首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present results of isotope-geochemical study of the Ermakovka F-Be deposit, including data on the oxygen and carbon isotope compositions in dolomite and calcite marbles and in carbonates accompanying skarns, of early and late stages of ore formation and of post-ore parageneses. To elucidate the sources of fluids participated in the ore formation, we calculated the oxygen isotope composition in water and the hydrogen isotope composition in hydroxyl-containing minerals. Phlogopite in marbleized dolomites, vesuvianite and amphibole in skarns, eudidimite and bertrandite in ore parageneses, and bavenite formed during post-ore processes are analyzed. Most of the ore-stage minerals are depleted in heavy oxygen. Their 518O values are lower than 5-6%c (SMOW). Oxygen in carbonate minerals of the initial stage (dolomite and bastnaesite) is heavier (1.3-4.9%c) than that in calcite (+ 2 to -3.7%c). The 518O values of water in equilibrium both with carbonate and with silicate minerals (-4 to -14%c) suggest the contribution of meteoric water to the mineral formation. A magmatic fluid (518O from + 6 to + 9%c) participated in the skarn formation at the initial stage, and a meteoric fluid, at the final stage (518O from -1 to -9%c). A meteoric source is confirmed by the depleted hydrogen isotope composition in minerals (5D from -119 to -192%c).  相似文献   

2.
Western tropical Pacific sea surface temperatures and Pacific Deep Water temperatures during Marine Isotope Stage 3 have been reconstructed from the δ18O and Mg/Ca of planktonic and benthic foraminifera from Marion Dufresne core MD98-2181. This 36 m marine core was collected at 6.3°N from a water depth of 2114 m. With sediment accumulation rates of up to 80 cm/ky, it provides a decadally resolved history of ocean variability during the Last Glacial period. Surface temperatures and salinities at this site varied in close association with millennial-scale atmospheric temperature swings at high northern latitudes as reflected in the GISP2 ice core. At times of colder atmospheric temperatures over Greenland, the western Pacific was more saline and summer season SSTs were ~2 °C colder. These millennial-scale changes within the tropics are attributed to a southward displacement of the summer season ITCZ in response to steeper meridional temperature gradients within the Pacific. The benthic δ18O record from MD98-2181 documents upper Pacific Deep Water temperature and salinity variability. Benthic δ18O variations of 0.3–0.5‰ during MIS 3 indicate deep waters within the Pacific were varying by ~1–1.5 °C, with the possibility that some of the variability was due to changing salinity and minor glacial–eustatic changes. The observed deep-water variability correlates to changes in Antarctic surface temperatures and thus reflects changes in Southern Ocean temperatures at the site of Pacific Deep Water formation. The combined planktonic and benthic records from MD98-2181 thus provide a northern and southern hemispheric climate record of anti-phased variability during MIS 3 as has been inferred previously from ice core records. Furthermore, the deep sea temperature excursions appear to have led millennial variations in atmospheric CO2 as recorded in the EDML ice core by ~1 kyr.  相似文献   

3.
Two coeval stalagmites from Katerloch Cave show pronounced intervals of low δ18O values around 8.2, 9.1, and 10.0 kyr (all ages are reported before the year 2000 AD) and represent an inorganic U–Th dated climate archive from the southeast of the European Alps, a region where only very few well-dated climate records exist. The O isotope curves, providing near-annual resolution, allow a direct comparison to the Greenland ice core records, as temperature was the primary factor controlling the O isotopic composition of Katerloch speleothems.The 8.2 kyr climate anomaly lasted about one century, from 8196 to 8100 yr, with a maximum amplitude of 1.1‰ at 8175 yr. The event is characterized by a rapid onset and a more gradual demise and U–Th data as well as annual lamina counting support a rapid climate change towards cooler conditions within 10–20 yr. There is no strong evidence that the 8.2 kyr anomaly was superimposed on a pronounced longer-term cooling episode, nor do the new data support two separate cooling events within the 8.2 kyr event as reported by other studies. Our record also shows a distinct climate anomaly around 9.1 kyr, which lasted 70–110 yr and showed a maximum amplitude of 1.0‰, i.e. it had a similar duration and amplitude as the (central) 8.2 kyr event. Compared to the 8.2 kyr event, the 9.1 kyr anomaly shows a more symmetrical structure, but onset and demise still occurred within a few decades only. The different progression of the 8.2 (asymmetrical) and 9.1 kyr anomaly (symmetrical) suggests a fundamental difference in the trigger and/or the response of the climate system. Moreover, both stalagmites show evidence of a climate anomaly around 10.0 kyr, which was of comparable magnitude to the two subsequent events.Using a well constrained modern calibration between air temperature and δ18O of precipitation for the study area and cave monitoring data (confirming speleothem deposition in Katerloch reflecting cave air temperature), a maximum cooling by ca 3 °C can be inferred at 8.2 and 9.1 kyr, which is similar to other estimates, e.g., from Lake Ammersee north of the Alps. The O isotopic composition of meteoric precipitation, however, is a complex tracer of the hydrological cycle and these temperature estimates do not take into account additional effects such as changes in the source area or synoptic shifts. Apart from that, the relative thickness of the seasonally controlled lamina types in the Katerloch stalagmites remains rather constant across the intervals comprising the isotopic anomalies, i.e. the stalagmite petrography argues against major shifts in seasonality during the early Holocene climate excursions.  相似文献   

4.
Late Pleistocene paleoclimatic variability on the northeastern Qinghai–Tibetan Plateau (NE QTP) was reconstructed using a chronology based on AMS 14C and 230Th dating results and a stable oxygen isotopic record. These are derived from lake carbonates in a 102-m-long Qarhan sediment core (ISL1A) collected from the eastern Qaidam Basin. Previous research indicates that the δ18O values of lacustrine carbonates are mainly controlled by the isotopic composition of lake water, which in turn is a function of regional P/E balance and the proportion of precipitation that is monsoon-derived on the NE QTP. Modern isotopic observations indicate that the δ18O values of lake carbonates in hyper-arid Qaidam Basin are more positive during the warm and wet period. Due to strong evaporation and continental effect in this basin, the positive δ18O values in the arid region indicate drier climatic conditions. Based on this interpretation and the δ18O record of fine-grained lake carbonates and dating results in ISL1A, the results imply that drier climatic conditions in the Qarhan region occurred in three intervals, around 90–80 ka, 52–38 ka and 10–9 ka, which could correspond to late MIS 5, middle MIS 3 and early Holocene, respectively. These three phases were almost coincided with low lake level periods of Gahai, Toson and Qinghai Lakes (to the east of Qarhan Lake) influenced by ASM on the orbital timescales. Meanwhile, there was an episode of relatively high δ18O value during late MIS 3, suggesting that relatively dry climatic condition in this period, rather than “a uniform Qarhan mega-paleolake” spanning the ∼44 to 22 ka period. These results insight into the understanding of “the Greatest Lake Period” on the QTP.  相似文献   

5.
Exposure dating using cosmogenic 36Cl demonstrates that the summit plateau of Scafell Pike (978 m) in the SW Lake District escaped erosion by glacier ice during the last glacial maximum (LGM; c. 26–21 kyr) and probably throughout the Devensian Glacial Stage (MIS 5d-2). Exposure ages obtained for ice-moulded bedrock on an adjacent col at 750–765 m confirm over-riding and erosion of bedrock by warm-based glacier ice during the LGM. The contrast between the two sites is interpreted in terms of preservation of tors, frost-shattered outcrops and blockfields on terrain above 840–870 m under cold-based ice. An exposure age of 17.3 ± 1.1 kyr for the col at 750–765 m suggests that substantial downwastage of the last ice sheet had occurred by c. 17 kyr, consistent with deglacial exposure ages obtained for other high-level sites in the British Isles. An exposure age of 12.5 ± 0.8 kyr obtained for a glacially transported rockfall boulder within the limits of later corrie glaciation confirms that the final episode of local glaciation in the Lake District occurred during the Loch Lomond Stade (c. 12.9–11.7 kyr). This research also demonstrated the difficulties of obtaining reliable exposure ages from rhyolite and andesite bedrock that has proved resistant to glacial abrasion.  相似文献   

6.
To understand Holocene climate evolutions in low-latitude region of the western Pacific, paired δ18O and Mg/Ca records of planktonic foraminifer Globigerinoides ruber (250–300 μm, sensu stricto, s.s.) from a marine core ORI715-21 (121.5°E, 22.7°N, water depth 760 m) underneath the Kuroshio Current (KC) off eastern Taiwan were analyzed. Over the past 7500 years, the geochemical proxy-inferred sea surface temperature (SST) hovered around 27–28 °C and seawater δ18O (δ18OW) slowly decreased 0.2–0.4‰ for two KC sites at 22.7° and 25.3°N. Comparison with a published high-SST and high-salinity equatorial tropical Pacific record, MD98-2181 located at the Mindanao Current (MC) at 6.3°N, reveals an anomalous time interval at 3.5–1.5 kyr ago (before 1950 AD). SST gradient between the MC site and two KC site decrease from 1.5–2.0 °C to only 0–1 °C, and δ18OW from 0.1–0.3‰ to 0‰ for this 2-kyr time window. The high SST and low gradient could result from a northward shift of the North Equatorial Current, which implies a weakened KC. The long-term descending δ18OW and increasing precipitation in the entire low-latitude western Pacific and the gradually decreasing East Asian summer monsoonal rainfall during middle-to-late Holocene is likely caused by different land and ocean responses to solar insolation and/or enhanced moisture transportation from the Atlantic to Pacific associated with the southward movement of ITCZ.  相似文献   

7.
A rock magnetic investigation was carried out on a sedimentary core taken from the distal portion of the Bengal Fan in order to reconstruct the South Asian monsoon variability during the past 800 kyr. The 10.2 m long piston core MR0503-PC3, recovered at a water depth of 4400 m, consists of clay to silty clay with minor amounts of nannofossils. An age model for the MR0503-PC3 core is established by correlating a relative paleointensity record of the core [Suganuma Y., Yamazaki, T., Kanamatsu, T., Hokanishi, N., 2008. Relative paleointensity record during the last 800 kyr from the equatorial Indian Ocean: implication for relationship between inclination and intensity variations. Geochemistry, Geophysics, Geosystems. 9, Q02011. doi:10.1029/2007GC001723.] to the global paleointensity stack “Sint-800” [Guyodo, Y., Valet, J.P., 1999. Global changes in intensity of the Earth's magnetic field during the past 800 kyr. Nature. 399, 249–252.]. The age model is consistent with the published ages of tephra layers intercalated in the core, and shows continuous sedimentation during the past 800 kyr.Temporal variations in rock magnetic proxies for the magnetic concentration (ARM, IRM, and HIRM), the grain size (Mrs/Ms), and the composition (S?0.3T and S?0.1T) show that the amount of fine-grained magnetite increased during interglacial stages, and then gradually decreased toward the following glacial maxima. This indicates that the supply of fine-grained magnetite probably originated from areal expansion and/or increased pedogenic activity in the Ganges and Brahmaputra Rivers catchment. Increases during warmer periods suggest intensification of the South Asian summer monsoon during interglacial stages. During marine isotope stages (MIS) 15–11, enhancement of fine-grained magnetite and increased hematite and maghemite contributions are observed. These suggest a significant intensification of the South Asian summer monsoon during this period. Our record and other paleoclimatic reconstructions mainly from the low and mid-latitudes suggest that a major climatic event possibly occurred prior to the mid-Brunhes event (MBE), but the timing is not synchronous.  相似文献   

8.
Changes in the orbital parameters, solar output, and ocean circulation are widely considered as main drivers of the Holocene climate. Yet, the interaction between these forcings and the role that they play to produce the pattern of changes observed in different domains of the climate system remain debated. Here, we present new early to middle Holocene season-specific sea surface temperature (SST) and δ18Oseawater results, based on organic-walled dinoflagellate cyst and planktonic foraminiferal data from two sediment cores located in the central (SL21) and south-eastern (LC21) Aegean Sea (eastern Mediterranean). Today, this region is affected by high to mid latitude climate in winter and tropical/subtropical climate in summer. The reconstructed δ18Oseawater from LC21 displays a marked (~1.3%) negative shift between 10.7 and 9.7 ka BP, which represents the regional expression of the orbitally driven African monsoon intensification and attendant freshwater flooding into the eastern Mediterranean. A virtually contemporaneous shift, of the same sign and magnitude, is apparent in the δ18Ospeleothem record from Soreq Cave (Northern Israel), an important part of which may therefore reflect a change in the isotopic composition of the moisture source region (Aegean and Levantine Seas). Our SST reconstructions show that Aegean winter SSTs decreased in concert with intensifications of the Siberian High, as reflected in the GISP2 nss [K+] record. Specifically, three distinct sea surface cooling events at 10.5, 9.5–9.03 and 8.8–7.8 ka BP in the central Aegean Sea match increases in GISP2 nss [K+]. These events also coincide with dry interludes in Indian monsoon, hinting at large (hemispheric) scale teleconnections during the early Holocene on centennial timescales. A prominent short-lived (~150 years) cooling event in core SL21 – centred on 8.2 ka BP – is coeval to the ‘8.2 ka BP event’ in the Greenland δ18Oice, which is commonly linked to a melt-water related perturbation of the Atlantic Meridional Overturning Circulation and associated ocean heat transport. By deciphering the phasing between a recently published record of reduced overflow from the Nordic Seas into the northern North Atlantic, the Greenland δ18Oice ‘8.2 ka BP event’ anomaly, and the short-lived cooling in SL21, we demonstrate severe far-field impacts of this North Atlantic event in the Aegean Sea. The Aegean is isolated from the North Atlantic oceanic circulation, so that signal transmission must have been of an atmospheric nature.  相似文献   

9.
Hydrography of the Bay of Bengal is highly influenced by the river runoff and rainfall during the southwest monsoon. We have reconstructed δ18Osw, sea surface salinity and sea surface temperature (SST) changes in the Bay of Bengal by using paired measurements of δ18O and Mg/Ca in a planktonic foraminifera species Globigerinoides ruber from core SK218/1 in the western Bay of Bengal in order to understand the rainfall variability associated with southwest monsoon over the past 32 kyr. Our SST reconstructions reveal that Bay of Bengal was ~3.2 °C cooler during the LGM as compared to present day temperature and a ~3.5 °C rise in SST is documented from 17 to 10 ka. Both SST and δ18Osw exhibit greater amplitude fluctuations during MIS 2 which is attributable to the variability of NE monsoon rainfall and associated river discharge into the Bay of Bengal in association with strong seasonal temperature contrast. On set of strengthening phase of SW monsoon was started during Bølling/Allerød as evidenced by the low δ18Osw values ~14.7 ka. δ18Osw show consistently lower values during Holocene (with an exception around 5 ka), which suggests that the freshening of Bay of Bengal due to heavy precipitation and river discharge caused by strong SW monsoon. Results of this study signify that the maximum fluctuations of the NE monsoon rainfall during MIS 2 appear to be controlled by the strong seasonality and boundary conditions.  相似文献   

10.
There are 19 sub-tropical temperate glaciers on Mount Yulong, the southernmost currently glacier-covered area in Eurasia, controlled by the south-western monsoon climate. In the summer of 1999, a firn core, 10.10 m long, extending down to glacier ice, was recovered in the accumulation area of the largest glacier, Baishui No.1. Periodic variations of climatic signals above 7.8 m depth were apparent, and net accumulation of four years was identified by the annual oscillations of isotopic and ionic composition. The boundaries of annual accumulation were confirmed by higher values of electrical conductivity and pH, and by dirty refreezing ice layers at the levels of summer surfaces. Calculated mean annual net accumulation from 1994/95 to 1997/98 was about 900 mm water equivalent. The amplitude of isotopic variations in the profile decreased with increasing depth, and isotopic homogenization occurred below 7.8 m as a result of meltwater percolation. Variations of δ18O above 7.8 m showed an approximate correlation with the winter climatic trend at Lijiang station, 25 km away. Concentrations of Ca2+ and Mg2+ were much higher than those of Na+ and K+, indicating that the air masses for precipitation were mainly from a continental source, and that the core material accumulated during the winter period. The close correspondence of Cl and Na+ indicated their common origin. The decreasing trend of Na+/Cl ratios with increasing depth further reflects a progressive homogenization process caused by meltwater percolation. Concentrations of SO42− and NO3 in the core are quite low. The mean annual net accumulation in the core and the estimated ablation indicate that the average annual precipitation above the glacier's equilibrium line is 2400–3100 mm, but this needs to be confirmed by long-term observation of mass balance.  相似文献   

11.
《Ore Geology Reviews》2011,41(1):27-40
Diyadin mineralization is the first reported gold deposit located in a collisional tectonic environment in Eastern Anatolia. The mineralization is related to N–S and N10–20°W-trending fault systems and hosted within the Paleozoic metamorphic basement rocks of the Anatolide–Toride microcontinent. Calc-schist, dolomitic marble and Miocene and Quaternary volcanic rocks comprise the exposed units in the mineralized area. Geochemical signatures, alteration types and host rock characteristics of the Diyadin gold deposit resemble those of Carlin-type deposits. Mineralization is constrained by alteration of overlying volcanic rocks to younger than ~ 14 Ma (K–Ar).Carbon and oxygen stable isotope measurements of carbonate rocks were made on six drill holes (n = 81) with an additional four samples of fresh carbonate rocks from surface outcrops. Background carbonate rocks have δ13CV-PDB ~ 1.8‰ and δ18OV-SMOW ~ 27‰. Isotopically-altered host rock samples have decreased δ18O (down to ~+11.4‰) and variable δ13C (from − 3.6 to + 4.8‰). Postore carbonate veins and cave-fill material have distinctly different isotopic signatures, particularly carbon (from δ13C = + 8.4 to + 9.8‰). Whether this post-ore carbonate is simply very late in mineralization associated with the gold system, or is a completely different, younger system utilizing the same pathways, is unclear at present. Within the host rock sample set, there is no correlation between gold and δ13C, and a weak correlation between gold and δ18O, indicative of water–rock interaction and isotopic alteration. Both the isotopic data and structural mapping suggest that the main upflow zone for the deposit is near the northern portion of the drill fence. Additional data at multiple scales are required to clarify the relationship(s) between fluid flow and mineralization.  相似文献   

12.
During the last glacial interval, the North Atlantic ice sheets expanded and contracted in approximate synchronicity with orbitally forced global climate change. Variation in ice rafted detritus content in North Atlantic marine sediment cores record the waxing and waning of glaciers, as well as the abrupt temperature changes at millennial time scales. The background variations of ice rafting are punctuated by Heinrich layers, which appear to record the catastrophic collapse of the Laurentide ice sheet through the Hudson Strait. The objective of this paper is to document the evolution of glaciation on Laurentia during the last 43 14C kyr. We present a provenance study based on 40Ar/39Ar dates of individual hornblende grains from 57 samples taken at 2 cm spacing between 4 and 134 cm from core V23-14 (43.4°N, 45.25°W, 3177 m). Sedimentation rates outside of the Heinrich layers are very low in this core, but the Heinrich layers are easily identified. Laurentide glaciation did not extend into the ocean south of 55°N until about 26 14C kyr, and retreated to the coastline or beyond by 14 14C kyr. Documenting the history of this major ice sheet has significant implications for understanding ice rafting sources in more distal locations where mixing among different ice sheets is likely.  相似文献   

13.
The Bear Lodge alkaline complex in northeastern Wyoming (USA) is host to potentially economic rare-earth mineralization in carbonatite and carbonatite-related veins and dikes that intrude heterolithic diatreme breccias in the Bull Hill area of the Bear Lodge Mountains. The deposit is zoned and consists of pervasively oxidized material at and near the surface, which passes through a thin transitional zone at a depth of ~ 120–183 m, and grades into unaltered carbonatites at depths greater than ~ 183–190 m. Carbonatites in the unoxidized zone consist of coarse and fine-grained calcite that is Sr-, Mn- and inclusion-rich and are characterized by the presence of primary burbankite, early-stage parisite and synchysite with minor bastnäsite that have high (La/Nd)cn and (La/Ce)cn values. The early minerals are replaced with polycrystalline pseudomorphs consisting of secondary rare-earth fluorocarbonates and ancylite with minor monazite. Different secondary parageneses can be distinguished on the basis of the relative abundances and composition of individual minerals. Variations in key element ratios, such as (La/Nd)cn, and chondrite-normalized profiles of the rare-earth minerals and calcite record multiple stages of hydrothermal deposition involving fluids of different chemistry. A single sample of primary calcite shows mantle-like δ18OV-SMOW and δ13CV-PDB values, whereas most other samples are somewhat depleted in 13C (δ13CV-PDB   8 to − 10‰) and show a small positive shift in δ18OV-SMOW due to degassing and wall-rock interaction. Isotopic re-equilibration is more pronounced in the transitional and oxidized zones; large shifts in δ18OV-SMOW (to ~ 18‰) reflect the input of meteoric water during pervasive hydrothermal reworking and supergene oxidation. The textural relations, mineral chemistry and C and O stable-isotopic variations record a polygenetic sequence of rare-earth mineralization in the deposit. With the exception of one Pb-poor sample showing an appreciable positive shift in 208Pb/204Pb value (~ 39.2), the Bear Lodge carbonatites are remarkably uniform in their Nd, Sr and Pb isotopic composition: 143Nd/144Ndt = 0.512591–0.512608; εNdt = 0.2–0.6; 87Sr/86Srt = 0.704555–0.704639; εSrt =  1.5–2.7; 206Pb/204Pbt = 18.071–18.320; 207Pb/204Pbt = 15.543–15.593; and 208Pb/204Pbt = 38.045–39.165. These isotopic characteristics indicate that the source of the carbonatitic magma was in the subcontinental lithospheric mantle, and modified by subduction-related metasomatism. Carbonatites are interpreted to be generated from small degrees of partial melt that may have been produced via interaction of upwelling asthenosphere giving a small depleted MORB component, with an EM1 component likely derived from subducted Farallon crust.  相似文献   

14.
The Dapingzhang volcanogenic Cu–Pb–Zn sulfide deposit is located in the Lancangjiang tectonic zone within the Sanjiang region, Yunnan province of southwestern China. The deposit occurs within a felsic volcanic dome belonging to a mid-Silurian volcanic belt stretching for more than 100 km from Dapingzhang to Sandashan. The mineralized volcanic rocks are predominantly keratophyre and quartz keratophyre with subordinate spilite. The Dapingzhang deposit is characterized by well-developed vertical zonation with stockwork ores in the bottom, disseminated sulfide ores in the middle, and massive sulfide ores in the top, overlain by a thin layer of chemical sedimentary exhalative rocks (chert and barite). The Re–Os age of the pyrites from the deposit is 417 ± 23 Ma, indistinguishable from the age of the associated felsic volcanic rocks. The associated felsic volcanic rocks are characterized by negative Nb–Ta anomalies and positive εNd(t) values (+ 4.4–+6.5), similar to the coeval calc-alkaline volcanic rocks in the region. This observation supports the interpretation that the felsic volcanic rocks associated with the Dapingzhang deposit are the derivatives of arc basaltic magma by extensive fractional crystallization. The δ34S values of the sulfides from the deposit vary from − 1.24 to + 4.32‰, indicating a predominantly magmatic source for the sulfur. The sulfides are also characterized by homogeneous and relatively low radiogenic Pb isotope compositions (206Pb/204Pb = 18.310–18.656, 207Pb/204Pb = 15.489–15.643 and 208Pb/204Pb = 37.811–38.662), similar to the Pb isotopic compositions of the associated volcanic rocks. The Pb isotopic data indicate that mantle-derived Pb is more prevalent than crust-derived Pb in the deposit. The S–Pb isotopic data indicate that the important ore-forming materials were mainly derived from the associated volcanic rocks. The δ13CPDB and δ18OSMOW values of the associated hydrothermal calcite crystals vary from − 2.3‰ to + 0.27‰ and from + 14.6 to + 24.4‰, respectively. These values are between the mantle and marine carbonate values. The narrow range of the δ13CPDB values for the calcite indicates that carbon-bearing species in the hydrothermal fluids were primarily derived from marine carbonates. The δ18O values for the hydrothermal fluids, calculated from the measured values for quartz, are between − 2.1‰ and + 3.5‰. The corresponding δD values for the fluids range from − 59‰ to − 84‰. The O–H isotopic data indicate mixing between magmatic fluids and seawater in the ore-forming hydrothermal system. Similar to a typical volcanogenic massive sulfide (VMS) deposit, the ore-forming fluids contained both magmatic fluids and heated seawater; the ore metals and regents were derived from the underlying magma as well as felsic country rocks.  相似文献   

15.
A sea ice record for Barrow Strait in the Canadian Arctic Archipelago (CAA) is presented for the interval 10.0–0.4 cal. kyr BP. This Holocene record is based primarily on the occurrence of a sea ice biomarker chemical, IP25, isolated from a marine sediment core obtained from Barrow Strait in 2005. A core chronology is based on 14C AMS dating of mollusc shells obtained from ten horizons within the core. The primary IP25 data are compared with complementary proxy data obtained from analysis of other organic biomarkers, stable isotope composition of bulk organic matter, benthic foraminifera, particle size distributions and ratios of inorganic elements. The combined proxy data show that the palaeo-sea ice record can be grouped according to four intervals, and these can be contextualised further with respect to the Holocene Thermal Maximum (HTM). Spring sea ice occurrence was lowest during the early–mid Holocene (10.0–6.0 cal. kyr BP) and this was followed by a second phase (6.0–4.0 cal. kyr BP) where spring sea ice occurrence showed a small increase. Between 4.0 and 3.0 cal. kyr BP, spring sea ice occurrence increased abruptly to above the median and we associate this interval with the termination of the HTM. Elevated spring sea ice occurrences continued from 3.0 to 0.4 cal. kyr BP, although they were more variable on shorter timescales. Within this fourth interval, we also provide evidence for slightly lower and subsequently higher spring sea ice occurrence during the Mediaeval Warm Period and the Little Ice Age respectively. Comparisons are made between our proxy data with those obtained from other palaeo-climate and sea ice studies for the CAA.  相似文献   

16.
Polymetallic vein-type Zn-Pb deposits are located in the Xiangxi–Qiandong zinc-lead metallogenic belt (XQMB) of the northwestern margin of the Jiangnan Orogen, South China. Ores are mainly found in fault-bounded quartz veins hosted in the upper part of the Banxi Group that consists of low-grade metamorphic sandstone, siltstone with minor tuff interbeds. The Zn-Pb deposits primarily contain sphalerite, galena, chalcopyrite and pyrite, accompanied by quartz and minor calcite. Zinc, lead, copper, indium and gallium are enriched in these ores. Investigation of the ore fluid reveals low temperature (87–262 °C) with scattered salinity (range from 2.73 to 26.64 wt% NaCleqv.). Hydrogen and oxygen isotopic compositions of fluid inclusions in quartz indicate mixing of magmatic hydrothermal fluid and meteoric water (δ18OH2O SMOW = 0.2‰ to 4.2‰; δDH2O SMOW = −126‰ to −80‰). Carbon and oxygen isotopic composition of carbonate samples indicate the magmatic hydrothermal origin of CO32− or CO2 in ore-forming fluid (δ13CPDB = −6.9‰ to −5.7‰, δ18OSMOW = 11.3‰ to 12.7‰). Sulfur and lead isotopic compositions (δ34SVCDT = 8.8–14.2‰ and 206Pb/204Pb = 17.156–17.209, 207Pb/204Pb = 15.532–15.508, 208Pb/204Pb = 37.282–37.546) demonstrate that sulfur sources were relatively uniform, and low radiogenic lead isotopic compositions indicate that ore metals were derived from a relatively unradiogenic source, probably by mixing of mantle with crust. Therefore, polymetallic vein-type Zn-Pb mineralization in this area probably arose from a magmatic-related hydrothermal system, and the deposition of sulfides occurred in response to cooling and boiling of magmatic hydrothermal fluids (high salinity, high δ18OH2O and δDH2O and metal-bearing), and is mainly the result of emplacement into open space and mixing with meteoric water (low salinity, low δ18OH2O and δDH2O). This study provides direct evidence that magmatism was involved in the ore-forming processes of the low temperature metallogenic district, South China, and it raises awareness about the presence of polymetallic vein-type Zn-Pb deposits in the northwest margin of Jiangnan Orogen and their potential as a source of zinc, copper, indium and gallium.  相似文献   

17.
The Maozu Pb–Zn deposit, located on the western margin of the Yangtze Block, southwest China, is a typical carbonate-hosted deposit in the Sichuan–Yunnan–Guizhou Pb–Zn metallogenic province with Pb + Zn reserves of about 2.0 million tonnes grading 4.15 wt.% Pb and 7.25 wt.% Zn. Its ore bodies are hosted in Sinian (635–541 Ma) Dengying Formation dolostone and show stratiform, vein and irregular textures. Ores are composed of sphalerite, galena, pyrite, calcite, dolomite, quartz and fluorite with massive, banded, disseminated and veined structures. The C–O–Sm–Nd isotopic compositions of hydrothermal calcites and S–Pb isotopic compositions of sulfides were analyzed to constrain the origin of the Maozu deposit. δ13CPDB and δ18OSMOW values of hydrothermal calcites range from −3.7‰ to −2.0‰ and +13.8‰ to +17.5‰, respectively, and plot near the marine carbonate rocks field in a plot of δ13CPDB vs. δ18OSMOW, with a negative correlation. It suggests that CO2 in the hydrothermal fluids was mainly originated from marine carbonate rocks, with limited influence from sedimentary organic matter. δ34SCDT values of sulfides range from +9.9‰ to +19.2‰, similar to that of Cambrian to Triassic seawater sulfate (+15‰ to +35‰) and evaporate (+15‰ to +30‰) in the Cambrian to Triassic sedimentary strata. It suggests that reduced sulfur was derived from evaporate in sedimentary strata by thermo chemical sulfate reduction. Sulfides have low radiogenic Pb isotope compositions (206Pb/204Pb = 18.129–18.375, 207Pb/204Pb = 15.640–15.686 and 208Pb/204Pb = 38.220–38.577) that plot in the field between upper crust and the orogenic belt evolution curve in the plot of 207Pb/204Pb vs. 206Pb/204Pb, and similar to that of age corrected Proterozoic basement rocks (Dongchuan and Kunyang Groups). This indicates that ore-forming metals were mainly derived from basement rocks. Hydrothermal calcite yields a Sm–Nd isotopic age of 196 ± 13 Ma, possibly reflecting the timing of Pb–Zn mineralization in the SYG province, younger than the Permian Emeishan mantle plume (∼260 Ma). All data combined suggests that hydrothermal fluids circulated through basement rocks where they picked up metals and migrated to surface, mixed with reduced sulfur-bearing fluids and precipitated metals. Ore genesis of the Maozu deposit is different from known magmatic–hydrothermal, Sedimentary Exhalative or Mississippi Valley-types, which maybe represent a unique ore deposit type, named as the SYG-type.  相似文献   

18.
This work describes the in situ analysis of loparite [(Na,REE)Ti2O6], a perovskite group mineral with extremely low Rb/Sr ratios and high rare earth contents, by LA-(MC)-ICP-MS for the determination of U–Pb ages together with Sr and Nd isotopic composition. The reliability of these data were validated by analysis of a loparite standard by TIMS solution methods. Data are given for loparite from the Lovozero and Khibiny peralkaline complexes of the Kola Alkaline Province (Russia). For Lovozero loparite the Tera–Wasserburg intercept age for 15 loparites analysed is 373 ± 11 Ma, and the weighted 207Pb corrected 206Pb/238U age is 373 ± 2 Ma. For Khibiny loparite, the intercept age for 5 loparites analysed is 375 ± 10 Ma, and the weighted 207Pb corrected 206Pb/238U age is 374 ± 3 Ma. The common Pb compositions for Lovozero and Khibiny loparites are identical i.e. 207Pb/206Pb = 0.898 ± 0.009 and 0.898 ± 0.007, respectively. The 87Sr/86Sr initial ratios of Lovozero loparite range from 0.703552 to 0.703682 (av. 0.703611), and εNd (t370) from + 3.8 to + 4.4 (av. + 4.0). The 87Sr/86Sr initial ratios of Khibiny loparite range from 0.703560 to 0.703871, and εNd (t730) from + 4.0 to + 4.8. Our data indicate that in situ LA-(MC)-ICP-MS analysis of loparite provides accurate and precise estimates of the intrusion ages and isotopic composition of peralkaline rocks.  相似文献   

19.
Determination of the emplacement ages and initial isotopic composition of kimberlite by conventional isotopic methods using bulk rock samples is unreliable as these rocks usually contain diverse clasts of crustal- and mantle-derived materials and can be subject to post-intrusion sub-aerial alteration. In this study, 8 samples from 5 kimberlites in southern Africa and twelve samples from 7 kimberlites from Somerset Island, Canada have been selected for in situ perovskite U–Pb isotopic age determination and Nd isotopic analysis by laser ablation using thin sections and mineral separates. These fresh perovskites occur as primary groundmass minerals with grain-sizes of 10–100 μm. They were formed during the early stage of magmatic crystallization, and record data for the least contaminated or contamination-free kimberlitic magma. U–Pb isotopic data indicate that the majority of the southern Africa kimberlites investigated were emplaced during the Cretaceous with ages of 88 ± 3 to 97 ± 6 Ma, although one sample yielded an Early Paleozoic age of 515 ± 6 Ma. Twelve samples from Somerset Island yielded ages ranging from 93 ± 4 Ma to 108 ± 5 Ma and are contemporaneous with other Cretaceous kimberlite magmatism in central Canada (103–94 Ma). Although whole-rock compositions of the kimberlites from southern Africa have a large range of εNd(t) values (? 0.5 to + 5.1), the analysed perovskites show a more limited range of + 1.2 to + 3.1. Perovskites from Somerset Island have εNd(t) values of ? 0.2 to + 1.4. These values are lower than that of depleted asthenospheric mantle, suggesting that kimberlites might be derived from the lower mantle. This study shows that in situ U–Pb and Nd isotopic analysis of perovskite by laser ablation is both rapid and economic, and serves as a powerful tool for the determination of the emplacement age and potential source of kimberlite magmas.  相似文献   

20.
《Quaternary Science Reviews》2005,24(1-2):195-210
Low-field magnetic susceptibility has been widely used to determine the pedostratigraphy of the Chinese loess/paleosol sequences. However, uncertainties remain in correlating between the loess magnetic susceptibility and the marine oxygen isotope records because susceptibility variations are affected by both global and local paleoclimatic changes. To provide a more sound paleoclimatic interpretation of magnetic susceptibility variations, age models across Marine Oxygen Isotope Stage (MIS) 5 for the Jiuzhoutai (JZT) and Yuanbao (YB) sections, western Chinese Loess Plateau, were constructed through an integrated approach by linking the major pedostratigraphic boundaries of the loess profiles to the SPECMAP oxygen isotope curve, and by correlating relative magnetic paleointensity records with both the SINT800 global paleointensity stack from marine sediments and 36Cl records from the GRIP ice core. Results indicate good correlation of SIRM60 mT (a residual remanence of saturation isothermal remanent magnetization after a 60 mT alternating field demagnetization) variations between these two sites, which agree well with fluctuations in subtropical Atlantic sea surface temperatures. All cooling events recorded by ice-core and Atlantic marine sediments within MIS5 have counterparts in SIRM60 mT. SIRM60 mT is partially controlled by the degree of low-temperature oxidation, which is strongly temperature dependent. However, strong pedogenesis can decrease SIRM60 mT due to further oxidation of partially oxidized magnetites above some critical points. Therefore, we propose that SIRM60 mT is best suited to record paleotemperature changes in loess profiles from the western Chinese Loess Plateau, where pedogenesis is the weakest. Furthermore, by inter-profile correlation between the YB and JZT sections, we note that the seemingly uniform sub-paleosol unit with a broad susceptibility peak (previously assigned to MIS5c) between ∼34.4 and ∼37.4 m in the YB profile actually consists of two independent units (lower part of S1L1/MIS5b and S1S2/MIS5c). This indicates that susceptibility values can be strongly affected by local factors (e.g., mainly precipitation). Therefore, beside the simplistic traditional paleoclimatic interpretation of variations in loess susceptibility involving only cold/dry and warm/humid scenarios, cold/humid and warm/dry scenarios should also be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号