具有右旋和正向倾滑的斜向运动特征,EW走向的秦岭断裂系华北引张构造域的东界,表现为右旋走滑,与E  相似文献   

17.
The spatial-genetic relationships between transit fault systems of the East Asian global shear zone (EAGSZ) are analyzed. It is established that the EAGSZ internal structure between the Okhotsk and South China seas is identical to that of world-known natural and experimental shear zones, which confirms its development as an integral structure. The structural-kinematic analysis included the Tan-Lu-Sikhote-Alin (TS) system of left-lateral strike-slip faults (NNE 25°–30°) and the Bohai-Amur (BA) system of updip-strike-slip faults (NE 50°–70°). It is shown that these systems were formed as structural parageneses during two stages. The first and shear-thrust stage (Jurassic-Early Cretaceous) was marked by general NNW-oriented compression with the formation of the TS system of left-lateral strike-slip faults and their structural parageneses (compression structures) such as the BA system of updip-thrusts. The second, strike-slip-pull apart stage (Late Cretaceous-Cenozoic) was characterized by SE-directed tangential compression, which was generated by the SW left-lateral displacement of the continental crust along the Central Sikhote-Alin deep-seated fault. In such dynamic settings, the updip-thrust kinematics of the BA system gave way to that of left-lateral strike-slip faults. The strike-slip faults were formed in the transtension regime (shear with extension), which determined the development of pull-apart structures, where the left-lateral shear extension component played the decisive role. Simultaneously, the extension involved the Tan-Lu strike-slip fault with the formation of the rift valley and the discrete development of sedimentary basins along the latter.  相似文献   

18.
南京湖山地区大石碑断层位于大石碑向斜北西翼,在北东方向人工开采的剖面上表现为正断层性质。通过对大石碑 断层及其附近断层和节理的构造要素测量分析、构造应力场求解等研究,文章认为该断层以右行平移断层为主,兼有正断 层的性质。印支期该区在北西-南东方向挤压构造应力场作用下,形成北东方向的褶皱(宁镇山脉)、北西方向的右行平移 断层和北北西方向左行平移断层,其中北西方向的右行平移断层在北东方向的剖面上表现出正断层的假象,是断层效应的 一个典型教学实例。  相似文献   

19.
四川汶川Ms 8.0级地震同震变形特征和分段性   总被引:6,自引:1,他引:5  
汶川地震发育2条地表破裂带,一条沿中龙门山活动断裂带分布,另一条沿前龙门山活动断裂带分布,前者长超过200km,后者长约80km。同震变形在地表表现为逆冲膝折带,走向N45~60°E,形成公路路面隆起和农田陡坎。逆冲膝折带西北侧抬高,东南侧下降。在剖面上冲断带倾向北西,倾角50~60°。膝折带两侧相对高差沿映秀-北川断裂一般为2.5~3.0m,沿都江堰-汉旺断裂为1.5~1.1m。沿中龙门山活动断裂带,同震变形运动方式具有明显的分段性,映秀-擂鼓镇段,表现为逆冲,走滑现象不明显;北川-青川段既有逆冲又有右旋走滑分量。沿前龙门山活动断裂带,同震变形运动方式主要表现为逆冲,走滑位移和分段性不明显。  相似文献   

20.
By the stress field’s reconstruction and the analysis of the distribution for the slickenside belts and the dike-hosting faults, the dominating left-lateral strike slip component is found for the Kolumbe Fault. This component is caused by the regional SES-NWN compression. The igneous rocks of the East Sikhote Alin volcanic-plutonic belt are considered as units synchronous with the regional displacement. Following the opinion of V.P. Utkin, the rift strike-slip-tension origin of these structures is suggested. Based on the structural-tectonic position of the volcanic rocks and the accompanying intrusive bodies and on the other geological data as well, several dislocation stages are distinguished in the Kolumbe Fault’s evolution. It is found that the dominating strike-slip motions along the main fault and its feathering faults changed to normal and reverse faulting deformations at the end of every stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号